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Abstract

Self-reference, far from being just a logician’s and a philosopher’s puzzle is ,in fact, a
central feature of human language and reason. It, thus, seems natural that intelligent
machine will also have to deal with the issue of self-reference. We discuss some of the formal
problems, and potential solutions and applications. Portions of this essay are descriptive in
nature, portions prescriptive. We are involved in the development of some of the ideas in the
relevant literature, and make no apology for injecting a certain subjective note into the text,
as opposed to forcing a false objectivity. We have also freely drawn on portions of essays
written by one of the authors.
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I. General Introduction

One of the most important characteristic features of human language and reasoning is
the concept of self-reference. As researchers continue to attempt to endow computers with
generalized intelligence, it is becoming more and more apparent that such intelligence cannot

be had without self-referential capabilities.

There are at least two roles that self-reference plays regarding intelligence. The first
is concerned with language while the second is concerned with beliefs. With respect to
language, self-reference allows a language to refer to components of the language itself. Simi-
larly, a self-referential belief system is able to consider its own thoughts. Computers, as of
yet have not been granted language or belief systems that are self-referential. Much work,
however, has been undertaken that attempts to formalize these concepts so that we may pro-

vide computers the ability to reason in an intelligent manner.

This paper highlights the issues and progress of the research, most of which is
extremely current, in the area of self-reference. We treat both the theoretical and practical

aspects of these works in an effort to provide as comprehensive a view as possible.

II. Self Reference in Language

A. Introduction

The Liar Paradox is perhaps the most famous case of a self-referential statement,
most compactly given in the form, “This sentence is false.” This and related paradoxical
statements have been the focus of an enormous amount of attention in modern philosophy

and logic, often with the view that extremely serious foundational issues are at play here,



showing formal languages of a sufficiently rich sort to be on a very tenuous plane. However,
although no one would claim that natural language is any less complex than formal languages
are, still the tendency in the former is to emphasize the complex usages of language rather
than explore any inherent foundational infirmity. Thus work in knowledge representation
produces increasingly complex systems {(e.g., Bobrow and Winograd [1977] and Brachman
[1978]) by creating whatever representational structures are desired, without any apparent
trouble with systematic inconsistency. The concern with such statements as the Liar”s, then,

has not spread to the domain of natural language research per se.

A statement need not be as formal or deliberately concocted as the Liar to produce
paradox. In fact, natural language abounds with self-reference, as was partially indicated in

[Kripke 1975], with combinations of sentences such as

1) John: “Don "t trust what Bill tells you.”~

2) Bill: “Don "t trust what John tells you.~

Here each individual is making a statement that refers to (possibly many) statements made
by the other, with the understood intention of including the corresponding statement given
above; but that statement then refers back to the other. The listener is being urged by each

speaker to take his statement and not the other’s.

Other examples of straightforward sentences that nonetheless involve a kind of self-

reference or reference to a set of sentences or beliefs containing the given one, are:

3) I am now speaking ¥English.

4) Any reasonably short sentence can go into



an abstract.

5) Every sentence must end in a period.

6) I"d know if I knew that!

7) Some of my beliefs may be false, but none are

stupid.

8) Some things anyone says are false.

9) Some sentences are about other sentences.

All of these seem to read fairly easily and could be heard spoken in normal conversa-
tion. Furthermore, they express ideas that are sufficiently close to matters of general concern
that it would be fairly restrictive of a representational system not to handle them, if it pur-

ported to be a formalization of natural language.

B. The Problem

We wish to emphasize a point that is implied in the above discussion. That is, that
self-reference is necessary in any language with a concept of its own grammar. By the latter
we mean simply the capacity of the language to refer to grammatical entities such as words
and sentences. This is needed for instance to discuss whether John said X or Y, surely a con-
struction present in and vital to all natural languages. But this requires some kind of device
to quote utterances, i.e., to recognize that a sentence or other grammatical construct is being
talked about rather than asserted. Even if the language does not contain an explicit quota-

tion mechanism, the underlying semantics surely does. For how else would we account for the



fact that such an utterance as “Bill is here” informs the listeners not only about Bill but also
about the name “Bill"? Consider Alice, who did not know of the individual referred to: how
is the sentence understood by her? Surely as evidence that someone named °Bill® is present
or arriving. So her “inner language,” so to speak, has a recognition of the parts of the outer
language; people know thes; are using words to express ideas, and this knowledge is actually
part of very many instances of language use. Alice knows °Bill is here’ has been said and

that it has given her this information: she can unquote the sentence to arrive at its meaning.

Another way of putting this is that semantics is a part of language. People know
about it and use it explicitly. We tell one another what meaning sentences have for us. We

-

refer to a sentence * and say that it means something. Formally, we have something like

Unquote(”...") <--> %%

-

where *** expresses what it means for “...” to hold. For example,

Unquote(”Snow is white”) <--> Snow is white.

Of course, semantics purports to do better than this, usually by providing a formal object on
the right instead of repeating the same sentence unquoted! A recent and much heralded effort

in this direction is Barwise and Perry [1981].

However, any such effort must sooner or later face the issue of explicating the seman-
tics of semantics itself, i.e., such a predicate as Unquote (or Hold or True). When these predi-
cates themselves are part of the sentence being quoted, we have self-reference in its full glory,
and the Liar Paradox is a distinctly ominous possibility. (See Perlis [1981] for a formal con-
struction of the Liar Paradox in a language with an expression of its own grammar.) It

appears then that we need rules governing when certain quotations are allowed.



C. Semantics for Truth with Self-Reference

Such rules have been worked on extensively in what we may call the hierarchical
approaches. These involve using a notational type for each level of reference, as in Russell
[1908] and Tarski [1944]. Unfortunately they do not serve to express what is needed. For a
sentence to contain another as term, requires the main sentence to be of higher order than

that of the term:

- John said ”I am six feet tall” /1, but he is wrong.” /2

where the indices show the respective order types. The trouble with this, apart from its

cumbersomeness, is that it fails to capture such salient facts as

“ A higher order sentence can contain only lower order terms.”

For we could do this only with a sentence that itself would have some order:

A sentence/9 can contain only terms/8.” /10

Thus only a small part of what we intend is actually expressed.

We are apparently faced, then, with the need for both arbitrary referring of sentences
to one another, and a truth predicate that also can apply to arbitrary sentences. Yet we must
avoid the Liar Paradox if we are to have any trustworthy semantics. Can we simply banish
troublesome kinds of self-reference? This is what Russell and Tarski were after, of course, but
to do so we need another approach. It turns out that this is not at all trivial (viz., 75 years of
foundational efforts to this end in mathematical logic), in particular as evidenced in Kripke

{1975] by further examples in the John-Bill vein as above.

On the other hand, Kripke also showed that a lot can be accomplished toward a



semantics for truth with self-reference. He constructs a truth definition for “grounded” sen-
tences, ones that can be reduced to non-self-referential ones and then finally decided true or
false. However, the non-grounded ones are left open, and they include both the Liar“s and
others such as 1) and 2) above. Moreover, in analogy with the hierarchical situation, we can

form

10) Each true sentence (in Kripke “s scheme) is so by

virtue of others decided before it.

This in fact is how his truth definition proceeds, and is crucial to its use and understanding.
Yet (10) is not so decided! To do so would require first checking that all true sentences so fol-

lowed, and this would require (10) to be true or not!

D. Quotation and Truth

‘We now discuss a scheme, having much in common with Kripke “s, but borrowing a
tool from Gilmore [1974], to formalize a simple and computationally cheap truth definition,
which allows the statement of the fact that a given sentence may not be decided one way or
another. Moreover, Gilmore“s work (which was in the foundations of set theory) can be

modified to show the resulting system consistent (see Perlis [1981]).

The scheme is as follows: for definiteness we work in a first-order logic, with a truth
predicate T. Then instead of the axiom schema T("P~°) <<--> P for all sentences P, which
leads to the Liar and other paradoxes, we postulate T("P°) <--> P%, where the *-operator
replaces each occurrence (inside P) of a subformula of the form -T("Q*) with the subformula
T(’-Q’°). This apparently modest change makes all the difference, leading from an incon-

sistent formalization to a consistent one. It recognizes a difference between T(-Q~°) (i.e., Q



really failing) and -T(" Q") (i.e., Q@ not really holding). Thus in a sense this could be regarded
as akin to a three-valued logic, although in fact it is not. It is a perfectly ordinary first-order
logic, in which excluded middle is valid: P v -P, and even T("P’) v -T("P~"). The point is
that T here is a predicate, and has a slightly different meaning from what we are accustomed
to: intuitively it can be regarded as saying whatever its argument says and that that can be
established before any judgement about T is made. We refer to this as the “normal order” of
judging that a sentence is true. To make the judgement “”Snow is white” is true,” we first

judge that snow is white and then pass to the observation about the sentence.

In effect we find we can consistently write

R: True("-R”)

and

S: -True("S”)

and even prove S (for it undeniably is not “True”) as well as -R (for R, being True("-R"), is
also not tenable). In terms of the Liar versions above, we find both S and R violate normal
order, since each makes claims about its own quoted truth; hence we have -True(”S”) and
-True("R”). (The former is even S itself!) Although it takes getting used to this new sense of
truth, it seems fairly close to intuition when examined in detail as in Kripke“s paper, and for
ordinary (normal) sentences, it yields exactly the naive result that quotation changes nothing

about the meanings. It appears then that the formal issues surrounding quotation are on a

fairly solid footing.

E. Summary
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We conclude that although self-reference is central to any powerful encapsulation of
natural language, this does not present insurmountable problems, and that the notion of truth
that often arises in self-referential statements can be handled in a straightforward manner

that is both computationally feasible and more expressive than the standard alternatives.

III. Commonsense Reasoning and Non-Monotonicity

A. Introduction

Marvin Minsky [1974] coined the phrase “non-monotonic logic” in developing an
argument that tools of formal logic are inadequate to the task of representing commonsense
reasoning. His argument stressed the point that much of commonsense reasoning involves the
use of default rules, that is, conclusions are drawn on the basis of the absence of other infor-
mation. Consider the example of concluding from the knowledge that Tweety is a bird that
Tweety can fly. Such a conclusion is not necessarily correct, although it is certainly one that
can be very useful in many situations. One could try to specify carefully precisely those situa-
tions in which such a conclusion is sound, but any effort to do so quickly leads to despair. The
possible circumstances in which any presumed correct line of reasoning can be defeated
astounds: Tweety may be an ostrich, may have a broken wing, may be chained to a perch,
may be too weak, etc. Indeed, the problem is virtually the same as that of the well-known
frame problem: the special conditions relevant to determining what may be the case in a com-
plex environment defies precise specification. Although we seem to have a strong sense of cer-
tain ”typical” situations (such as ”typical” birds being ones which among other things can

fly), it is notoriously hard to define typicality.

Minsky seems to have concluded that formal methods per se are inappropriate to cap-
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ture such reasoning, whereas others have taken his ideas as a challenge by which to find more
powerful formal methods. Out of this challenge has arisen a substantial field of research in
non-monotonic reasoning. The terrain has by now shown itself to be a rich and varied one
involving ideas from divers parts of artificial intelligence, logic, natural language, and philoso-
phy. One theme that seems to have emerged is that a key element in commonsense reasoning
dealling with uncertainty (due to the abundance of special conditions defying specification) is
self-reference: the reasoning entity utilizes information about the extent of its own knowledge.
Indeed, most approaches to commomsense reasoning can be viewed in terms of their approach

to representing such self-reference. We will explore this in what follows.

B. The Problem

Minsky argued that, firstly, conclusions of the sort given in the Tweety example are
contingent on what else is known (e.g., if it is already known that Tweety cannot fly, we
refrain from concluding the opposite), and that secondly such conclusions do not obey the
customary phenomenon of ”monotonicity” of formal systems of logic. That is, a standard
logic L has the property that if ¢ is a theorem of L and if L is augmented to L* by additional
axioms, then ¢ remains a theorem of L. Indeed the same proof of ¢ in L is a proof of ¢ in
L*. However, commonsense reasoning seems to allow a ”proof” (at least in the form of a ten-
tative supposition) that Tweety can fly, given only that Tweety is a bird, whereas in the aug-
mented state in which it is known also that Tweety cannot fly no such ”proof” is forthcom-
ing. In effect account seems to be taken of what the reasoner does not know, an issue already
much studied in the area of databases in the context of the closed world assumption (e.g.,
Minker [1982], Reiter [1978], and Reiter [1980]), in which any atomic formula not explicitly

present in the database is intended to be false.
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It is true that any straightforward attempt to represent such reasoning in terms of
sentences in a traditional “monotonic” logic in which the stated conclusions are theorems, will
fail, for the simple reason that these logics will necessarily have the original theorem (Tweety
can fly) carried over to the augmented theories by virtue of their monotonicity. Several ques-

tions then arise:

(a) are there other formal logics that can represent such reasoning?

(b) has the commonsense reasoning been fairly portrayed here or are there other
factors involved that might change the assessment of the role of non-

monotonicity?

(c) might not a clever use of monotonic logic allow the effect of non-monotonic

deductions?

These questions have guided much of the work in contemporary commonsense reasoning

research.

C. Non-Monotonic Formalisms

Two distinct formalisms emerged around 1980 attempting to capture the essence of
non-monotonic reasoning by providing a new kind of logical framework. One, due to McDer-
mott and Doyle [1980], bears simply the name of "non-monotonic logic,” and the other, due
to Reiter [1980a], is called ”default logic.” Both employ inferential tools making explicit use
of information about what information the formalism itself has available to it. In both cases

new syntactic and inferential constructs are developed. We discuss each of these in turn.

The non-monotonic logic of McDermott and Doyle ("INML” for short) takes as point
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of departure the desire to represent axiomatically such notions as ”If an animal is a bird then
unless proven otherwise it can fly.” To do this they introduce into the language (initially a
first-order language) a modal operator M, so that if p is a formula then so is Mp (read "p is
consistent”). Now in this language it is possible to write formulas that seem to express the

kind of reasoning given earlier. For instance, the formula

(x)[Bird(x) & M Flies(x) .--> Flies(x)]

appears to convey information appropriate to concluding of typical birds that they can fly. A
means is needed to characterize deductions with formulas containing the operator M, how-
ever, and this McDermott and Doyle go to some length to develop. As this is essential to their

treatment, we spend some time examining it now.

At first blush, it would appear easy to state what is wanted. For if indeed the for-
mula p is consistent (with the rest of the axioms of the particular instance of NML one wishes
to utilize), and if in “typical” situations (i.e., one“s in which p is consistent) the formula q
happens to be true, then a rule such as ”from Mp deduce q” seems appropriate. However,
McDermott and Doyle have chosen M to be a part of the language itself, i.e., Mp is a formula
as well as p. This means that a mechanism is needed to make it possible to prove formulas
such as Mp, and this is problematic since proofs of consistency are not only notoriously hard
in general but in fact are usually impossible within the same axiomatic system with respect to
which consistency is sought. To deal with this problem, McDermott and Doyle extend the
notion of proof to allow a kind of consistency test, at the expense of effectiveness. (In fact, all
formal approaches to non-monotonic reasoning seem to run into this same issue.) Their notion
of proof is as follows: If A is a first-order theory and S is a set of formulas in the language L

of A, let
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where

Asy (S) = {Mq:q€L and -q¢S} — Th(A)

Here Th(A) is the usual set of first-order consequences of A, and Asy (S), the so-called set of
assumptions from S, consists of those formulas Mq not in Th(A) for which -q is not in S.
Intuitively, an Mq that is not already proven is to be considered an assumption on the basis
of S if S does not rule q out, i.e., Q is considered to be ”possible.” The idea is to adjoin
assumptions to A and find all (usual) consequences, this producing the set NM, (S). S of
course could be A itself, or even empty. However, when NM, is formed, new formulas are
thereby available for use (i.e., they are considered ”proven”) and these may themselves pro-
vide the basis for another round of assumptions. So S plays the role of a recursion variable,
and a fixed point of NM, (S) is sought. Thus the set of theorems non-monotonically derivable

from A is defined as

TH (A ) = N({L }U{S :NM, (S)=5})

Note that any attempt to calculate TH(A) leads to consistency tests. For in iterating
NM, (S) for S initially empty, we arrive immediately at the necessity of determining
whether, for any given p, Mq is in Th(A). But this is in general undecidable, and amounts
precisely to determining whether A+{—Mq} is inconsistent. McDermott and Doyle ack-
nowledge this difficulty and show that in very restricted cases--essentially propositional logic-
-there is a remedy. (They also define a notion of model for NML; however there is some

dispute as to the completeness of their definition).

McDermott [1982] tries to strengthen NML so as to overcome certain weaknesses in the
original version, in particular the fact that Mp and -p were not contradictory. The new effort

makes fuller use of the modal character of the language, but in the most interesting case col-
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lapses into equivalence with ordinary first-order logic.

Moore [1983] re-examines the underlying goals of NML and concludes that two ideas
are being conflated: typicality on the one hand, and beliefs about ones beliefs on the other.
He distinguishes between concluding Tweety can fly on the basis that it is not known that
Tweety cannot fly and that typically birds can fly, and concluding Tweety can fly on the
basis that it is not known that Tweety cannot fly and that ”I would know it if Tweety could
not fly.” Moore argues that the former is intended to be approximate and error-prone, while
the latter (which he calls ”autoepistemic reasoning”) is intended to be sound. He devises a

consistent logic for the latter form of reasoning.

It does appear that autoepistemic reasoning forms a part of commonsense reasoning.
Our example above is not as striking as one given by Moore: ”I would know it if I had an
elder brother.” Here one is presumably not merely stating a belief about typicality (that one
typically knows ones older brothers, although that seems true enough) but rather a belief that
“I” specifically do know of all "my” brothers. Admittedly this is arguable, since one can think
of situations in which an older brother may be unknown, but they are not likely to be taken

seriously by us, so that again a kind of typicality may be present here.

Moore points out that in autoepistemic beliefs there is a possibility of failure, i.e., the
belief can be false (we may have an elder brother after all) in which case we must alter that
belief, whereas in the case of typicality we may merely conclude that we are atypical regard-
ing knowledge of brothers and yet preserve the belief that typically elder brothers are known.
Still, if we do discover to our surprise that such a brother exists, it would seem likely that we
would conclude immediately that we were wrong about our autoepistemic belief but that the
belief still applies to most people. Le., there seems a very fine and tenuous line between the

two forms of beliefs. It seems possible that we may move back and forth between explicit typ-
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icality beliefs in which we acknowledge their uncertainty, and more stubborn autoepistemic
ones, for the same assertions, depending on context, and our willingness to alter our position

when challenged may attest to an implicit default character even in autoepistemic cases.

It is of interest that both forms of reasoning, however, like all other non-monotonic
formalisms, depend at least implicitly on a determination that in fact certain formulas are not
theorems of the formalism in question. Note that in Moore”s example we must somehow
determine that in fact we do not know of an elder brother, before using the autoepistemic
belief and modus ponens to conclude we have no such brother. Again, this self-referential or
consistency aspect of the reasoning seems the most striking characteristic, and the one

presenting the greatest formal difficulty.

Reiter [1980] introduces a logic for default reasoning (which we here denote as DL). In
specifically singling out default reasoning, Reiter identifies his concern as that of studying
typicality rather than other possible non-monotonic forms of reasoning. His formalism in fact
bears close resemblance to NML, the most obvious difference being that the language is
strictly first-order, with the operator M playing a role only in rules of inference rather than in
axioms. Specifically, Reiter allows inference rules (*default rules”) such as “from Bird(x) and
M Flies(x), conclude Flies(x)” where "M Flies(x)” is intended not as an antecedent theorem
to the consequent Flies(x) but instead as a condition that must be met before Flies(x) can be
concluded from Bird(x). The condition is, roughly (and as in all non-monotonic formalisms)
that Flies(x) be consistent with the rest of the axiomatic framework. Making this precise and
showing it to be useful is the bulk of the task Reiter undertakes. He employs a hierarchy of
iterations along lines similar to that of NML, also arriving at a fixed point, in determining a
notion of proof for default rules. Since DL uses rules in place of the axioms of NML, it would

appear that in general DL is weaker than NML. This may in fact be a reason to prefer DL to
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NML, in that one of the hoped-for features of reasoning about typicality is that limitations
are placed on what conclusions are drawn. However, at present the outlines of what a reason-
ing system should do regarding typicality as so vague and ill-defined that it is difficult to

defend strong claims.

Reiter and Criscuolo {1981] also consider what they call interacting defaults, i.e.,
default rules which separately might lead to opposed conclusions, such as in ”Richard Nixon
is a Quaker and a Republican” where it is known, say, that typically Quakers are pacifists
and Republicans are not. This appears to be a substantial difficulty for any form of non-

monotonic reasoning that pretends to deal with typicality.

D. Circumscription

Circumscription is a technique devised by John McCarthy {1980] for formalizing cer-
tain notions in commonsense reasoning, and specifically in non-monotonic reasoning. It differs
from NML and DL in being formalized wholly within first-order logic, and as such is perhaps
best not viewed as a non-monotonic logic so much as simply a first-order technique for non-

monotonic reasoning.

McCarthy describes circumscription as a “rule of conjecture” as to what objects have
a given property P. A useful example exploited is the familiar ” missionaries and cannibals”
puzzle: Three missionaries and three cannibals must cross a river, using a boat that can hold
only two persons; if the cannibals outhnumber the missionaries on either bank of the river, the
missionaries will be eaten. How can the crossing be arranged safely? Now, there are numerous
features of interest in the puzzle. The one of concern here is that it is in fact a puzzle, i.e.,
the puzzler is expected to recognize certain impliciv ground rules, such as that the boat does

not have a leak or any other incapacity for transporting people. Moreover, there are no
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additional cannibals or missionaries lurking in the background, who may upset otherwise
sound plans, even though it was not specifically stated that there are only three cannibals and
three missionaries. It is as if there is an implicit assumption that if something is not men-
tioned in the puzzle then it is not to be considered, i.e., the closed-world assumption. It
corresponds to minimizing the number of objects having certain properties. In effect we are
considering conjectures that for certain properties P, an object x does not have P unless it is
required to do so. Moreover, this sort of minimizing assumption appears to be very useful
even in non-puzzle situations. Circumscription provides one way to make this rather vague

idea precise.

Circumscription involves the use of an axiom schema in a first-order language,
intended to express the idea that certain formulas (wffs) have the smallest possible extensions
consistent with certain given axioms. To illustrate, if B is a belief system* including world
knowledge W and specific domain knowledge A[P] concerning a predicate P, then it may be
desired to consider that P is to be minimized, in the sense that as few entities x as possible
have property P as is consistent with A[P]. The world knowledge W together with A[P] and
the circumscriptive schema, are used to derive conclusions in standard first-order logic, which
then may be added to B (hopefully consistently and appropriately). It is this notion of con-
sistency with a part of the belief system itself that causes conceptual as well as computational
problems in non-monotonic reasoning, essentially problems of self reference. McCarthy has
found a very ingenious way of finessing such self reference in the context of minimization,

allowing a mechanical means of establishing the effect of consistency tests in certain cases.

As suggested above, given a predicate symbol P and a formula A[P] containing P,
the minimization of P by A[P] can be thought of as saying that the P-objects consist of cer-
tain ones as needed to satisfy A[P] and no more, in the sense that any tentative set of P-

objects x (such as those given by a wff Zx such that A[Z] holds) already includes all P-objects.
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Circumscription expresses this by means of a schema or set of wifs, which we denote here by

A[P]/P, as follows:

A[P]/P = {[A[Z] & (N(Z(x)->P(x))] —-> F)P(y)--> Z(y)) | Z is a wii}

(Here A[Z] results from A[P] by replacing P by Z.)

A key example, a variation on one emphasized by McCarthy, is the following: let
A[P] be a=—/=Db &. P(a) v P(b). Let Z1(x) be x=a and Z2(x) be x=b. Then from P(a) v
P(b) we get that either Z1 or Z2 will serve for circumscription, i.e., either Z1(x) --> P(x) and
hence P(x) --> Z1(x), or Z2(x) --> P(x) and hence P(x) --> Z2(x). Thus either a is the only
P-object, or b is; indeed, -P(a) v -P(b) will then be provable from A[P] + A[P]/P. In fact, it
then follows that there is a unique P-object; this however should not cause concern, for the

intention is to explore the consequences of conjecturing the stated minimization of P.

McCarthy {1984] generalized his original notion of (predicate) circumscription to allow
specified predicates other than P to vary as well as P; this decisively extends the range of
applicability of circumscription. In the new formulation, called formula circumscription, the
schema can be replaced by a single second-order formula, but comparison with predicate cir-

cumscription is easier when a schema or set A[P1,...,Pn]/E is retained, in the following form:

{A[Z1,...,Zn] & (x)(E[Z1,...,Zn] —> E) > (x)( E --> E(Z1,...,Z2n)) | wffs Z1,...,Zn}

where E = E[P1,...,Pn] is a formula in which P1,..,Pn may appear, and E[Z1,...,Zn] is
obtained from E by substituting Zi for each Pi. Here the intuitive idea is to minimize (the

extension of) the formula E, by allowing variations in (the extensions of) P1,...,Pn.

As McCarthy has observed, it is the presence of the parameters P1,...,Pn that gives

formula circumscription its power, and not the fact that E may be a formula. Indeed, form-
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ing an extension-by-definitions of A[P] by adding the new axiom (x)(POx<-->Ex) where PO is
a new predicate letter, one can simply circumscribe PO with PO,...,Pn as parameters in the
extension of A[P]. That is, we can just as well take E to be a single predicate letter PO, since
any formula that we may wish to minimize can be made equivalent to such a PO by means of
an appropriate axiom included in A[P] itself. Thus we will employ this version of circumscrip-
tion, which perhaps is best called parameter circumscription. In the sequel then, E is the
predicate letter PO, and P stands for P0O,P1,...,Pn, i.e., E plays the role of PO above, unless
context dictates otherwise. Then the schema A[P]/P is as above except that the parameters
Po,...,Pn appear rather than simply P1,...,Pn, and the wifs Z0,...,Zn as well, again where PO is

E[Po,...,Pn] and ZO0 substitutes for E[ZO0,...,Zn]. To be precise, A[P]/P will be the set of wifs

{[A[zo0,...,Z2n] & (x)(ZOx~->POx)] —> (y)(POy-->Z0y) | Z0,...,Zn are wils}

The theory obtained from A[P] by adjoining the set A[P}/P as new axioms, will be
abbreviated with the notation A[P]* whenever the P can be understood from context. I.e.,

A[P)x = A[P] + A[P]/P.

An example using formula or parameter circumscription, is the following ”Life and

Death” problem: Let A[D,L] be the axiom

x)(Dx <--> -Lx) & La & Db & K¢ & (a=/=b & a—/=c & b=/=c¢)

which intended to have the interpretation that dead things (D) are those that are not living
(L), and a is living, b is dead, and c¢ is a kangaroo (K). The circumscription of D then
corresponds to the notion that as few things as possible are to be considered dead. However,
using mere predicate circumscription, i.e., A[D]x rather than A[D,L]*, D could not be
”squeezed” down by means of an appropriate Z predicate since L, being unchanged, would

force D to be its unchanging complement. Thus A[D]* would not have either D¢ or Lc¢ as
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theorems. On the other hand, A[D,L]* does have -Dc, and hence Lc¢, as theorems. This can be

seen by circumscribing with the two predicates x=D>b (for Z0) and x==/=Db (for Z1).

Aside from giving examples, it is desirable to show in precise terms in what sense the
circumscriptive schema A[P]/P does in fact minimize. For this purpose McCarthy [1980] pro-
posed the concept of minimal model in the context of predicate circumscription. Etherington
[1982] has re-defined minimal model in a manner appropriate to McCarthy s new (for-
mula) version of circumscription, which is presented here in slightly modified form as follows.
Let M and N be models of A[P] = A[PO,PL,...,Pn] with the same domains and the same
interpretations of all constant, function, and predicate symbols except possibly PO,P1,...,Pn.
M P-reduces N if the extension of PO in M is a proper subset of that in N. Then N is a P-
minimal model of A[PO,...,Pn] if N is a model of A[PO,...,Pn] and no model M of A[PO,...,Pn]
P-reduces N. (By “model” here is meant “normal model”, i.e., a model in which equality is
interpreted as identity. This, incidentally, illustrates the pointlessness of choosing PO to be
the equality predicate, for then two distinct elements necessarily cannot be identical and so

all (normal) models are minimal for equality.)

As an example, consider again McCarthy “s axiom A[P]: a—/=b &. Pa v Pb. Here
PO is just P. It is easily seen that the P-minimal models are precisely ones of the form {Pa
a==a b=b cl==cl c2=c2 ...} or {Pb a=a b=Db cl=cl ¢2=c2 ...} where the number of ci’s
may be none or any other cardinality. In particular, M1 = {Pa} and M2 = {Pb} are two

such models. But {Pa Pb}, although it is a model of A[P], is not minimal.

The clearly desirable situation would be to have a definition of model appropriate to
the proof theory of the circumscriptive schema, i.e., affording a completeness result of the
form: B is a consequence of A[P] by circumscription, i.e., a theorem of A[P]/P, iff B holds in

all P-minimal models of A[P]. That this does not hold in general, as will be discussed below,
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indicates that at present there are unclear areas in the foundational status of circumscription.

First however is stated a positive result, variants of which have been given in
Davis [1980] (for what is often called “domain” circumscription), in McCarthy [1980] (for
predicate circumscription), in Minker and Perlis {1984] (for “protected” circumscription),

and extended by Etherington [1983] to formula circumscription.

Soundness Theorem: For any formula B

A[P] |P-- B implies A[P] |P= B

where P is a vector of predicate symbols PO,P1,...,Pn and the P-single-turnstyle
and P-double-turnstyle mean the antecedent together with the circumscriptive
schema A[P]/P has the consequent as a theorem, and that the consequent holds in
any P-minimal model of the antecedent, respectively. (Note that A[P] |P—- B is the

same as A[P]x |-- B.)

Again, the example above will illustrate this. Since A[P] |P-- -Pa v -Pb as we saw ear-
lier, then it follows that -Pa v -Pb holds in the models M1 and M2. Of course, we also see

directly that this is the case.

Unfortunately in general the converse, which would provide a full completeness
theorem, does not hold, as shown by Davis [1980]. Let A[N] be Peano arithmetic (with the
postulates N(0), (x)(N(x)-->N(x+1)), etc.) Then the N-minimal models contain N-extensions
isomorphic to the natural numbers, so that the formulas B relativized to N that are true in
these models are precisely those which are true in arithmetic. But no recursive first-order
theory, including one of the form A[N]* = A[N] + A[N]/N, has as its theorems precisely
those sentences true of the natural numbers, nor even its N-relativized theorems. [Ethering-

ton, Mercer, and Reiter (6) noticed that for certain other arithmetical theories A[P] considered
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in (4), A[P]* may be inconsistent even though A[P] is consistent. Specifically, A[P] may fail to

have minimal models.]

Kueker [1984] has found the following simpler illustration: Let I[P] be the theory Pa,
Px<-->Psx, a =/==sX, sx==sy-->x=y. Then models of I[P] are of two types: those that
satisfy the sentence (x).Px-->[-(Ey)x=sy --> x=a| and those that do not. But any minimal
model is isomorphic to the natural numbers N, and is of the former type. Kueker has shown
that this sentence is not a theorem of I[P]*x = I[P]+I[P]/P, which demonstrates that I[P] is

not P-complete. The obvious candidate for Zx in the circumscriptive schema, namely

Px &. -(Ey)x==sy > X=a,

achieves nothing.

Nevertheless, certain partial converses do hold, which have rather broad application.
First some terminology. A theory A[P] is P-complete if A[P] [P== B implies A[P] |P-- B for all
B, i.e., if the converse to the Soundness Theorem holds for A[P] and PO. (Note that the full
converse to Soundness, which is false, is simply the assertion that every theory is P-complete

for every wif P0.) A[P] is P-characterizing if it has theorems of the form

(xX)(Pix <-->Wilx) v ... v (x)}(Pix <-- > Wikix)

for each i==0,...,n where the W “s do not involve PO,...,Pn.

Minker and Perlis [1985] exploit these concepts in the following partial completeness
result: If A[P]* is P-characterizing then A[P] is P-complete. As a special case, the following
can be obtained as a corollary: If A[P] has only finite models, then for all sentences B, A[P]

|P= B iff A[P] [P-- B.

As with much of commonsense reasoning techniques, circumscription naturally
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presents itself as a candidate for a reasoning mechanism that could in principle be used in an
intelligent robot, for instance in conjunction with a theorem prover. However, the fact that a
schema or infinite set of axioms is involved, presents practical difficulties, especially in the
necessary choice of which instance(s) of the schema to use. That is, efficiency or effectiveness

questions arise.

In this regard, Lifschitz [1984] has shown the significance of a subclass of theories vis
a vis circumscription: the separable theories. Separable theories A[P] are those which are
formed, using conjunctions and disjunctions, from formulas containing no positive occurrences

of PO and formulas of the form

(X)(E() -> Po(x))

where E is a predicate that does not contain PO. (These appear related to the P-
characterizing theories, and may afford fruitful terrain for further investigation.) Such theories
turn out to afford expression by means of a single wif replacing the (infinite set of wifs of the)
circumscriptive schema, thereby avoiding the problem of selecting an instance of the schema.

In effect, Lifschitz finds an instance (for separable theories) that is optimal.

E. Real-time introspection

Now we take another point of view. If smart systems do in fact perform default
reasoning, and if they do do so by effective means (as they must), then what is decided is
not derivability in the logical sense, but something different. Israel [1980] argues that a
sequence of logics is a better way to view the situation. Just such an approach is undertaken
in an experimental reasoning system studied by Perlis [1981, 1984]. Similarly, Konolige [1982,

1984] has explored certain modes for representing deductions agents may perform, without
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investing them with full logical consequence as their means of inference. Here we wish to sug-
gest a specific and yet quite general kind of self-referential inference that can be applied to

the above ideas about defaults.

Consider a reasoning system S, in which the deductions S performs are seen as occur-
ring over time. Here we do not want to assume that at some time S stops inferring new
things. We picture S as a “computer individual "--to borrow a phrase from Nilsson--
that goes on thinking as it interacts with the world. Thus there is no time at which it has
“got” all its conclusions. However, at any time, there are conclusions it has, and ones it
has not. We endow S with a mechanism Introspect(X), that allows it to infer whether it
already knows X. The result of performing Introspect(X) is that either Know(X) or -Know(X)
will appear in S”s database, depending on whether in fact X was or was not already in S”s
database. It matters not that S may know A and A-->X; as long as X itself is not

present as a separate item in the database, -Know(x) is returned.

This seemingly rather obtuse procedure in fact is anything but. For recall that S is
continuously thinking, deducing. If at any moment before the Introspection is done, X
is inferred, then Know(X) will appear instead of -Know(X). And if it is of sufficient interest
to S to apply Introspect at all, then it is most likely that S already will have been trying
to decide X, and would have proven X from such simple axioms as A and A-->X before a

complex default procedure could have finished.

Specifically, imagine S wanting to know whether X. S both considers proving X and denying
X (proving -X). If S knows A and A-->X, and also a default rule such as -Know(X) -->
-X, then S can more quickly prove X then invoke the default. Even if Introspect is invoked
before X is proven, the default still will not yet have been accomplished, for another step is

needed. And if by some chance the default is invoked to prove -X only later to be con-
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tradicted by the direct proof of X, we still have a conflict resolution to fall back on, namely,
that not only are X and -X in conflict, but also are Know(X) and -Know(X); now the
latter is easy. If Know(X) has been deduced from X, then it takes precedence over -Know(X).
Once this is done and -Know(X) is removed, the basis for -X is gone and it too can be

removed. So in any case, we end up with X and Know(X) as desired.

The lesson we derive from this is as follows. The database changes in many ways.
Yet S needs to keep reasoning as it changes, and with its axioms that are changing: about it,

with it, as it changes.

We have implemented a system that operates along the lines specified above, with an
introspection device for self-knowledge. In order to keep the introspections rapid, only
a small “working subset” of the entire database is searched when an introspection is per-
formed: the set of “currently used” beliefs. These are kept in a queue that is updated in a
least recently used basis, in analogy with human short-term memory. The entire architecture
is highly reminiscent of the production systems of Newell and Simon [1972], and indeed early
experiments with our system show that a “short-term memory” size that works best for

trial problems to date is approximately that of human ”short-term memory” as well.

IV. Conclusion

We have discussed the implications of self-reference with regard to both language and
beliefs. As stated earlier, the problem of self-reference must be dealt with in order to provide
a computer with any reasonable sense of intelligence. As evidenced from the preceeding it is
clear that this is not an easy problem. On the other hand, however, there is a good deal of

evidence indicating that the current research is making significant headway.
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