
LIFE ON A DESERT ISLAND:
ONGOING WORK ON REAL-TIME REASONING

Jennifer Elgot − Drapkina,b Michael Millera,c Donald Perlisa,d

University of Maryland
College Park, Maryland 20742

(301) 454-2002

ABSTRACT

We discuss ongoing work in real-time reasoning with applications to default reasoning. We explore ways
in which this may also be relevant to the frame problem and associated issues.

a Computer Science Department, University of Maryland.
b IBM Research Division, Yorktown Heights, NY.
c Systems Research Center, University of Maryland.
d Institute for Advanced Computer Studies, University of Maryland.



Life on a Desert Island...

1. INTRODUCTION

Most of the A.I. systems built today are designed to solve one problem only. That is, the system is
turned on, labors aw ay for some period of time, then spits out the (hopefully, correct) answer. It is then
turned off, or works on another problem with no knowledge of its past. In contrast to this type of system,
we are interested in building a system with a life-time of its own, that is, one whose behavior significantly
depends on its continued dealings with a variety of issues. In this respect it can be considered as an experi-
mental approach to Nilsson’s notion of a computer individual [10], which in particular seems appropriate to
an autonomous exploratory robot.

In the current paper1, we imagine a robot on a desert island left to its own devices. It has been
endowed with a data base of information that it can use in order to get along in this world. The robot must
be able to use (incomplete) information in real-time. including sorting out conflicts when things seem to go
wrong. In particular, typical settings must be distinguished from exceptional ones, even if only after the
fact. We claim that virtually all A.I. ventures of this sort will sooner or later have to address the issues of
default reasoning, non-monotonicity, and the frame problem.

The remainder of this paper is outlined as follows: In section 2, we present the background material
which we take as a point of departure in our current work. Section 3 presents a description of the reasoning
mechanism with which we are working. Section 4 explains the relationship of non-monotonicity to our
mechanism. Finally, section 5 sketches some thoughts on applications to the frame problem.

2. BACKGROUND

2.1 NON-MONOTONICITY, DEFAULTS, AND THE FRAME PROBLEM

It is clear that an autonomous robot will have to deal with a world about which it will have only par-
tial knowledge. Conclusions will frequently be drawn without full justification. As a consequence, some
facts will have to be retracted in the face of further information. We therefore join the considerable ongo-
ing research effort to characterize and utilize non-monotonic or default reasoning in mechanical systems.
(For a look at the general field of work in this area, see the Proceedings of the Workshop on Non-
monotonic Reasoning, held in New Paltz, New York, October, 1984, sponsored by the AAAI. Also see
[6,8,12,13].)

It has been observed that non-monotonic reasoning may be an appropriate vehicle for treating the
frame problem (see [5,7].) Roughly, it seems that default reasoning applies to situations in which one
desires to know which assertions are true and yet insufficient data is available. The frame problem might be
seen as a special case of this in which the assertions in question are of the form, ‘‘If action s occurs in a sit-
uation in which proposition P holds, will P still hold after s is completed?’’ An appropriate rule might be
called a frame-default rule. An example is the rule that things that aren’t known to change stay the same.
However, the central role that time plays in the frame problem makes it a very special case of default rea-
soning.

It would not be a surprise, then, that a real-time reasoner that has features relevant to default reason-
ing would also be of potential application to frame-default reasoning, especially because the real-time
aspect suggests a special architecture. In what follows, we discuss a system on which we are currently
working that we hope will prove robost enough to allow for some fairly sophisticated real-time default rea-
soning.

1An outgrowth of work reported in [11].

2



Life on a Desert Island...

2.2 APPROACHES TO DEFAULT REASONING

Our own efforts reported in this paper take a somewhat different approach than most. In particular,
we are concerned with certain implementational issues concerning commonsense reasoning. An underlying
premise is that a real-world reasoner is limited, at least in terms of the scope and accuracy of the informa-
tion to which it has access. As such, our research can be viewed as backing off a bit from the more tradi-
tional topic of idealized reasoning agents that are infallible and omniscient. What we propose is that going
one step further, namely, studying agents that also have limited computing resources (much as people do),
makes some of the difficulties of formal representation of commonsense reasoning more tractable. That is,
greater limitations serve to constrain solutions to the point that answers may be more easily seen.

In particular, a centerpiece (and bugbear) of formal research in commonsense reasoning has been that
of (global and derivational) consistency tests. Even when, as in the case of circumscription (see [6,7]),
direct testing of consistency is avoided by clever syntactic manipulations, there is still implicit reference to
global properties of the reasoning system (i.e., its set of axioms). Time is then taken to assess logical con-
sequences of these properties before a commonsense conclusion is drawn. Thus a strong flavor of idealized
reasoning has persisted.

Suppose we would like to hav e a reasoning system use a rule such as A → B to conclude B, given
A, and later, in the face of new evidence, be able to retract its belief in B. A somewhat standard (idealized)
way of dealing with this is to use a rule such as, ‘‘If A, and it is consistent to believe B, then conclude B ’’.
This is called a default rule, and is the source of the aforementioned consistency tests. The point of the ‘‘it
is consistent to conclude B’’ is to see whether there already is evidence to retract B, i.e., to prevent the con-
clusion B in the first place. Our idea is that instead of holding up the system’s conclusion until such a test
can be made, we can let it ‘‘jump’’ directly to the conclusion B, and then decide whether it was rash.

Thus the question is whether or not these default rules should be encoded as such. In commonsense
reasoning, it seems, nearly all rules are actually defaults, since we can rarely be sure of anything in the real
world (although some rules may perhaps be ‘‘stronger’’ than others). It is then tempting to use a more
‘‘brute force’’ method of encoding these defaults: simply encode the rule as ‘‘If A, then conclude B’’,
with no ‘‘unless it is not consistent to do so’’ condition. One would then proceed as normal in the inference
process until a direct contradiction is somehow brought to the reasoner’s attention (a process which will be
explained shortly). At this point something would have to be done to resolve the inconsistency. It is impor-
tant to note that a contradiction should not be something that will incapacitate our system. Rather, it is
something that is to be expected, recognized (but, only when relevant to the current focus of attention), and
resolved by the system as part of its normal operation. In particular this allows the use of a rule such as A
→ B, even though it may be recognized as not strictly true. (Though this is not a trivial point, we will leave
further discussion for a future paper. See [3] for a related idea.)

We then conceive of a real-world resource-limited entity as acting (somewhat slowly) over time while
using defaults to allow itself a short-cut to quick (although fallible) answers. Our contention is that pre-
cisely such an entity is one to have a particular need for default reasoning, and to have means for perform-
ing such effectively. Elsewhere [2] we analyze in greater detail the underlying philosophy and logic of this
approach.

3. DETAILS OF OUR MODEL

3.1 ARCHITECTURE

Our reasoning model contains five key elements: STM, LTM, ITM, QTM, and RTM. STM, LTM,
and ITM are standard parts of cognitively-based models of memory. STM is meant to represent one’s cur-
rent focus of attention. It is a small set of beliefs that are currently ‘‘active’’. These beliefs are repre-
sented as logical formulae and are used to help establish STM’s next state, a process which will be

3



Life on a Desert Island...

described shortly. STM is structured as a FIFO queue. Since STM’s size is limited2 , as new facts are
brought into STM, old facts must be discarded. That is, the older, discarded facts are no longer in focus.

It is convenient to conceive of STM as a theorem prover to which LTM supplies axioms. LTM may
then be thought of as a data base of information to which the robot has access. LTM is implemented as a
series of tuples of the form:

<T1,...,Tn,B>

where the Ti and B are represented by logical formulae. The idea behind LTM is that beliefs are held as a
series of associations. Thinking about a subject triggers (possibly many) past associations. These associa-
tions are then brought into focus (i.e. STM) when appropriate.

ITM is of unbounded size and holds all information which ‘‘spills over’’ from STM in chronological
order, i.e., in order of entry. Thus, ITM is implemented similarly to a stack, in that the most recently
entered facts are the most easily accessed, although they are never removed.

QTM is a technical device that controls the flow of information into STM.

RTM is the repository of default resolution and relevance. RTM is implemented as a list of facts that
have most recently been in STM. Facts are coded with a time decay variable so that facts can decay out of
RTM as they are no longer relevant; i.e, not found in STM for a specified number of inference cycles.

This architecture is illustrated in Figure 1. The arrangement has been borrowed from cognitive psy-
chology, as well as from the production system model of A.I., with liberal alteration to suit our purposes.
The chief purpose of STM is to allow access to a very large database (LTM), yet not suffer an exponential
explosion of inferences.

FIGURE 1. Architecture of the memory model.

2In our implementation, STM’s size is fixed, yet easily changed for experimental purposes. An interesting sidelight is that an
STM size of eight is the smallest that has led to effective task-oriented behavior over sev eral domains, and that larger sizes have of-
fered no advantage. This is in surprising accord with psychological data which measure human short-term memory to hold seven
plus-or-minus two ‘‘chunks’’ of data at one time [9].

4



Life on a Desert Island...

3.2 GENERAL FEATURES

Several points are worth making at the outset concerning general features of the model. Although we
will not explore all of them in depth here, brief mention will serve to illustrate our research intentions.

First, in most of our work we have limited the size of STM to eight ‘‘elements’’. By this we mean
that eight formulae can be held in STM at any one time. Later in this paper, howev er, we use somewhat
smaller STM sizes, for ease of illustration.

Second, LTM can hold inconsistent data without the usual disastrous consequences of customary
inference systems. That is, as long as a direct contradiction does not occur in STM, no inconsistency is
detected.

Third, the system is capable of meta-inference or ‘‘introspection’’ very simply by searching its list of
STM elements. E.g., it can determine whether a given formula and its negation are both currently in STM.
This activity occurs via inference steps no different in principle from any of its other inferences. In effect,
the system may look at snapshots of itself as it runs, rather than extrapolating to some ‘‘final’’ state.

Fourth, the utility of RTM is to allow for such things as prohibiting faulty default conclusions. That
is, since STM is so small, it is likely that information that would typically block a default conclusion from
being drawn has recently left STM, but it still remains in RTM. Being in RTM is sufficient to prohibit a
faulty default, as we consider RTM’s entries as relevant enough to have a bearing on reasoning, yet not cen-
tral enough to be the catalyst of further inference.

Finally, information stored in ITM and in RTM is at times accessible to STM. Thus, information
from the past can be brought back into focus when appropriate. This allows the system to use such infor-
mation in working through goal-subgoal behavior as well as using past information as a default when the
frame problem arises.

3.3 INFERENCE

An inference cycle can be thought of as the process of updating the system’s current focus of atten-
tion (STM). Given some state of STM, four different mechanisms work simultaneously to produce a new
state of STM. These four mechanisms are direct observation, modus ponens (MP), semantic retrieval (from
LTM), and episodic retrieval (from ITM).

To model this simultaneity, our implementation uses a temporary waiting queue (QTM) which holds
the next cycle’s STM facts until all four mechanisms have finished working on the old STM facts. Once
they hav e finished, elements of QTM are placed into STM one at a time, disallowing repetition of facts in
STM. Throughout this process, ‘‘older’’ items in STM are moved into ITM as needed to maintain STM’s
size. Note that if QTM is very large, other means will be required to reasonably select elements to go into
STM. In part this is addressed by RTM.

Currently, direct observation is provided by allowing outsiders to simply assert a fact to the system.
This allows us the pretense of an autonomous system noting events in a dynamic environment.

MP is applied in the following form: from Ac and (Ax → Bx), Bc is inferred. That is, Bc is brought
into QTM if Ac and (Ax → Bx) are already contained in STM. Consequently, at the end of such a cycle,
Bc will be in STM (unless QTM has too many elements to fit into STM, a problem that has not arisen in
current domains).

Facts from LTM are brought into STM by association. That is, when facts in STM unify with the first
n elements of an (n+1)-tuple, <T1,...,Tn,B>, in LTM, then B will be brought into QTM (and subsequently
into STM), with its variables properly bound.

Information retrieved from ITM into STM can take sev eral forms. For example, since ITM is a
chronological listing of all past STM facts, its structure allows for the retrieval of goal statements that are
not yet satisfied, but that have already been pushed out of STM. This allows the system to work through a

5



Life on a Desert Island...

goal-subgoal process.

3.4 AN EXAMPLE

As an example of this mechanism in action, consider the following state of affairs, with the size of
STM fixed at a maximum size of four:

ITM: MX< ... empty ... >

STM: bird(Tweety)

LTM: <bird(x), bird(x) → flies(x) >
<flies(x), flies(x) → winged(x) >

The fact that Tweety is a bird will trigger the rule that birds fly, resulting in:

STM: bird(Tweety)
* bird(x) → flies(x)

The star (*) indicates an item newly placed in STM. An application of MP would then leave:

STM: bird(Tweety)
bird(x) → flies(x)

* .ls 1

Again, a new association will be triggered from ltm, resulting in:

STM: bird(Tweety)
bird(x) → flies(x)
flies(Tweety)

* → winged(x)

This new fact would then trigger MP again (and have the side-effect of pushing ‘‘bird(Tweety)’’ into ITM).

ITM: bird(Tweety)

STM: bird(x) → flies(x)
flies(Tweety)
flies(x) → winged(x)

* .sp 2
4. REAL-TIME NON-MONOTONICITY

It does not take an especially large effort to produce a rudimentary non-monotonic-type reasoning
system from the above architecture. We present an example which is similar to the above, but which incor-
porates non-monotonicity into the reasoning system.

Let us this time start the system in the following state, where the second entry in LTM is different
from before:

ITM: MX< ... empty ... >

6



Life on a Desert Island...

STM: bird(Tweety)

LTM: <bird(x), bird(x) → flies(x) >
<ostrich(x), ostrich(x) → ¬flies(x) >

As before, the fact that Tweety is a bird will trigger the rule that birds fly, resulting in:

STM: bird(Tweety)
* bird(x) → flies(x)

An application of MP would then result in:

STM: bird(Tweety)
bird(x) → flies(x)

* .ls 1

Now suppose the system discovers (through direct observation, or some other means) that Tweety is an
ostrich. We would then have:

STM: bird(Tweety)
bird(x) → flies(x)
flies(Tweety)

* .ls 1

This new fact would then trigger the rule from LTM that ostriches do not fly (and have the side-effect of
pushing ‘‘bird(Tweety)’’ into ITM).

ITM: bird(Tweety)

STM: bird(x) → flies(x)
flies(Tweety)
ostrich(Tweety)

* → ¬flies(x)

Again MP is applied, resulting in:

ITM:.br bird(x) → flies(x)

STM: flies(Tweety)
ostrich(Tweety)
ostrich(x) → ¬flies(x)

* flies(Tweety)

Note at this point that STM contains both the belief that Tweety does not fly, as well as the belief that
Tweety does fly. Is this a problem? We think not. We would like to be able to say that the fact that
Tweety flies was concluded by default, that is, through the use of a rule of typicality. Now giv en the
additional information that, in fact, Tweety is an ostrich, we would like the system to be able to retract the
belief that Tweety flies, and instead conclude that Tweety, in fact, does not fly.

As indicated earlier, our approach is, first, to let an inconsistency arise. Then once both x and ¬x
are together in STM, we want to be able to decide which (if either) of the two should be kept as a belief.

7



Life on a Desert Island...

Since STM is small, we will always be able to determine quickly and easily whether such a direct con-
tradiction exists.

Several methods of conflict resolution are available to us, each requiring nothing more than providing
an extra term to facts in STM which indicates the justification for bringing that fact into focus. For exam-
ple, something that is brought into STM as a result of direct observation is tagged with the term ‘‘OBS’’,
while a fact deduced through modus ponens is tagged with ‘‘MP’’, etc. These tags then allow the system to
favor an observed fact over a deduced fact, and a more recent observation over an earlier one.

This sort of self-adjusting can be thought of in terms of the following intuitive thinking: ‘‘X ought to
be true. Let me look and see.’’ This is not to say that resolution of such contradictions is trivial; on the
contrary, it is in general very hard. We are experimenting with a ‘‘wins’’ predicate that we hope will be use-
ful in a fairly broad setting. The idea of ‘‘wins’’ is that given two conflicting conclusions A and B, an addi-
tional fact of the form Wins(A,B) will state that, say, A wins out over B, so that A is retained as the conclu-
sion and B withdrawn. Of course this must be based on the context in which A and B were initially con-
cluded, so that we are talking about a real-time kind of truth maintenance as in [1].

Notice also that all information about Tweety may soon leave STM, but will remain in RTM for some
number of inference cycles (and thus still remain relevant). If at a later time (not too late, as decay out of
RTM may eventually occur), Tweety is in focus again, RTM’s record of Tweety’s inability to fly will block
the statement ‘‘flies(Tweety)’’ from reappearing in STM. Thus, the default rule is no longer applicable.
That is, once a contradiction arises in STM, and we have resolved the contradiction in favor of one of the

contradictory facts, we can simply remove the other fact from STM3. Furthermore, we can just as easily
remove this fact from RTM so that it no longer bears any relevance to the reasoning from that point on.

5. THOUGHTS ON FRAME DEFAULTS

In developing and building our model of reasoning we have considered several types of reasoning
that we would like to be able to capture. The most basic of these is the following: Imagine that our robot
has recognized that a piece of edible fruit is on Tree A, and at some later time decides that it needs a piece
of edible fruit (perhaps it is hungry!). We would like to hav e the robot remember that there was a piece of
fruit on Tree A and that it is probably still there for the robot to eat. It seems simple enough to encode
some sort of rule that allows the robot to deduce this fact. One might try a general rule such as that stated
earlier: things that aren’t known to change stay the same. This was largely captured by Hayes [4]; Lifschitz
[5] recently has given dramatic force to it in the context of circumscription. These authors related what is
known to change to what is known to be caused to change.

It would seem that we could employ much the same tack as before: simply turn default rules about
causality into bald rules that can later be contradicted by other conclusions, and then use a wins predicate.
Our real-time architecture was designed in large part to facilitate a wins predicate and other kinds self-
adjusting over time.

In addition to seemingly being able to translate more standard default conclusions into real-time
terms, we also have mechanisms that lend themselves to associated issues, such as granularity and context.
Again, for illustration purposes, imagine a eagle flying over the island. Furthermore, suppose that the eagle
is flying in a circular pattern (as they are known to do). The robot has already seen the eagle and wishes to
answer the question, ‘‘Where is the eagle now?’’ One answer to this question is simply, ‘‘The eagle is over
the island.’’ Another answer is the actual spatial coordinates of the eagle. Both are correct, though they
differ in their degree of granularity.

3In our implementation, we actually retain the fact that has been determined to be incorrect, but we tag this fact in such a way so
that its incorrect nature is evident. This is done so that ITM can maintain a complete chronological listing of STM facts. We feel that
this will be important in the future as we may attempt to implement a learning device that scans ITM attempting to identify ‘‘patterns
of reasoning’’.

8



Life on a Desert Island...

A related issue is context, in the following sense: the goals of the reasoning system should partially
determine the things reasoned about. Thus if it is known that an eagle is circling overhead and if the imme-
diate goal is to find fruit, it may be wasteful to even consider the whereabouts of the eagle after 5 seconds,
one minute, etc.

This matter of granularity is one that has cropped up because of the type of system that we are work-
ing on: a real-time reasoner. We hav e provided mechanisms for histories of events (ITM), for current
ev ents (STM), for a pool of relevant information (RTM), and general retrieval information (LTM) to pro-
vide appropriate focus for STM.

References

(1) Doyle, J. [1979] A truth maintenance system, Artificial Intelligence 12, (3), 231-272.

(2) Drapkin, J., Miller, M., and Perlis, D. [1986] Consistency before and after. Working paper.

(3) Glymour, C. and Thomason, R. [1984] Default reasoning and the logic of theory perturbation. Pro-
ceedings of the Workshop on Non-monotonic Reasoning, New Paltz, NY.

(4) Hayes, P. [1971] A logic of actions. Machine Intelligence, Meltzer, B., and Michie, D. (eds.), Edin-
burgh University Press. intelligence

(5) Lifschitz, V. [1986] Formal theories of actions. Manuscript.

(6) McCarthy, J. [1980] Circumscription--a form of non-monotonic reasoning. Artificial Intelligence,
13 (1,2), 27-39.

(7) McCarthy, J. [1986] Applications of circumscription to formalizing common sense knowledge.
Artificial Intelligence, 28 (1), 89-116.

(8) McDermott, D. and Doyle, J. [1980] Non-monotonic logic I. Artificial Intelligence, 13 (1,2), 41-72.

(9) Miller, G. [1956] The magical number seven plus or minus two. Psychology Review 63.

(10) Nilsson, N. [1983] Artificial intelligence prepares for 2001. AI Magazine, 4, 4.

(11) Perlis, D. [1984] Non-monotonicity and real-time reasoning. Proceedings of the Workshop on Non-
monotonic Reasoning, New Paltz, NY.

(12) Reiter, R. [1978] On closed world databases. Logic and Databases, Gallaire, H. and Minker, J.
(eds.), Plenum, 55-76.

(13) Reiter, R. [1980] A logic for default reasoning. Artificial Intelligence 13 (1,2), 81-132.

9


