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Abstract: Sets can play an important role in circumscription’s ability to deal in a general way with certain
aspects of commonsense reasoning. A result of Kueker indicates that sentences that intuitively one would
want circumscription to prove, are nonetheless not so provable in a formal setting devoid of sets. Further-
more, when sets are introduced, first-order circumscription handles these cases very easily, obviating the
need for second-order circumscription. The Aussonderungs axiom of ZF set theory plays an intuitive role
in this shift back to a first-order language.
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I. Introduction

Commonsense requires for many purposes the notion of sets [McCarthy 1985]. Second-order cir-

cumscription in particular exploits this fact, in that it is a kind of weak set theory. But it does not introduce

sufficient set theory for commonsense reasoning in general. On the other hand, if we take as our underlying

language for commonsense reasoning one that has a rich (first-order) set theory, then second-order circum-

scription is superfluous, and first-order circumscription (with variable predicates) is sufficient. Thus there is

no need to pass to a second-order language at all. This in turn has the well-known advantages of familiar-

ity, ease of comparison with other first-order formalisms, and (relative) computational facility. Moreover,

other technical benefits accrue from the use of sets in circumscription, as will be seen1.

An example of Kueker will be analyzed as implicitly involving a notion of set. This in turn suggests

that sets be made explicit in a formal language for commonsense reasoning. We explore this and show that

it overcomes the problem Kueker found, and also appears to be more general than the approach of second-

order circumscription.

1Thus the present work is closer to the commonsense side of circumscription research, as in [McCarthy 1986], as contrasted
with certain proof-theoretic and semantical studies such as [Etherington&Mercer&Reiter 1985], [Lifschitz 1985,1986] and
[Perlis&Minker 1986].



We will proceed as follows: In Section II we recall Kueker’s example and discuss it relative to com-

monsense and to existing solution routes. In Section III we propose another solution, namely the introduc-

tion of a (first-order) set-theoretic language for commonsense, and argue its merits. In Section IV we return

to Kueker’s example, and in Section V we present a ‘‘pure’’ set-theoretic version of circumscription. In

Section VI we discuss briefly the infusion of ‘‘massively set-theoretic’’2 notions into commonsense reason-

ing.

II. Kueker’s example

To initiate our discussion, we begin with Kueker’s example. Let K[P] be the theory given below, in

which P is a predicate letter, b and c are constants, and s is a function symbol.

Pb

b ≠ sx

c ≠ sx

b ≠ c

sx = sy → x = y

Px →← Psx

Then it turns out, as Kueker has shown, that the sentence

¬Pc

is not a theorem of the circumscribed theory Circum(K[P])3. Howev er, the intended semantics providing

2I am punning on the oft-heard phrase ‘‘massively parallel’’.
3I use Circum for first-order variable circumscription, as described in [Perlis&Minker 1986], namely,

A[Z1,...,Zn] & (\/— x)(E[Z1,...,Zn] → E) → (\ /— x)( E → E(Z1,...,Zn))
for wffs Z1,...,Zn where E = E[P1,...,Pn] is a formula in which P1,...,Pn may appear, and E[Z1,...,Zn] is obtained from E by substitut-
ing Zi for each Pi . Here the idea is that E is a formula involving predicates Pi whose extensions may fail to be fully specified by ax-
ioms, so that several interpretations of E are possible. By considering various interpretations Zi of those predicates, it may be found
that certain choices lead to smaller extensions than others. By insisting, via the schema, that E have no strictly smaller interpretation



the motivation for circumscription does have ¬Pc as a circumscriptive consequence of K[P], so that in the

language of K[P] predicate circumscription does not accomplish its intended goal. In effect, circumscrip-

tion attempts to minimize the extension of designated predicates by replacing them with wffs of potentially

smaller extensions. But in the language of K[P], there is no wff that singles out the transitive closure of s on

{b}, namely, the set of successors of b.

A commonsense ‘‘blocks world’’ interpretation of this situation is given in [Perlis&Minker 1986]: A

king has decreed that all marble blocks in the kingdom are to be painted in certain ways, such that any

block situated in the exact center ‘b’ of the floor of the royal mint is to be purple, purple blocks may lie on

or below only purple blocks (or on the floor), and--since purple is a royal and exclusive color--the number

of purple blocks is to be minimized. Here the universe of discourse can be thought of as positions x that

blocks could occupy, Px as saying that any block at x is to be purple, and sx as the position immediately

above x. Then Pb guarantees that only a purple block may be at position b, and similarly for the other

axioms.

Now let ‘c’ be another location on the floor. Commonsense would seem to immediately show that no

block on the floor at positions other than b should be purple, and in particular that ¬P(c). Yet Kueker’s

result shows that ¬Pc is not provable by (predicate) circumscription, although one would hope otherwise,

since only blocks in the ‘‘column’’ over b are intuitively forced to be purple. Indeed, in the intended (‘‘P-

minimal’’) models of Circum(K[P]), only these blocks will be purple, and ¬Pc therefore is true there. Note

that a column corresponds intuitively to a set of blocks.

An obvious solution would be to specify that c is not among the blocks of the column. This could be

expressed as c≠b, c≠sb, c≠ssb, etc., which is an infinite set of formulas and therefore not suitable for cir-

cumscription. What we need is a way to refer to the entire column at once, i.e., in a single (finite) formula.

No first-order formula in the language given is available for this purpose. Perlis and Minker [1986] intro-

duce a new symbol ‘‘tower’’ into the original language that is intended to apply precisely to the positions b

than itself, we guarantee that E is already minimal. Of course, this guarantee is only as good as the range of choices for the Zi that is
afforded by the language employed. This is the point being explored here in terms of a rich language of sets.



and above (and in particular to no positions on the floor other than at b). In effect, they introduce a single

set into the theory. Howev er, as they point out, ‘‘this is not a fully satisfactory solution, since it was neces-

sary to augment the theory in a non-obvious way; in effect we had to mentally circumscribe in order to see

how to alter the theory.’’ Note that this solution ‘‘works’’ precisely because it enriches the language so that

the needed concept is expressible.

Now, McCarthy [1986] introduced a more powerful variation of circumscription, called formula cir-

cumscription, which has at least two advantages over the original formulation: it allows so-called variable

predicates in addition to the predicate being circumscribed, and also is couched in a second-order

language.4 It is the second feature that is directly relevant to Kueker’s example, for in a second-order lan-

guage one can exhibit an explicit formula5 that expresses the notion of column as above. That is, certain

sets of blocks are definable in this theory, so that this approach also amounts to introducing a certain

amount of set theory into the formalism.

However, Kueker’s example serves to raise the prospect that no matter what devices we build into a

language for the specific expression of particular sets of some level, there may be higher levels--e.g., walls

(of columns), rooms (of walls), buildings (of rooms), etc.--so that third- or higher-order languages may be

needed, throwing some doubts on the primacy of second-order languages for expressing minimal closures

of functions.

In fact, a ‘‘tower’’ predicate is a reasonable thing to have. The trick is to provide a language broad

enough so that it will be there when needed rather than added by us in an ad hoc manner. Second-order cir-

cumscription can be assessed in this light. It does provide automatically a supply of notions: sets of individ-

uals. But as we have suggested in the preceding paragraph, this is not nearly enough.

Indeed, the introduction of a second-order language into circumscription seems to gain its power not

because of a revised version of the circumscription schema per se, but because the language in which

4Formula circumscription also allows formulas, rather than simply predicate letters, to be circumscribed, whence it’s name.
However, this feature appears not to afford any real generalization beyond that provided by variable predicates [see Perlis&Minker
1986], unless advantage is taken of names for formulas as is suggested below.

5E.g., the second-order wff (\/— Q)[Qa & (\/— y)(Qy→Qsy) .→ Qx] where Q is a second-order variable.



formulas in general are written is more expressive (and indeed amounts to a weak set theory). It seems

appropriate to separate these two issues: on the one hand, one wants a circumscriptive formalism that states

the notion of minimality in intuitively correct terms--and here first-order circumscription seems to be ade-

quate as long as variable predicates are allowed--and on the other hand, a sufficiently broad language is

needed to produce formulas to express whatever concepts may be useful in a given domain.

Our proposal then is to seek a very expressive (first-order) language, and then use (first-order) vari-

able circumscription. In particular, our contention here is that Kueker’s situation arises because, firstly, the

notion of a column is a natural (‘‘commonsense’’) one based on an underlying mental picture of transitive

closure (itself perhaps based on something like naive set theory), and secondly, set theory is not currently

part of formal approaches to commonsense reasoning. Our proposed solution then is to incorporate a suffi-

cient amount of set theory into formal commonsense reasoning, to capture intuitions such as those provid-

ing the construct of transitive closures. The first-order circumscriptive schema can then be retained (in the

form having variable predicates).



III. An Elementary Commonsense Set Theory

We propose below an axiom schema in a first attempt at formalizing a naive set theory, CST0, for

commonsense reasoning, with the caveat that additional axioms will be needed for more sophisticated

applications.

The most important notion to axiomatize is that of set formation. This also is perhaps the subtlest

axiom of the standard versions of formal set theory, since care must be taken to avoid Russell’s paradox. It

appears that certain aspects of commonsense reasoning actually require a very strong axiom of set forma-

tion. However, in the present section we will confine our attention to very limited kinds of set formation.

Our initial choice then for a set formation axiom is a weak version of the Aussonderungs axiom of

Zermelo-Fraenkel (ZF) set theory, and indeed is equivalent to adopting a second-order theory over a ‘‘set’’

of individuals. Namely, we postulate:

(—
—
—

y)(\ /— x)(x∈y ≡ φ(x)&Ind(x))

where φ is any formula. I.e., this is really a schema, saying intuitively that for any formula φ, there is a set

consisting of all individuals having the property φ. Thus if we take countries as our individuals, there is a

set of all countries, since we may take φ to be an identically true property; and there is a set of all demo-

cratic countries, since we may take φ to be the property of being a democracy.

IV. Kueker’s example reconsidered

We note that CST0 is much like a second-order logic in that all sets are of individuals. We hav e some

freedom in deciding what are the individuals, however, and this does put us in a better position to handle

what otherwise would require still higher-order languages. (More on this later.)

Let J[P] be the theory K[P]+CST0, where we interpret the predicate Ind of CST0 as the property of

being the potential position of a block, so that the following additional axioms are implicitly assumed as

well:

Ind(b)



Ind(c)

Ind(x) → Ind(sx)

P(x) → Ind(x)

Now the rest is easy. We simply consider the formula φ as follows:

φ(x) ≡. P(x) & (\/— w)([b∈w & (\/— z)(z∈w → sz∈w)] → x∈w)

Note that the clause (\/— w)([b∈w & (\/— z)(z∈w → sz∈w)] → x∈w) says that x is contained in every set that

is closed under succession and contains b, i.e., x is in the column over b. The formula φ(x) then intuitively

defines the column of purple block positions above b, and also serves our purpose perfectly.

We employ first-order circumscription of P by J[P]:

[J[Z] & (\/— x)(Z(x) → P(x))] → (\ /— y)(P(y) → Z(y))

Substituting φ for P in J[P] produces J[φ] which is readily provable from J[P]. Since also φ(x) → P(x), first-

order circumscription yields at once that P(x) → φ(x). It remains only to show ¬φ(c) in order to conclude

¬P(c). But it is easily seen that ¬φ(c), since if any w in the bracketed formula above were to contain c, then

let w’ be w - {c} (this new set is guaranteed by our axiom of set formation). But w’ also obeys the brack-

eted formula, since we know c ≠ sx for any x. But clearly c is not in w’, so φ(c) cannot hold. This then gives

Kueker’s intuitive but missing conclusion ¬P(c).

V. Recovering and extending full second-order circumscription

Here we point out that CST0 restores the power of second-order circumscription when suitably

applied to any theory A[P]. Recall in particular that second-order circumscription can be formalized as a

single second-order wff. This is a pleasant feature of that version of circumscription, even though (as

McCarthy has noted) it so far has had no applications. This feature will also emerge in a suitable first-order

version of circumscription using sets, as will be seen.



Let A´[P] be in a second order language L´, and let L be a first-order language in which all predicate

variables and constants of L´ have been ‘‘translated’’ as individuals6, and in particular in which each predi-

cate Pi has been replaced with a set constant pi , except for ∈ and =. If any Pi is not monadic, pi will then

be a set of tuples which we also assume expressible in L. We assume the axioms of CST0 to be in a theory

T in the language L. We also take the L-translations of all wffs α of A´[P] to be axioms of T; each such

translation we call α’s ‘‘∈ version’’. In particular, the given axioms A´[P1, . . . , Pn] now are A( p1, . . . , pn).

Now we introduce the following predicates of set circumscription:

CA(pi): ¬(—
—
—

x1)...(—
—

—
xn)[A(x1, . . . , xn) & xi⊂pi]

7.

It follows that from CA(pi) we can prove the ∈ versions of all the theorems of second-order circum-

scription of Pi(including the circumscriptive axiom itself, for this is simply CA(pi)) since the rules and

axioms for second-order logic have ∈ versions that are theorems in the theory T.

There are two added bonuses to the set approach that we point out now. First, the ‘‘external’’ charac-

ter of circumscription can be somewhat avoided. That is, the wff Pi that is circumscribed is chosen for min-

imization independently of the formal theory. Someone simply decides to include the schema or axiom of

circumscription. However, ideally, there should be a formal deduction showing that a predicate letter P is to

be minimized under certain conditions. The obvious way to do this would be to include all instances of cir-

cumscription, but prefixed by the condition that the given wff be one that is to be minimized. However, we

have no first-order predicates available to state that a predicate letter P is to be minimized.8 On the other

hand, if we replace P by a set p, then we may introduce a first-order predicate Min for this purpose; we sim-

ply conjoin the axioms

Min(pi) → CA(pi)

for each ‘‘predicate’’ set symbol pi . Then we need not decide in advance which sets are to be minimized; if

6See pp. 157-158 of [van Dalen 1983] for details.
7Multiple-predicate circumscription is then just

¬(—
—
—

x1)...(—
—

—
xn)[A(x1, . . . , xn) & xm1

⊂pm1
&...& xmk

⊂pmk
].

We are using ⊂ for ⊆ and ≠.
8However, the techniques in [Perlis 1985] would seem to allow this via a quotation device. We will employ this below.



it turns out that we can prove that a given set satisfies Min, then automatically circumscription will come

into play. Also, this allows the choice of substitute predicate (set) xi for pi to be formally made9. (Actually,

it would be more elegant to have instead something like

(\ /— p)(Min(p) → CA(p)).

However, then it is problematic to get the intended p to be selected out of A’s list of arguments. This will be

treated below.)

For example10, let p1 = white and p2 = heavy, and let A be w∈white&h∈heavy. Then if it should be

proven that heavy is to be minimized, i.e., if Min(heavy) is a theorem, the appropriate circumscription of

heavy objects will be done; similarly for Min(white).

The second bonus is that also to some extent the non-monotonic character of circumscription can be

made more explicit, in that the presence of the axiom A that provides the context for circumscription of p,

can be formally manipulated as well. Then when new axioms are added, A will not shift meanings in a for-

mally unspecified way. That is, instead of A we may use a set ‘a’ of (names of) axioms such that when new

axioms are introduced, or when focus of attention is shifted, a new set (possibly a superset ‘a+’ of ‘a’) may

be chosen for circumscription; but now the former apparent non-monotonicity simply becomes a theorem

within the theory: for some sets a, a+, and p, where a⊂a+, Circum(p,a) will provably not be a subset of Cir-

cum(p,a+).

More precisely, consider a language having the usual symbols for set theory, and also a name (con-

stant) ‘c’ for each expression c, and an unquotation function symbol ˜ so that ‘c’ = c.11 Then if ‘a’ is a set

of wff names (axioms), ‘e’ a set-expression name (the property to be minimized, written as a term in set

notation), and ‘p’ a set of set-constant names (the items allowed to vary in order to effect the minimization),

we define Circum(a,e,p), full set circumscription of e by a with respect to p, to be

9And possibly even to be relaxed so that, for instance, cardinalities could allow the choice of a slightly larger than minimal in-
terpretation of pi if called for, or for that matter the least among various minimal interpretations.

10I am indebted to V. Lifschitz for suggesting this simple but illustrative example, which will be used again below.
11For more on quotation and unquotation devices we refer the reader to [Perlis 1985]. Note that McCarthy [1986] also advo-

cates the use of names in treating the unique names hypothesis of Reiter [1980].



¬(—
—
—

f)((\ /— b∈a)True(interp(f,b,p)) & interp(f,e,p) ⊂ e).

Here, interp is a function symbol with associated axioms guaranteeing that for suitable arguments

interp(f,e,p) equals the expression resulting from prepending f to each occurrence in e of elements of p.

The idea behind this is that if e is minimal then there should not exist an interpretation f of the sym-

bols in p that produces a smaller version interp(f,e,p) of e, and that still respects the axioms b∈a when each

is so interpreted (as interp(f,b,p)). Thus, interp(f,x,y) specifies a new reading of x, given by reading each

symbol s of x that happens to be in the set y, as f(s) instead of s.

To modify the previous example, if a={‘w∈white’,‘h∈heavy’), p={‘white’,‘heavy’},

e=‘white∪heavy’, and g={<white,{w}>,<heavy,{h}>}, then

interp(‘g’,‘w∈white’,p)) = ‘w∈g(white)’

interp(‘g’,‘h∈heavy’,p)) = ‘h∈g(heavy)’

and

interp(‘g’,‘white∪heavy’,p)) = ‘g(white)∪g(heavy)’.

Then we use the function-definition of g (in terms of ordered pairs in the form <argument,value>), and find

g(white)={w}, g(heavy)={h}. We get as a result

True(interp(‘g’,‘w∈white’,p)) ≡ True(‘w∈g(white)’) ≡ w∈g(white) ≡ w∈{w},

and

True(interp(‘g’,‘h∈heavy’,p)) ≡ True(‘h∈g(heavy)’) ≡ h∈g(heavy) ≡ h∈{h},

so that True(interp(‘g’,b,p)) is provable for each b∈a. Then minimizing ‘white∪heavy’ via Cir-

cum(a,‘white∪heavy’,p) produces

¬[ interp(‘g’,‘white∪heavy’,p) ⊂ ‘white∪heavy’],

i.e., {w}∪{h} /⊂white∪heavy. But since {w}∪{h}⊆white∪heavy it follows that {w}∪{h} = white∪heavy,

i.e., anything other than w or h is neither white nor heavy. On the other hand, Circum(a,‘white’,p) would

produce that nothing other than w is white, and Circum(a,‘heavy’,p) that nothing other than h is heavy.

Now we can write

\/— p(Min(a,e,p) → Circum(a,e,p))



solving the problem indicated earlier. That is, we do not actually have to minimize anything at the outset;

we do not circumscribe, so much as provide a definition of circumscription, which then can be invoked

when needed (when it is proven that a particular expression e is to be minimized). In fact, the formula

defining full set circumscription of e by a with respect to p, given earlier, should be introduced precisely as

a definition of the predicate symbol Circum, within the formalism. To some extent this already can be

accomplished within McCarthy’s formula circumscription, since that formalism involves a single second-

order formula; however, this is so only separately for each choice of axiom A, whereas our approach incor-

porates any axiom selection in one formula. Moreover, now the axiom set ‘a’ can be infinite, whereas in

predicate and formula circumscription A must be a single formula (or finite conjunction).

VI. An Objection

The reader may have noticed the following objection. We hav e complained about second-order cir-

cumscription on the basis of potential needs for still higher-order constructs. Yet our solution was to intro-

duce in its place an essentially single-level (‘‘flat’’) set theory that will be just as poor at representing cities

of buildings of rooms of walls of bricks as is second-order logic. We mentioned this earlier, but did not dis-

cuss how to solve the problem.

Note that CST0 generalizes trivially to handle such ‘‘tougher’’ cases, simply by allowing certain sets

to be individuals. Thus, letting every set of blocks be an individual immediately leads to sets of sets of

blocks (and hence to sequences of columns). This still is an ad hoc solution, however. On the other hand, all

this can be done at the outset by starting with a theory such as ZF itself (as a subtheory of one’s common-

sense theory, relativized to the Ind predicate). Then fairly arbitrary collections are expressible. Now, is ZF

a reasonable set theory for commonsense reasoning? Many of its axioms, such as Powers or Replacement

or Infinity, may seem unpalatable to some, and of little use in commonsense.

I claim that such powerful set theories are needed for commonsense, and that a set theory due to Ack-

ermann [1956] serves to provide the right approach to this. However, this takes us a little off the main topic

of circumscription, so we will leave it now with the observation that by employing still ‘‘fancier’’ set theo-

ries having universal sets (e.g., Gilmore’s NaDSet [1986]) one can even hav e self-membered sets. Then all



entities may be considered individuals, but with Aussonderungs altered to avoid paradox. This too I claim

has significance for commonsense, but is treated in another paper [Perlis, to appear].

VII. Conclusions

Our main points are as follows:

(1) Formula circumscription has two separate features, namely variable predicates and second-order

wffs. These are largely unrelated to each other. Variable predicates address directly a circumscrip-

tive issue, in that the very concept of minimization which circumscription is designed to capture

also depends on variability of predicates other than the one minimized.

(2) On the other hand, second-order formulas do not bear directly on the idea of circumscription except

insofar as they extend the expressive power of the underlying language. Indeed, first-order (vari-

able) circumscription works as well as the expressive power of its underlying language. We should

fix the circumscriptive mechanism and enrich the first-order language as needed without changing

the former. Going to higher-order logics simply invites more problems, as Kueker’s example hints.

(3) The apparent gains of second-order logic result from its being effectively a (weak) set theory; so

why not open the door wide? Set theory is already needed for commonsense reasoning. Indeed,

more set theory is needed for commonsense than mere second-order logic.

(4) There are very powerful and well-understood first-order set theories, going well beyond the power

of second-order predicate logic. A powerful first-order set theory with first-order (formula) circum-

scription gives at least all that second-order formula circumscription does. This includes allowing

use of a single formula instead of a schema.
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