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Abstract

We study the Knights and Knaves problem, and find that for a proper treatment via theorem-proving, an
interaction with natural language processing research is helpful. In particular, we discuss Ohlbach’s claim
that first-order logic is not well suited to handling this problem. Then we provide an interpretation of the
problem using indexicals, axiomatize it, and prove the desired result. We conclude by suggesting a broader
context for dealing with ‘‘self-utterances’’ in automatic theorem-proving.
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I. Introduction

The Knights and Knaves problem [Smullyan 1978] can be stated as follows: An island exists whose

only inhabitants are knights, knaves, and a princess. The knights on the island always tell the truth, while

the knaves always lie. Some of the knights are poor and the rest of them are rich. The same holds for the

knaves. The princess is looking for a husband who must be a rich knave. In uttering one statement, how

can a rich knave convince the princess that he is indeed a prospective husband for her? 1

[Ohlbach 1985] is devoted to the framing and solution of this problem in a formal theorem-proving

context using first-order logic (FOL). Though trying to write the problem in FOL may not appear to be dif-

ficult at first, it is shown by Ohlbach not to be entirely elementary. He examines, and finds inadequate, two

different approaches before he finally settles on a third. This final approach, though successful in that it

gets the desired ‘‘solution’’, is unsatisfactory. Specifically, Ohlbach uses a truth predicate with two argu-

ments, T(x,y), which claims that its first argument x is true, but has no clear meaning for its second

1The intended solution is the statement ‘‘I am a poor knave.’’ The reader can readily verify that this indeed is a solution. Note
the self-referential nature of the statement; this feature is a special case of indexicality, which we address below. For general treat-
ments of self-reference, see [Perlis 1985], where another of Smullyan’s puzzles is treated, and [Smith 1986].



argument in terms of the original problem. Its justification is that the predicate allows a theorem-prover to

perform certain unifications that lead to the intended solution. But it does not accomplish the goal of find-

ing a knowledge representation faithful to the original problem, as well as having the solution as a logical

consequence.

Ohlbach’s conclusion is that knowledge representation is too hard in first-order logic, and too depen-

dent upon tricks. We will not dispute that it takes some time to come up with a satisfactory representation

of the problem, but this is not necessarily the fault of first-order logic. We contend that there is a straight-

forward treatment of the problem that is faithful to its intent and that does allow a formal proof of the

desired result. However, it requires employing concepts into the formalism that are not usually found in the

context of problem-solving via resolution theorem-provers, namely, ideas from natural language process-

ing. Nevertheless, we are not replacing one trick by another, but rather introducing a well-understood and

general formalism for problems of this sort.

The rest of this paper is organized as follows: section II discusses issues of problem representation,

especially the role played by the pronoun ‘‘I’’ in the Knights and Knaves problem. Section III reviews gen-

eral consequences for truth-values of statements containing indexicals such as ‘‘I’’, and section IV applies

this to the Knights and Knaves problem. Section V gives our formal treatment, including a resolution-

refutation proof by answer extraction. Section VI compares out solution to Ohlbach’s and suggests a

broader context for dealing with self-utterances in automatic theorem-proving.

II. Problem Representation

Finding a suitable representation for problems in artificial intelligence (AI) is often a difficult task.

However, the formalism used to represent a problem is not necessarily the cause of the difficulty, though we

grant that sometimes it is. Often it is the problem itself that is resisting representation and, when this

occurs, further insight into the problem is necessary.

The Knights and Knaves problem is a prime example of this. Ohlbach’s interpretation of the problem

results in his asking ‘‘Is there a statement x that I (being a rich knave) can say to convince the princess that

I am indeed a rich knave?’’ Formally this might look like (and does in Ohlbach’s second treatment):



OHL: (—
—
—

u)[CanSay(I,u) →← T(and(knave(I),rich(I)))]2

where T is the predicate meaning True and ‘‘and’’ although a function symbol, intuitively takes two state-

ments as arguments and returns another single conjunctive statement.3

This interpretation may appear to be reasonable given the English statement of the problem. But as

Ohlbach discusses, this representation (along with other associated axioms) is not sufficient to derive the

intended result.

At least part of the difficulty is not hard to see. The constant ‘‘I’’ stands for a fixed person (who is a

rich knave). The point of the biconditional in OHL, and especially of the right-hand side, is to test whether

the speaker is a rich knave, based on the ability to utter u. That is, the problem really seems to be asking,

‘‘What statement, when made by anyone, will convince the princess that the person making the statement is

a rich knave?’’ The first problem with that representation is then the following: ‘‘I’’ should not be bound to

a fixed individual, but should represent any ‘‘man in the street’’ who might utter u. We then suggest the

alternative version:

G: (—
—
—

u)(\ /— p)[CanSay(p,u) ←→ T(and(rich(p),knave(p)))]

We claim to have now adequately represented the goal statement4; but this is still not enough. For

although this goal statement expresses what we want, there are other problems arising from the truth condi-

tions of utterances containing the pronoun ‘‘I’’. These will enter into axioms in the problem representation,

rather than the goal statement.

III. Utterance Instances of Statements

This brings us to what we think is the key issue in this puzzle, an issue which has broader signifi-

cance as well. Specifically, utterances are instances of statement uses, and these instances, in general, have

2Ohlbach’s first treatment involved the axiom (—
—

—
u)[CanSay(I,u) → T(and(knave(I),rich(I)))] which (in addition to yielding a

trivial and unhelpful answer) does not seem to correspond to his English interpretation ‘‘There exists a statement which I can say and
which implies that I am really a rich knave.’’ In fact, it seems to us that the goal statement

(—
—
—

u)[CanSay(I,u) & (\/— p)[CanSay(p,u) → T(and(rich(p),knave(p)))]]
comes much closer to the English.

3Actually, a name of the statement.
4Both G and the second wff in footnote 2 will do equally well.



truth-values, rather than the statement in and of itself. In particular, terms in a statement may have no defi-

nite reference outside the context of an utterance. Although this concept is familiar to linguists5 and

philosophers (it is the so-called problem of indexicals which is discussed below) it is worth going into

detail in the current paper, since the issue of representing knowledge in the Knights and Knaves problem

hinges on this very phenomenon.

Typically, we think of a statement as being either true or false. This, however, is not always the case.

For example, the statement:

I am a knave

will have a truth-value dependent upon who the speaker is; and so would be falsely uttered by any knight

and truly by any knave.6 Thus statements that contain indexicals (such as the word ‘‘I’’ in the above exam-

ple) have meanings, and hence truth-values, that depend upon context.

Another example is the statement:

It is raining (here now)

In this case the utterance may simply be ‘‘It is raining.’’ The implication, however, is that it is raining at

some particular place at some particular time. In our example, the time and place are ‘‘here’’ and ‘‘now’’

respectively, and so ‘‘here’’ and ‘‘now’’ are the indexicals that determine the truth or falsity of this state-

ment.

Generally speaking, then, an indexical in an utterance is a sub-expression of that utterance whose

meaning is determined (and thus understood) by the context in which the utterance is stated. Because of

the indeterminacy of truth-values of sentences that contain indexicals, we will refer only to the truth-value

of utterance-instances of such statements. An utterance-instance of a statement contains a context in which

the statement was (or is) made including who the utterer is.

IV. ‘‘Who Am I?’’

5Including those who work in natural language processing; see for instance [Allen 1984], [Allen and Perrault 1980], [Harper
and Charniak 1986].

6Hence, this statement can be uttered by neither knights nor knaves, in the Knights and Knaves problem!



If we look closely at any of Ohlbach’s representations of the Knights and Knaves problem, we notice

that the constant ‘‘I’’ seems to be playing two different roles. In all of his goal statements ‘‘I’’ is presum-

ably used as the name of a particular person. For example Ohlbach’s second goal statement, OHL, illus-

trates this usage. On the other hand, in the intended solution to the problem, the ‘‘u’’ of the goal statement

is bound to anriki:7

and(not(rich(I)),knave(I))

where, the same symbol ‘‘I’’ appears as before but now what is of interest is its potential presence within

within CanSay(I,anriki), i.e., as part of a potential utterance whose truth value depends upon who the

speaker is. That is, any number of people might utter anriki, and its meaning would be different in each

case. We now hav e an utterance-instance and need to know who ‘‘I’’ is before assigning a truth-value.

Thus, ‘‘I’’ must be viewed as a pronoun and not a proper name here. In particular, the knighthood or

‘‘knavehood’’ of ‘‘I’’ determines the truth of anriki. Of course, in the world in question, only knaves (and

rich ones at that) could utter anriki. But that is the point; the princess must be able to deduce precisely that

fact: that anyone at all who utters anriki must consequently be a rich knave.

In what follows, we have removed this ambiguity by introducing a new predicate (TU) into the lan-

guage of Knights and Knaves. TU is used as a 2-place predicate expression with its first argument being a

person and its second an utterance. Intuitively, TU(p,u) is true if and only if u is true when uttered by per-

son p. More precisely, we say TU(p,u) is true if and only if the substitution-instance of t resulting from

replacing all occurrences of ‘‘I’’ in u by ‘‘p’’ is true. Thus the statement:

TU(John,‘‘I am six feet tall’’)

is true if and only if John (the utterer) is indeed six feet tall.8

V. Formalization

7Throughout the remainder of this paper we use ‘‘anriki’’ as a short-hand for: and(not(rich(I)),knave(I)).
8This is somewhat comparable to the formulation of Barwise and Perry [1983] when they speak of an utterance in a ‘‘situation’’

concerning ‘‘I’’: u[I am six feet tall]e is true (where u is the utterance ‘‘I am six feet tall’’ and e is a situation in which John is present
and makes utterance u) iff John is indeed six feet tall in situation e.

We use TU as an acronym for ‘‘truly utters’’; i.e., TU(p,u) says ‘‘p would be telling the truth if p were to utter u.’’



We now introduce our notation for representing the problem. We use a first-order theory which con-

tains the following:

I: constant (the word ‘‘I’’)

knave: function letter (knave(x) stands for the term ‘‘x is a knave’’)

rich: function letter

knight: function letter

not: function letter

and: 2-place function letter

CanSay: 2-place predicate letter (CanSay(p,u) means ‘‘p can say u’’)

TU: 2-place predicate expression (TU(p,u) means term ‘‘u’’ would be

true if occurrences of ‘‘I’’ in u are replaced by p)

T: predicate expression (T(t) means the term t is true)

Given the above notation, we can now present the axioms which will capture the Knights and Knaves

problem as we see it. For simplicity, we suppose all variables range over knights, knaves, the princess, and

utterances.9

All clauses we require could be derived from only three first-order axioms and one schema which are

sufficient to represent the needed facts about the world in which the knights, knaves, and princess live,

namely,

(1) (\/— p)(\ /— u){T(knave(p)) ←→ [CanSay(p,u) ←→ ¬TU(p,u)]}
I.e., u is a knave iff the things t that u can say are precisely those which would be false if u uttered
them.

(2) (\/— y)(\ /— z)[T(and(y,z)) ←→ T(y)&T(z)]
This captures the meaning of the function letter ‘and’.

(3) (\/— s)[T(s) ←→ ¬T(not(s))]
This axiom captures the meaning of the function letter ‘not’.

9This follows the convention of Ohlbach. The use of either typed or relativized variables would eliminate unusual readings at
the expense of more complex formulae.



(4) (\/— p)[TU(p,f (I)) ←→ T(f (I))]

For example, this intuitively corresponds to TU(Bill,rich(I)) →← Rich(Bill), where f is ‘‘rich’’.10

As mentioned, axiom 4 is really a schema, and a functional one at that. So ordinary theorem provers

would have to be giv en a mechanism to select in some fashion appropriate substitution instances. In order

to avoid this added difficulty (although it should not be computationally very expensive in this case) we will

continue our analysis in terms of a finite axiomatization of this schema, which requires no such mechanism.

The following four axioms recursively establish all possible instances of schema 4 in terms of the

leftmost function symbol occurring in TU’s second argument.

$TU sub and$: (\ /— u)(\ /— v)(\ /— p)[TU(p,and(u,v)) ←→ {TU(p,u) & TU(p,v)}]

$TU sub not$: (\ /— u)(\ /— p)[TU(p,not(u)) ←→ ¬TU(p,u)]

$TU sub rich$: (\ /— p)[TU(p,rich(I)) ←→ T(rich(p))]

$TU sub knave$: (\ /— p)[TU(p,knave(I)) ←→ T(knave(p))]

Thus the axioms we employ for the Knights and Knaves problem will be (1)-(3) above and the four

last ones for TU, for a total of seven first-order axioms and no schemata. Below we present these axioms in

clause form, leaving out those clauses that result from our axioms that are not necessary to our resolution

proof.

KS1: ¬T(knave(p)) v ¬CanSay(p,u) v ¬TU(p,u)

KS2: ¬T(knave(p)) v CanSay(p,u) v TU(p,u)

KS3: T(knave(p)) v ¬CanSay(p,u) v TU(p,u)

A1: ¬T(and(y,z)) v T(y)

10Note that this replaces Tarski’s Convention T: T‘‘α’’ →← α, in cases of α having the indexical ‘‘I’’.



A2: ¬T(and(y,z)) v T(z)

A3: T(and(y,z)) v ¬T(y) v ¬T(z)

N1: T(s) v T(not(s))

N2: ¬T(s) v ¬T(not(s))

TU1: TU(p,and(u,v)) v ¬TU(p,u) v ¬TU(p,v)

TU2: ¬TU(p,and(u,v)) v TU(p,u)

TU3: ¬TU(p,and(u,v)) v TU(p,v)

TU4: TU(p,not(u)) v TU (p,u)

TU5: ¬TU(p,not(u)) v ¬TU(p,u)

TU6: TU(p,rich(I)) v ¬T(rich(p))

TU7: ¬TU(p,rich(I)) v T(rich(p))

TU8: TU(p,knave(I)) v ¬T(knave(p))

TU9: ¬TU(p,knave(I))) v T(knave(p))

We are now ready for the clauses which represent our goal statement. In line with our earlier discus-

sion, we take as our goal statement:

G: (—
—
—

u)(\ /— p)[CanSay(p,u) ←→ T(and(rich(p),knave(p)))]

In the clauses that follow, ‘‘g’’ is a Skolem function resulting from the elimination of the existential quanti-

fier in the negation of G.

G1: CanSay(g(u),u)) v T(and(rich(g(u)), knave(g(u))))



G2: ¬CanSay(g(u),u) v ¬T(and(rich(g(u)),knave(g(u))))

Given these clauses we have been able to use resolution to give us the desired solution. Here we pre-

sent our resolution proof with answer extraction showing how we come up with a solution to the Knights

and Knaves problem. Axioms will be abbreviated using their names from section V. Clauses that are the

result of a step in the proof are named (R1, R2, F13, etc.) so that we may refer to them later in the proof.

For the sake of compact presentation, we abbreviate ‘and’ as ‘a’, ‘rich’ as ‘r’, ‘knave’ as ‘k’, ‘not’ as ‘n’,

and ‘CanSay’ as ‘CS’. We also eliminate certain parentheses when there is no ambiguity. Key substitutions

are in braces beside the resultant clause in which they appear.



MXResolvants MY Resultant Clause
MZ R1: CS(gu,u) v T(r(gu)) v Ans(u)
& R1 → R2: CS(gu,u) v ¬T(nr(gu)) v Ans(u)
& R2 → R3: CS(gu,u) v ¬T(a(nr(gu),z)) v Ans(u)
& R3 →R4: CS(gu,u) v ¬T(nr(gu)) v ¬T(z) v Ans(u)
& R4 →R5: CS(gu,u) v ¬T(nr(gu)) v ¬TU(p,k(I)) v Ans(u)
& R5 → R6: CS(gu,u) v T(r(gu)) v ¬TU(p,k(I)) v Ans(u)
& R6 →R7: CS(gu,u) v TU(gu,r(I)) v ¬TU(p,k(I)) v Ans(u)
& R7 →R8: CS(gu,u) v ¬TU(gu,nr(I) v ¬TU(p,k(I)) v Ans(u)
& R8 →R9: CS(gu,u) v ¬TU(gu,nr(I) v ¬TU(p,a(u´,k(I))) v Ans(u)
& R9 → CS(gu,u) v ¬TU(gu,a(nr(I),v)) v ¬TU(p,a(u´,k(I))) v Ans(u)

→ CS(gu,u) v ¬TU(gu,anriki11) {u´,v,p → nr(I),k(I),gu}
& F11 → CS(gu,u) v CS(gu,anriki) v ¬T(k(gu)) v Ans(u)

→ CS(g(anriki),anriki) v ¬T(k(g(anriki))) v Ans(anriki)12 {u → anriki}
& A2 → CS(gu,u) v T(k(gu)
& R14 → CS(g(anriki),anriki)
& R15 → T(a(r(g(anriki)),k(g(anriki)))
& R16 → T(r(g(anriki))) v ¬T(k(g(anriki))))
& R17 → T(nr(g(anriki))) v ¬T(k(g(anriki)))
& R18 →CS(g(anriki),t) v TU(g(anriki),t) v T(nr(g(anriki)))
& R19 → TU(g(anriki),anriki) v T(nr(g(anriki)))
& R20 → TU(g(anriki),nr(I)) v T(nr(g(anriki)))
& R21 → TU(g(anriki),r(I)) v T(nr(g(anriki)))
& R22 → T(r(g(anriki))) vT(nr(g(anriki)))
& R23 → T(nr(g(anriki)))
& KS1 → T(k(g(anriki))) v ¬TU(g(anriki),anriki)
& R25 → T(k(g(anriki))) v ¬TU(g(anriki),k(I)) v ¬TU(g(anriki),nr(I))
& R26 → T(k(g(anriki))) v ¬TU(g(anriki),k(I)) v TU(g(anriki),r(I))
& R27 → T(k(g(anriki))) v ¬TU(g(anriki),k(I)) v T(r(g(anriki)))
& R28 → T(k(g(anriki))) v ¬TU(g(anriki),k(I)) v ¬T(nr(g(anriki)))
& R29 → T(k(g(anriki))) v ¬TU(g(anriki),k(I))
& R30 → T(k(g(anriki)))
& KS3 → T(k(g(anriki))) v TU(g(anriki),anriki)
& R32 → TU(g(anriki),anriki)
& R33 → TU(g(anriki),k(I))
& R34→ T(k(g(anriki)))
& R35 → [ ]

VI. Discussion

Ohlbach has pointed out an interesting problem in knowledge representation. We agree in principle

with his conclusion that knowledge representation is hard. In fact, if someone has to invent a new trick

each time they wish to represent a problem, the task would become hopeless. Furthermore, if the language

used by the AI practitioner forced the need for tricks, then there would certainly be an argument for

11Recall that we use anriki as a short-hand notation for and(not(rich(I),knave(I)).
12We will now drop this term from subsequent clauses, as it is not going to change and represents the desired answer.



selecting another language.

We feel, however, that neither first-order logic nor automatic theorem-proving imposes any such

restriction on the Knights and Knaves problem. The complexity that Ohlbach discovered in trying to repre-

sent this problem is due to indexicals. In fact, his second argument of the predicate T(x,y) might be dealing

with indexical-binding in some way. We hav e found that a proper treatment of indexical-binding makes for

a natural and correct (in that a proper solution is found) representation of the Knights and Knaves problem.

Our solution was longer than Ohlbach’s. His optimized proof had 20 steps, while ours has 36. Thus

the new issues we have introduced into the problem representation have not reduced the complexity; rather

they hav e increased it, but not excessively so. Thus the use of indexicals seems viable within an automatic

theorem-proving context.

Furthermore, we feel that this problem is indicative of a whole class of problems that can be handled

in a similar fashion, i.e., not dependent upon isolated or ad hoc tricks. In the Knights and Knaves problem

we defined TU in terms of the indexical ‘‘I’’ only. This is because ‘‘I’’ is the only indexical of importance

in this problem. In broader contexts, however, this would be insufficient and generalizations of TU would

be necessary. Thus, we offer TU as a step toward a uniform solution to the problem of automatic theorem-

proving with indexicals. It will be interesting to see how well generalizations of TU handle other indexi-

cals and other problems.
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