SRC TR 86-21

A Memory Model for Real-Time
Commonsense Reasoning

by

J. Drapkin, M. Miller, and D. Perlis

A MEMORY MODEL FOR REAL-TIME COMMONSENSE REASONING

J. Drapkin M. Miller D. Perlis

Computer Science Department
University of Maryland
College Park, MD

Abstract

This paper reports on a significantly improved version of a system for real-time commonsense
reasoning previously sketched in [7]. The research is based on the hypothesis that a simple
conceptual architecture for memory suffices for a very broad range of behaviors in the com-
monsense world. In particular, we describe a working example of mechanical reasoner that is
rather flexible and robust, in that it can tolerate some inconsistencies; can work on goals; can
”ruminate” without goals; can forget; can remember; can make assumptions and subsequently
detect a conflict between a default conclusion and another assertion (or conclusion), can under
suitable conditions decide between them, and can maintain this decision indefinitely until
overridden by information to do so.

Support for the research reported herein, from both the Systems Research Center at the
University of Maryland [NSF contract #OIR-8500108] and the IBM Corporation, is gratefully
acknowledged.

0. Introduction

Most of the Al systems built today are designed to solve one problem only. That is,
the system is turned on, labors away for some period of time, then spits out the (hopefully
correct) answer. .It is then turned off, or works on another problem with no knowledge of its
past history. In contrast to this type of system, we are interested in building a system with
a life-time of its own, that is, one whose behavior significantly depends on its continued deal-
ings with a variety of issues. In this respect it can be considered as an experimental approach

to Nilsson’s notion of a computer individual [6].

Thus the issue is the following: a vast amount of data is to be handled in an efficient
way, including sorting out conflicts when things seem to go wrong. In particular, typical set-
tings must be distinguished from exceptional ones, even if only after the fact. In other words,
we argue that virtually all artificial intelligence ventures will sooner or later have to address

the issue of default reasoning.

Our model contains five key elements: STM, LTM, ITM, QTM, and RTM. STM, LTM,
and ITM are standard parts of cognitively-based models of memory. QTM is a technical dev-
ice that controls the flow of information into STM, and RTM is the repository of default reso-

lution and relevance. We will explain these in detail shortly.

The rest of this paper is organized as follows: In section 1, the overall philosophy of our
approach is sketched. Then, in section 2, we give a more detailed look at the various portions
of the memory model. Section 3 then discusses default reasoning, and presents an extended

example. Section 4 concludes with a summary, and describes future work.

B. Discussion

This arrangement has been borrowed from cognitive psychology, as well as from the
production system model of A.l, with liberal alteration to suit our purposes. The chief pur-
pose of STM is to allow access to a very large database (LTM), yet not suffer an exponential

explosion of inferences.

Several points are worth making at the outset concerning general features of the model.
Although we will not explore all of them in depth here, brief mention will serve to illustrate

our research Intentions.

First, in most of our work, we have limited the size of STM to eight ”elements”. By
this we mean that eight formulae can be held in STM at any one time. (Experimentation
has shown that a size of roughly eight is the smallest that has led to effective task-oriented
behavior over several domains, and that larger sizes have offered no advantage. This is in
surprising accord with psychological data on human short-term memory which has been meas-
ured to hold seven plus-or-minus two ”chunks” of data at any one time [5].) In the examples
which we present later in this paper, however, we use somewhat smaller STM sizes, for ease

of illustration.

Second, L'TM can hold inconsistent data without the usual disastrous consequences of
customary inference systems. That is, as long as a direct contradiction does not occur in

STM, no inconsistency is detected.

Third, the system is capable of meta-inference or ”introspection” very simply by search-
ing its list of STM elements. E.g., it can determine whether a given formula and its negation
are both currently in STM. This activity occurs via inference steps no different in principle
from any of its other inferences. In effect, the system may look at snapshots of itself as it

runs, rather than extrapolating to some ”final” state.

2. Details of the Model

A. The Modules

STM is structured as a FIFO queue. Since STM’s size is limited, as new facts are
brought into STM, old ones must be discarded. The discarded facts flow directly into
ITM. ITM’s structure is similar to a stack, in that the most recently entered facts are the

most easily accessed, although not actually removed.

LTM is implemented as a series of tuples. It is the largest of the memory stores,
and serves to hold the bulk of stored beliefs. The idea behind LTM is that one holds
one’s beliefs as a series of association pairs/tuples. Thinking about a subject/item P
triggers (possibly many) past associations. These associations would then be brought into
focus, i.e. STM, when appropriate. A typical LTM entry looks like:

<Ti,..., Tn, B>,

where the Ti and B are represented by logical formulae.

B. Inference

An inference cycle can be thought of as the process of updating the system’s current
focus of attention (STM). Given some state of STM, four different mechanisms work simul-
taneously to produce a new state of STM. These four mechanisms are direct observation,
modus ponens (MP), semantic retrieval (from LTM), and episodic retrieval (from ITM). To
model] this simultaneity, our implementation uses a temporary waiting queue (QTM) which
holds the next cycle’s STM facts until all four mechanisms have finished working on the old
STM facts. Once they have finished, elements of QTM are placed into STM one at a time,
disallowing repetition of facts in STM. Throughout this process, "older” items in STM are
moved into ITM as needed to maintain STM’s size. Note that if QTM is very large then
other means will be required to reasonably select elements to go into STM. In part this is

addressed by RTM (see section 3).

Currently direct observation is provided by allowing outsiders to simply assert a fact to
the system. This allows us the pretense of an autonomous system noting events in a dynamic

environment.

MP is applied in the following form: from Ac and (Ax — Bx), Be is inferred. That is,
Be is brought into QTM if Ac and (Ax — Bx) are already contained in STM. Consequently,
at the end of such a cycle, Be will be in STM (unless QTM has too many elements to fit into

STM, a problem that has not arisen in current domains).

Facts from LTM are brought into STM by association. That is, when facts in STM
unify with the first n elements of an (n+1)-tuple, <T1,..., Tn,B>, in LTM, then B will be

brought into QTM (and subsequently into STM), with its variables properly bound.

Information retrieved from ITM into STM can take several forms. For example, since
ITM is a chronological listing of all past STM facts, its structure allows for the retrieval of
goal statements that are not yet satisfied, but that have already been pushed out of STM.
This allows the system to work through a goal-subgoal process. We will not amplify on this
aspect, since greater emphasis in this paper is on default reasoning. However, it is worth not-

ing that the architecture allows representation of goal-driven behavior.

3. Defaults and Relevance

A. Prelyminary discussion

Because we often deal with a world about which we have only partial knowledge, con-
clusions must frequently be drawn, which may later be retracted in the face of new
information. For example, we may be told that Tweety is a bird. After some thought,
we may then infer that Tweety can fly (believing, for example, that typically birds can fly).
We later discover, however, that in fact Tweety cannot fly (he is a penguin, or an ostrich,

or one of his wings is broken, etc.). We must then retract the former conclusion that

Tweety can fly. This non-monotonicity is a common phenomenon in human reasoning, and,
it seems easy to grant, must be a part of any kind of high intelligence. We therefore join the
considerable ongoing research effort to characterize and utilize such reasoning in mechanical
systems. (For a look at the general field of work in this area, see the Proceedings of the
Workshop on Non-monotonic Reasoning, held in New Paltz, New York, October, 1984, spon-

sored by the AAAL as well as [3,4,8,9].)

Our own efforts reported in this paper take a somewhat different approach than most. In
particular, we are concerned with implementational issues concerning default reasoning. An
underlying premise of default reasoning is that a real-world reasoner is limited, at least in
terms of the scope and accuracy of the information to which it has access. As such, research
in default reasoning can be viewed as backing off a bit from the more traditional topic of
idealized reasoning agents that are infallible and omniscient. What we propose is that going
one step further, namely, studying agents that also have limited computing resources (much
as people do), makes some of the difficulties of formal representation of default reasoning
more tractable. That is, greater limitations serve to constrain solutions to the point that

answers may be more easily seen.

In particular, a centerpiece (and bugbear) of formal research in default reasoning has
been that of (global and derivational) consistency tests. Even when, as in the case of cir-
cumscription (see McCarthy [3]), direct testing of consistency is avoided by clever syntactic
manipulations, there is still implicit reference to global properties of the reasoning system
(i.e., its set of axioms). Time is then taken to assess logical consequences of these properties
before a default conclusion is drawn. Thus there is still a strong flavor of idealized reasoning

here.

Suppose, for instance, we would like to have a reasoning system use a rule such as A —
B to conclude B, given A, and later, in the face of new evidence, be able to retract its

belief in B. A somewhat standard (idealized) way of dealing with this is to use a rule such as,

"If A, and it is consistent to believe B, then conclude B ”. This is called a default rule, and
is the source of the aforementioned consistency tests. The point of the ”it is consistent to con-
clude B” is to see whether there already is evidence to retract B, i.e., to prevent the conclu-
sion B in the first place. Our idea is that instead of holding up the system’s conclusion until
such a test can be made, we can let it ”"jump” directly to the conclusion B, and then decide

whether it was rash.

Thus the question is whether or not these default rules should be encoded as such. In
commonsense reasoning, nearly all rules, it seems, are actually defaults, since we can rarely be
sure of anything in the real world (although some rules may perhaps be ”stronger” than
others). It is then tempting to use a more “brute force” method of encoding these
defaults: simply encode the rule as ”If A, then conclude B”, with no ”unless it is not con-
sistent to do so” condition. Regarding our own system, it would be natural to represent such a
rule as an item to be retrieved from LTM when appropriate. One would then proceed as
normal in the inference process until a direct contradiction is found in STM. At this point
something would have to be done to resolve the inconsistency. In particular this allows the
use of a rule such as A — B, even though it may be recognized as not strictly true. (Though
this is not a trivial point, we will leave further discussion for a future paper. See [2] for a

related idea.)

We then conceive of a real-world resource-limited entity as acting (somewhat slowly)
over time while using defaults to allow itself a short-cut to quick (although fallible) answers.
Our contention is that precisely such an entity is one to have a particular need for default
reasoning, and to have means for performing such effectively. Elsewhere [1] we analyze in

greater detail the underlying philosophy and logic of this approach.

B. A default example

As an example of this default mechanism in action, consider the following state of

affairs, with the size of STM fixed at four:

10

IT™: < ... empty ... >
STM: bird(Tweety)
LTM: < bird(x), bird(x) — flies(x) >

<ostrich(x), ostrich(x) — —flies(x) >
The fact that Tweety is a bird will trigger the rule that birds fly, resulting in:

STM: bird(Tweety)
* bird(x) — flies(x) (Here the star (*) indicates an item newly placed in STM.)

An application of MP would then leave:
STM: bird(Tweety)

bird(x) — flies(x)

* flies(Tweety)

Suppose we then discover (through direct observation, or some other means) that Tweety
is an ostrich. We would then have:
STM: bird(Tweety)

bird(x) — flies(x)

flies(Tweety)
* ostrich(Tweety)

—

This new fact would then trigger the rule from LTM that ostriches do not fly (and have the

side-effect of pushing ”bird(Tweety)” into ITM).

ITM: bird(Tweety)

STM: bird(x) — flies(x)
flies(Tweety)
ostrich(Tweety)

* ostrich(x) — —flies(x)
Again MP may be applied, resulting in:
ITM: bird(Tweety)
bird(x) — flies(x)

STM: flies(Tweety)

11

ostrich(Tweety)
ostrich(x) — —flies(x)
* —flies(Tweety)

Note at this point that STM contains the belief that Tweety does not fly, as well as the
belief that in fact Tweety does fly. Is this a problem? We think not. We would like to be
able to say that the fact that Tweety flies was concluded by default, that is, through the use
of a rule of typicality. Now given the additional information that, in fact, Tweety is an
ostrich, we would like to be able to retract our belief that Tweety flies, and instead conclude

that Tweety does not in fact fly.

As indicated earlier, our approach is, first, to let an inconsistency arise. Then once
both x and —x are together in STM, we want to be able to decide which (if either) of the two
should be kept as a belief. Since STM is small, we will always be able to determine quickly

and easily whether such a direct contradiction exists.

A possible solution to this problem of two conflicting beliefs is to store information in
LTM to decide which belief should be held. For instance, we could encode a "wins”
predicate that determines, given two conflicting beliefs, which should be held as true, and
which should be discarded. So, for example, we might have something like: wins(C, A,
B), meaning, under condition C, A should be preferred over B. As a specific example,
consider wins(x directly observed & —x concluded by defauls, x, —x). This says that if we
have both x and —x, where x was directly observed, and —x was concluded by default, then

we should maintain our belief in x and discard our belief in —x.

Once an inconsistency is found and subsequently resolved, we would like to maintain
the information that such a problem arose, so that one need not repeatedly go through this
process of resolution. One way of handling this is to maintain this information in a new
store called Relevant Term Memory (RTM). While in general the resolution of conflicting
beliefs surely depends on a vast amount of domain specific knowledge, so that no single for-

mal trick will settle all such conflicts in an intuitively acceptable way, nonetheless RTM does

12

seem to offer some useful features in this regard. We turn to this now.

C. Relevance

As explained earlier, STM is very small. As such, at any given time it contains very lit-
tle information, specifically only that information that is being immediately used. It
seems reasonable to postulate a store of relevant information, which is, on the one hand,
larger than STM, and on the other hand, smaller than ITM. Though ITM contains a
history of past inferences, it contains too much information for this sort of use. Not only
does it quickly become very large, and hence difficult to search for information, but it

will include both relevant and irrelevant (old) information.

Since RTM is meant to contain information that is somehow ”relevant”, it is rea-
sonable to employ a decay mechanism. This provides any formula coming into STM with a
maximum decay time (measured in inference cycles) during which a copy of it remains in
RTM. The continued presence or reappearance of the formula in STM at any time in this
period will maintain or reset its decay time at the maximum value. In this way, beliefs
which are frequently in focus will tend to remain relevant. Since the idea is to encapsulate a
wider selection of beliefs than that contained in STM, it seems reasonable to expect beliefs

to remain in RTM longer than they remain in STM.

However, this will not be enough, for we also want to be able to maintain use of the
”wins” predicate previously mentioned, as long as such use is relevant. Any time the
”wins” predicate is used to decide on belief A over —A, the fact that A "wins” should be
stored in RTM. It seems reasonable then to postulate a model of RTM incorporating both
the decay mechanism and special treatment of the "wins” predicate. Experiments clearly are
called for in order to test these ideas about the function of such a Relevant Term Memory.
We anticipate that much work will have to be done to make RTM function flexibly. In what

follows we illustrate more precisely what we have done in the way of initial experimentation

13

in this direction.

D. Ezperimental Hlustration

We will present an example of the use of RTM in our system in one domain, namely,
that of the flying ability (or lack thereof) of various types of birds when the information
about the birds in question is of non-uniform degree of specificity. For instance, a bird may be
stated to be just that, with no further information about its species, in which case it 1s desired
that a default conclusion be reached to the effect that the bird can fly. Or a bird (the same or
another bird) may be stated (say at a later time) to be an ostrich, which should trigger a
chain of inferences, with the ultimate effect of blocking or reversing the conclusion that it can
fly.

We have elected to implement our default mechanism as follows. The first thing that
we have done is to add an extra term to each statement in STM. That is, instead of simply
noting, say, "bird(Tweety)”, we place ”(bird(Tweety), justification)” in STM. This second
term is intended to indicate just how some fact has found its way into STM. For example, it

might be by direct observation that the system believes that Tweety is a bird.

Now that we have some justification for (tentatively) believing a fact, we also have an
idea of how to resolve inconsistencies in some cases. Suppose, for example, that we know
that STM currently contains ”(bird (Tweety), justificationl)”. After several inference cycles,
STM may now contain the conclusion that Tweety can fly. Later we observe that Tweety is
a penguin, i.e., STM will contain ”(penguin(Tweety), OBSERVATION)”. After some reason-
ing it is discovered that Tweety cannot fly (because of ”justification2”). Using some reason-
able rules for conflict resolution {weighting ”justificationl” against ”justification2”, we now
have a mechanism in place that puts a “wins” predicate in front of ”(—flies(Tweety),
justification2)”, and places this in RTM. As RTM contains relevant information, we use

RTM to keep "false” information from finding its way back into STM. For example, in the

14

above case, ”(flies(Tweety), justification3)” will not reenter STM unless justification3 is
sufficient to remove ”wins(—flies(Tweety), justification2)” from RTM (e.g., Tweety is found to

be a rare type of penguin that does indeed fly).

We present an example of how the current experimental system behaves when presented
with partial information at various times. In general certain categories such as birds are, by
default, assumed to fly unless that conclusion is suppressed by a fact in RTM. If such
suppression does occur, future deductions about Tweety will be subject to this condition. In
other words, it is considered "relevant” to bring the old conflict resolution (in favor of Tweety

not flying) to bear in future situations.

In this example we have elected not to include the justifications that would normally be
found in STM, unless the fact is obtained through observation (indicated by ”[OBS]”); it
should be clear in the example how all facts have found their way into STM. RTM elements
are shown with their decay time (i.e. time to be left in RTM, measured in inference cycles).
For illustration we have chosen a maximum decay time of 20. The initial configuration is as

follows:

LTM ST™

< bird(x), bird(x) — flies(x)

> bird(Tweety) [OBS]
< penguin(x), penguin(x) — bird(x) >
(>
>

< penguin(x), penguin(x) — —flies(x)
< ostrich(x), ostrich(x) — —flies(x)

The following extended list of consecutive states of STM illustrates the system’s perfor-
mance. As before, in each stage we mark the new items with a star {*); they will appear at
the bottom within each stage. For purposes of illustration, we have set the STM limit to six
elements. Recall that old facts are removed from STM (and added to ITM) to allow new ones

to enter into STM. Note that RTM contains relevant information about what has occurred.

STM State

STM Contents

bird(Tweety) [OBS]

bird(Tweety)
bird(x) — flies(x)

bird(Tweety)
bird(x) — flies(x)
flies(Tweety)

bird{Tweety)

bird(x) — flies(x)
flies(Tweety)
penguin(Tweety) [OBS]

bird(Tweety)

bird(x) — flies(x)
flies(Tweety)
penguin(Tweety)
penguin(x) — —flies(x)
penguin(x) — bird(x)

flies(Tweety)
penguin(Tweety)
penguin(x) — —flies(x)
penguin(x) — bird(x)
—flies(Tweety)
bird(Tweety)

penguin(x) — bird(x)
—flies(Tweety)
bird(Tweety)
wins(—flies(Tweety))
loses(flies(Tweety))
bird(x) — flies(x)

—flies(Tweety)
bird(Tweety)
wins(—flies(Tweety))
loses(flies(Tweety))
bird(x) — flies(x)
bird(Oscar) [OBS]

RTM Contents

20 bird(Tweety)

20 bird(Tweety)
20 bird(x) — flies(x)

20 Dbird(Tweety)
20 bird(x) — flies(x)
20 flies(Tweety)

20 bird(Tweety)
20 bird(x) — flies(x)
20 flies(Tweety)
20 penguin({Tweety)

20 bird(Tweety)
20 bird(x) — flies(x)
20 flies(Tweety)
20 penguin(Tweety)

15

20 penguin(x) — —:ﬂies(x)
20 penguin(x) — bird(x)

20 flies(Tweety)
20 penguin{Tweety)

20 penguin(x) — —flies(x)
20 penguin(x) — bird(x)

20 ~flies(Tweety)
20 bird(Tweety)
19 bird(x) — flies(x)

20 penguin(x) — bird(x)

20 —flies(Tweety)
20 bird(Tweety)

20 wins(~flies(Tweety))
20 loses(flies(Tweety))

20 bird(x) — flies(x)
19 flies(Tweety)
19 penguin(Tweety)

19 penguin(x) — —flies(x)

18 bird(x) — flies(x)

20 —flies(Tweety)
20 Dbird(Tweety)

20 wins(—flies(Tweety))
20 loses(flies(Tweety))

20 bird(x) — ﬂies(x)
20 bird(Oscar)

19 penguin(x) — bird(x)

16

18 flies(Tweety)

18 penguin(Tweety)

18 penguin(x) — —flies(x)
17 bird(x) — flies(x)

(9) wins(—flies(Tweety)) 20 wins(—flies(Tweety))
loses(flies(Tweety)) 20 loses(flies(Tweety))
bird(Tweety) 20 bird(Tweety)
bird(x) — flies(x) 20 Dbird(x) — flies(x)
bird{Oscar) 20 bird(Oscar)

* flies(Oscar) 20 flies(Oscar)

19 —flies(Tweety)

19 bird(Tweety)

18 penguin(x) — bird(x)
17 flies(Tweety)

17 penguin(Tweety)

17 penguin(x) — —flies(x)
16 bird(x) — flies(x)

(10)
Note, in step 6, that several facts have been pushed out of STM (and into ITM).

Further note that in this step ”bird(Tweety)” is immediately brought back into STM through

an application of MP (so it now appears at the bottom of STM, instead of the top).

The ”loses(flies(Tweety))” in step 7 will cause further inferences leading to
"flies(Tweety)” to be suppressed. Note that both "bird(Tweety)” and "bird(x) — flies(x)” are
in STM in step 7, but that ”flies(Tweety)” has not appeared in STM in step 8, since RTM is

now suppressing this fact.

Nothing new is brought into STM after step 9. There are no new facts in LTM that can
be associated with current STM information, and none of the conceivable inferences lead to

anything new, except for ”flies(Tweety)”, which is suppressed.

It is important to note how RTM is functioning. All facts in STM enter RTM with a
decay time of 20. (If a fact is already in RTM, its decay time is reset to 20.) With each itera-
tion, the decay times in RTM are decremented. Note that facts that have been pushed out of
STM may still remain in RTM, but will have lower decay times. Thus after perhaps 20 more

inference cycles, in which additional observations may have resulted in new elements coming

into STM, ”wins(—Flies(Tweety))” will likely have decayed to 0 in RTM. At such a time,

17

”flies(Tweety)” will no longer be suppressed from STM if MP set it up in QTM should

bird(Tweety) happen to reappear in STM.

4. Conclusions and Future Work

We have presented a detailed model of real-time reasoning intended for a commonsense
domain. Particular emphasis has been placed on default reasoning. Features of our approach
include the ability to incorporate inconsistent information into the database, and the ability
to draw conclusions and revise them later if necessary, without first checking their soundness

with respect to the entire database.

We are currently at a stage in the development and implementation of this work where
choice of a suitable domain for long-term research is advisable. Such a domain should have a
number of characteristics if it is to challenge our techniques and yet be within grasp.
Specifically, it should be both complex enough to test our mechanisms fairly severely, and yet
simple enough to allow reasonable experiments to be done. In effect, we need to go one step

up from the blocks world.

The domain we have chosen for our next stage of work we call the Desert Island, or just
”The Island”. We envision a robot "marooned” on a desert island with a small quantity of
fauna, flora, etc.: birds (of course! -- who could do defaults without them?), fish, mangos,
trees, sand, water, clouds, rain, sun. The robot is to have both short-range and long-range
goals. The former type include eating when hungry, escaping danger, etc. The latter include

learning about the island, such as learning that there are interesting classes of things (e.g.

birds).

18

BIBLIOGRAPHY

(1)

Drapkin, J., Miller, M., and Perlis, D. [1985] Consistency before and after, working
paper.

Glymour, C. and Thomason, R. [1984] Default reasoning and the logic of theory per-
turbation. Workshop on Non-monotonic Reasoning, New Paltz, NY, Oct. 17-19.

McCarthy, J. [1980] Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence, 13 (1,2), pp. 27-39.

McDermott, D. and Doyle, J. [1980] Non-monotonic logic I. Artificial Intelligence, 13
(1,2), pp. 41-72.

Miller, G. [1956] The magical number seven plus or minus two, Psych. Rev. 63.
Nilsson, N. [1983] Artificial intelligence prepares for 2001. AI Magazine, 4, 4.

Perlis, D. [1984] Non-monotonicity and real-time reasoning, Workshop on Non-
monotonic Reasoning, New Paltz, NY, Oct. 17-19.

Reiter, R. [1978] On closed world databases. In: Logic and Databases, Gallaire, H. and
Minker, J. (eds.), Plenum, pp. 55-76.

Reiter, R. [1980] A logic for default reasoning, Artificial Intelligence 13 (1,2), pp. 81-
132.

