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Abstract

Reasoning can be used to select among various possible interpretations of events. But how are these possibilities
determined? We isolate two key technical features of circumscription (consistency and minimization), and use the first as
the basis for a reformulation of the circumscription principle in a way related to possibility, self knowledge, and negative
introspection. The second (minimization) then can be separately expressed on its own. Conceptual clarity and a kind of
validity are results of this separation, as well as a computational means to determine (sometimes) when a wff is not
among a reasoner’s conclusions.

I. Introduction

Assessing possible states of affairs with respect to given knowledge is an essential feature of making sense of the

world. This is because our knowledge is generally very incomplete, so we need to reason about the gaps in our knowl-

edge. Once we have isolated various possibilities, we may choose among them, perhaps selecting one as a plausible con-

jecture until evidence convinces us to leave it. Thus such conclusions are defeasible, and this provides a basis for non-

monotonic reasoning.

But a question that in some sense comes first, is: How do we determine that a wff is indeed possible, with respect to

what we do know? One idea is that to recognize a gap (ignorance) in our knowledge is to recognize alternative possibili-

ties. The absence of knowledge that, say, α, amounts to the possibility that ¬α. In effect, we are theory-builders; we build

tentative theories about the world on the basis of what we determine that it is consistent to postulate. That is, if we can

find a consistent interpretation of our concepts, we may view it as a possibility: x is possible if we do not know (cannot

prove) x is false.1 Once we have found such an interpretation, we may try to assess whether it is worth taking seriously.

This bears on another fact, namely that consistency-testing is in general undecidable. This is in fact why most formalisms

for non-monotonic reasoning do not have effective proof procedures. Circumscription has the virtue of being the one

1In [17] I discuss some further concepts of possibility in commonsense reasoning.



fairly general (semi)-decidable formalism available. This will lead us to some insights into the prior problem of determin-

ing possibilities.

In [12] McCarthy introduced the idea of circumscription, and it was soon recognized as a powerful and important

new technique in artificial intelligence and logic. However, the foundational and conceptual status of circumscription, in

its various versions2, has remained unsettled (see Davis [1], Etherington et al [2], Lifschitz [8,9]; McCarthy [12,13], Perlis

& Minker [22]) and also bound up with the equally unsettled status of various theories of default reasoning. Here we

focus on one of the key advances provided by McCarthy’s original insight, namely a way to finesse consistency proofs.

McCarthy exploited the intuition3 that if a true interpretation of certain axioms can be established in such a way that a par-

ticular predicate letter P is re-interpreted via a stronger formula Z (i.e., one for which Z→P is provable), then Z is indeed

a possible reading for P, i.,e., P→Z (and hence P→←Z) is consistent with those axioms. He further observed that this estab-

lishing might be possible within the very theory itself having those axioms. Thus McCarthy has discovered a technique

for determining, at least in some cases, when a particular wff is not a logical consequence of others.4 This is a very strik-

ing result, for in general the logical consequences of a set of wffs are at best only semi-decidable; thus there is hope now

that in many cases of interest to commonsense reasoning, a computationally viable mechanism may be available to deter-

mine when a wff is not one of those among what a particular agent knows (can conclude). This is of importance because

of the central role that ‘‘what I don’t know’’ plays in non-monotonic reasoning in general.

Now, McCarthy and others have studied this from the point of view of asserting P→Z once Z is established as an

alternative possible interpretation of P. The typical conclusion then has the form: from ¬Zx conclude ¬Px (since P → Z).

This has seemed appropriate to the main goal of modeling minimizing assumptions as in default reasoning. But formula-

tions to date have made the passage from the possibility of Z to P→Z (and hence to ¬Px given ¬Zx) in one fell swoop,

rather than first recording the possibility as a result in its own right and then with a further axiom (when desired) basing

the minimizing of P via P→Z on the former. Howev er, there are at least three advantages to separating the possibility (or

2At my last count there were at least eight versions of circumscription on the AI market. My apologies for introducing yet another here. I offer the
mitigating plea that this one is not really circumscription at all, in the sense that it does not aim at minimizing extensions, though it does borrow outright
the truly novel portion of McCarthy’s original schema.

3That is almost true (see [1,2]). Shepherdson [25] uses a similar idea to give ‘‘inner models’’ of set theories.
4In effect, circumscription involves a relative consistency proof, that identity of P and Z is consistent with (and relative to) A[P].



relative consistency) of ¬Px given ¬Zx from the conclusion that in fact ¬Px holds (given ¬Zx):

1. It is not always the case that one wishes to minimize all possible interpretations, yet one might still want to know of
their viability. Indeed, McCarthy early on [12] characterized circumscription as ‘‘a rule of conjecture,’’ which suggests
something tentative like possibility or viability rather than a definitive conclusion.

2. This is directly related to negative introspection: how is it determined that a given wff is not among the reasoner’s con-
clusions? While this is in general undecidable, many cases of it are of critical importance in commonsense reasoning. An
approach to possibility then might afford a computational means to decide (many such) cases. This is the main issue
addressed in this paper.

3. The semantics of possibility are simpler to study, and in particular the conclusion of possibility is sound: if there is a
true interpretation Z of P for which, say, Zb is false, then Pb cannot be provable (unless the original theory is inconsis-
tent).

These (and especially 2.) will be taken up at greater length below. In the present section we aim mainly at dis-

cussing some of the choices available for formal mechanisms involved in such an undertaking. What we wish to do, then,

is formalize the idea that if there is a true interpretation of a set of axioms, in which P is re-interpreted as Z, then from

¬Zx we conclude only ¬Concluded(Px). Clearly this is different from concluding that ¬Px. An overview of the theme we

are pursuing can be indicated in the following diagram, where C stands for some mechanism that sets up conditions under

which it may be desirable to conclude non-monotonically that ¬Px.
default

C ----------------------------------→ ¬Px

oracle jump

¬Concluded(Px)

Here C could be a portion of McCarthy’s circumscription schema (as used below), or appropriate aspects of Reiter’s

[23] or McDermott & Doyle’s [14] forms of non-monotonic reasoning. The point is that the conclusion of the default has

been broken into two steps, first recognizing explicitly the fact that the default conclusion is not prevented by anything

known, and then the actual passage to the default. In Perlis [19] these steps are called the ‘oracle’ and the ‘jump’ respec-

tively. Howev er, here we will be exploring the extent to which a variation on circumscription can actually render the ora-

cle computationally feasible.5

5The name ‘oracle’ was chosen before to indicate an intractable (even undecidable) problem -- namely, that of determining non-provability -- so
that now it may be inappropriate.



Note that a fully ‘‘internal’’ solution is impossible within a fixed theory T. That is, Go
..
del [4] and Lo

..
b [11] showed

that if T is consistent, then under very general conditions |−/ −T ¬ThmT (α ) for any wff α. Thus we must augment T, in

order to get conclusions such as ¬ThmT (α ). Even here we are stymied by the fact that the wffs α for which |−/ −T α form

a semi-undecidable set in general. However, we may succeed in getting many particular cases, and this is what circum-

scription will allow us to achieve.6

II. An Introspective Treatment

We begin by recalling one standard form of circumscription, the so-called predicate7 circumscription schema

(McCarthy [12]) where Z is an arbitrary wff:

(1) A[Z] & (\/— x)(Zx → Px) .→. (\/— x)(Px → Zx)

Here A[P] is given as (a conjoined set of) axioms, and A[Z] is this conjunction rewritten by substituting Z for P. It is nat-

ural to think of Z as a candidate interpretation for (the underdetermined) P. For instance, suppose A[P] is the conjunction

of Pb and (\/— x)(Qx → Px); this might formalize the idea that b is winged, and that flyers are winged. However, A[P]

really says very little as to what winged things (P-things) are: all we know is that b is one, and flyers (Q-things) are

winged. This leaves open what the extent of winged things is. Possibly b is the only such, possibly not. The predicate

circumscription schema above has as consequence that, after all, the class of winged things is the smallest class Z satisfy-

ing A[Z], i.e., the union of the class of flyers and the object b. For we need only choose Z to be the formula Qx v x=b.

Then A[Z] and Zx → Px follow from A[P], so the schema yields (\/— x)(Px → Zx), i.e., (\/— x)(Px →. Qx v x=b).

Now suppose we wish to know that Qx v x=b is a possible interpretation of P, i.e., that winged things may be pre-

cisely b and the flyers, but we are not prepared to conclude, yet, that this is true. Then we must avoid the final part of the

schema, namely (\/— x)(Px → Zx). What can we put in its place? We presumably want something like Possible(\ /— x)(Px →

Zx). However, there is a simpler and more useful formulation, namely we first rewrite the consequent in contrapositive

form and rearrange to emphasize the negative conclusion:

A[Z] & (\/— x)(Zx → Px) & ¬Zy .→. ¬Py

6Actually, because we will not use Thm but rather another predicate, the Go
..
del-Lo

..
b result might not apply; see Perlis [21] for a discussion of

these issues in a general setting.
7Below we will switch to formula circumscription; our comments here apply equally to both versions.



and then instead of the boldness of ¬Px we use ¬Concluded(Px), i.e., rather than assert that Px is false, we simply record

that it is not concluded that Px, where for brevity we employ the symbol K rather than Concluded:

(2) A[Z] & (\/— x)(Zx → Px) & ¬Zy .→. ¬K(Py)

Thus this amounts to a kind of meta-conclusion about the reasoner’s own conclusions: the reasoner is (to be) endowed

with the ability to introspect that it has not been able to draw certain conclusions. Determining the truth of A[Z] can be

seen then as a discovery that we have built a viable theory or possible world. That is, A[Z] can be regarded as asserting

that Z is a possible interpretation of P, or represents a possible world with respect to the knowledge A[P], since it says that

Z satisfies all that we know about P anyway (namely, A[P]); then if y does not satisfy Z (P’s possible interpretation), Py

cannot have been known. The advantage to using ¬K(Py) -- or Possible(¬Py) -- instead of Possible(\/— x)(Px → Zx) will

emerge below.

There is another question of interpretation that arises. Namely, what is the role of the subformula

(\ /— x)(Zx → Px) here? In circumscription proper, it is essential in dealing with disjunctive axioms (see McCarthy [12]).8

But if we seek simply to determine ignorance rather than to minimize, its appropriateness is unclear. There are two view-

points that naturally arise: we can dispense with this subformula altogether, seeking the most general range of possible

interpretations of P, or we can retain it with an eye to possible future use in minimizations or defaults.

This is worth exploring a bit more. Suppose that our axioms A[P] consist of Pa v Pb and a≠b. Then a reasonable

ignorance-tester should show that neither Pa nor Pb is concluded from A[P]: ¬KPa & ¬KPb. On the other hand, if we

accept as a default (or P-minimizing) rule that ¬K(Px) → ¬Px, we immediately run into inconsistency (which is what

prompted McCarthy’s use of the additional subformula in question). Now, this does not mean that it is a mistake to state

that ‘‘neither Pa nor Pb is concluded from A[P].’’ It simply means that such observations do not lend themselves directly

to default reasoning. Hence if our interest is primarily in determining what is (not) concluded, it may be appropriate to

dispense with the subformula; and for later use in defaults it may be appropriate to retain it and thereby find fewer candi-

date wffs determined to be unconcluded. Of course, we could just as well undertake both approaches at once, employing

different notations: GenK and MinK -- general concludability and minimizing concludability. It is the latter (MinK, which

8If P is viewed as unusual this says P’s substitute Z introduces no new unusual entities.



is (2) above) that bears direct relation to standard circumscriptive formalisms and default reasoning, namely we have the

obvious result that

(3) (2) + ¬K(Py) → ¬Py entails (1)

In what follows, except for one explicit application to default reasoning, we will avoid the added complexity of juggling

two versions, and employ a single version (GenK, (4) below) without the subformula, for conciseness of exposition. How-

ev er, much of what we say will apply equally to the alternate version. Thus the version we will study has the form

(4) A[Z] & ¬Zy .→. ¬K(Py)

whose purpose is not to elucidate circumscription so much as to borrow a portion of the underlying idea of circumscrip-

tion in order to address the negative introspection problem.9

Before proceeding into details, we mention that Konolige [6] and Levesque [7] have undertaken similar tasks.

Konolige studies the problem of drawing conclusions on the basis of knowing what an agent does not know. He uses a

modal propositional logic for this purpose, and thus can retain decidability; this represents a rather limited language, how-

ev er. Lev esque pursues the same goal via a special modal semantics that does not have (in its quantificational version) a

corresponding semidecidable proof-theoretic component; this serves his purpose since his logic is not intended as an

effective calculus for a reasoning agent. Autocircumscription, on the other hand, is so intended, and it is important then

that it be semidecidable (and it is) even though a quantificational language is used.

III. Technical Details

There is one obvious aspect in which a complication arises: the syntax of the underlying first-order language must

include names for wffs, so that they can appear as terms in formulas. That is, we must reify wffs as first-order objects.

This is not new, howev er; ways to do this are given in (Feferman [3] and Perlis [18]). Feferman meets the technical

requirement as follows: for each wff w in the language, there is a designated term tw whose free variables are those of w.

Thus tw is a function symbol with variables (or constant symbol if w has no free variables).10 Call a language ‘reified’ if it

is so endowed with terms. Note that since tw is itself in the language, it gives rise to other terms naming wffs in which tw

9Vladimir Lifschitz has suggested an elegant generalization of (4), along the lines of K(Px) →← (\ /— p)(A(p) → px), where p is a second-order predi-
cate variable. This brings out the idea of possible worlds more forcefully and provides positive introspection as well.

10This device is sometimes called ‘quasi-quoting.’



appears. Since context makes clear the usage, we will simply use ‘w’ for tw, or even just w itself; however, tw itself, being

a term, does not contain the wff w, nor any predicate letters at all.

Thus we may employ a predicate expression K(‘w’) where ‘w’ is the name of a wff, to mean that the wff (named)

‘w’ is concluded by our reasoning agent g. The predicate symbol K can just as well be read as ‘‘g knows (or believes)’’ its

argument, or better yet, ‘‘I know’’ the argument. If w has free variables, then the wff K(tw) (also written as K(‘w’) above

and as Kw) does too; this allows for quantifying into what otherwise might appear to be opaque contexts.

Suppose then that L is a reified first-order language, with predicate symbol K. Then we can present a revised

schema, in a form we call autocircumscription (for it is designed to isolate the feature of determining what is (not) known

to the agent itself, rather than what is (not) true in the outer world). For greater generality we turn to formula circumscrip-

tion (McCarthy [13]), written in a first-order version. Let A[P] be a finite conjunction of wffs of L, where P is a tuple of

predicate letters Pv’0.4m’0
,...,P

n
appearing in A[P]. Let Z be the tuple of wffs Zv’0.4m’0

,...,Z
n
, and W[P,x] any wff to be

minimized (and in which the predicate letters P and variable(s) x may figure). Then one version of formula circumscrip-

tion is:

A[Z] & (\/— x)(W[Z,x]→W[P,x]) & ¬W[Z,y] .→. ¬W[P,y]

The idea is that the predicate letters Pv’0.4m’0
,...,P

n
in the original axiom A[Pv’0.4m’0

,...,P
n
], are open to interpretations

Zv’0.4m’0
,...,Z

n
, respectively (which are to be chosen suitably, and where care is taken to avoid clash of variables -- see

Mott [16]). Then if W[P] is ‘‘minimal’’ with respect to A[P], and fails at y under the Z-interpretation, W must also fail at

y for the original P.11

The corresponding autocircumscription schema for an axiom set A = A[Pv’0.4m’0
,...,P

n
] is:

AUTO: A[Z] & ¬W[Z,y] .→. ¬K W[P,y]

The formula of which ignorance is being tested is represented by W[P,y]. The idea, as before, is that if there is an inter-

pretation Zv’0.4m’0
,...,Z

n
of the predicates Pv’0.4m’0

,...,P
n

such that A[Zv’0.4m’0
,...,Z

n
] holds, then this is a possible

interpretation, so that we must have been ignorant of any fact about W[P,y] that happens to fail for W[Z,y].

11Thus W[P,x] is a special wff designated for minimization.



One feature of autocircumscription is that, unlike minimizing versions of circumscription, no special license is

needed in choosing the wff W. In fact, all wffs can be ignorance-tested at once with impunity. Thus we regard autocir-

cumscription as a schema not only for Z but also for W.12 For the same reason, in the schema we can assume that

Pv’0.4m’0
,...,P

n
are all the predicate letters in A[P]. Thus we do not bother to write A[P] anymore but just A. We intro-

duce the notation AUTO[A] to stand for the above schema (over all W’s) together with A itself, making AUTO[A] an

extension of A: AUTO[A] = A + AUTO.

Now, what is preferable about this version over the one with Possible(\/— x)(W[P,x] → W[Z,x])? Well, the latter

would require us to write axioms for Possible in a way that would to break apart (\/— x)(W[P,x] → W[Z,x]) into subformu-

las so that knowing, say ¬W[Z,c], would allow a conclusion about the possibility of ¬W[P,c]. Schema AUTO avoids this

by placing K directly where desired.

Another idea is to minimize the predicate K itself with ordinary circumscription, rather than go to the trouble of

inventing a new version. However, to make it useful, axioms relating K to the actual provability conditions of the underly-

ing theory would be necessary, and this is not at all easy.13 The present approach, on the other hand, requires no particular

axiomatization of K, for it serves via AUTO simply to record when a wff is not a theorem of A. If A does have theorems

of the form Kα, this is not necessarily a problem, as long as it respects the intended meaning of K, as we now define.

Definition: A theory T is autoconsistent14 (for the predicate letter K) if the language of T is reified and has the

predicate letter K and for every wff α

1. T |− Kα implies T |− α and

2. T |− ¬Kα implies T | /− α

Definition: A theory B autoextends theory A -- or is an autoextension of A, or is autoextensional over A -- for the

12Certain versions of circumscription, such as in [13] and [20], probably could facilitate corresponding versions of autocircumscription in a single
(higher-order or set-theoretic) formula.

13See Perlis [21]. Nevertheless, provability provides a key to a sound semantics for autocircumscription; this will be taken up in the theorems be-
low. Also, Lin [10] has carried out such a K-minimization in the case of a propositional modal formulation of circumscription.

14Note the similarity to the notion of a stable autoepistemic theory (see Moore [15] and Stalnaker [26]); however, our notion is weaker, as it must
be by Theorem 7.7 in Perlis [21] showing in effect that suitably reified (substitutive) stable theories are inconsistent. That is, fully (positive and neg-
ative) introspective consistent theories with self-reference do not exist.



predicate letter K, if B is an extension of A, the language of B is reified and has the predicate letter K, and for

ev ery wff α

1. B |− Kα implies A |− α and

2. B |− ¬Kα implies A | /− α

Thus a theory is autoconsistent iff it is an autoextension of itself; and theorems of an autoextension B of a theory A

do not violate the intended meaning of Kx, namely that x is a theorem (of the original theory A). If A is autoconsistent,

then A itself has explicit information as to its own proof theory; sometimes this is too much to expect (see [4,11,21] and

the discussion after Theorem 3 below).

Lemma: If T is autoconsistent, then T is consistent. If T is consistent and S autoextends T then S is consistent.

Proof: Suppose T is autoconsistent. Let α be any wff. Then if ¬Kα is not a theorem, T is consistent (since all wffs

are theorems of inconsistent theories). Yet if ¬Kα is a theorem, then autoconsistency requires that α not be, so

again T is consistent.

Now suppose T is consistent and S is an autoextension of T. If S were inconsistent then, for any wff α of T, both

Kα and K¬α would be theorems of S, hence both α and ¬α would be theorems of T, contradicting T’s consistency.

Theorem 1: If T is consistent and does not involve the symbol K in its proper axioms, then AUTO[T] is consis-

tent.

Proof (suggested by a referee): Interpret K as ‘‘true’’ in any model of T; this will automatically satisfy all

instances of the autocircumscription schema.

However, we can require more of AUTO[T], namely that it autoextend T, for this is after all the intension behind

autocircumscription. We also may want T to have axioms involving K. We then have the following result.

Theorem 2: If the only proper axioms of T = T[Pv’0.4m’0
,...,P

n
] that involve K are literals, and if T is autoconsis-

tent, then AUTO[T] is consistent and even autoextensional over T.

Proof: Call a wff K-free if it does not involve the predicate symbol K. Since T is autoconsistent then by the



Lemma, T is consistent. Let M be a model of the K-free axioms of T. Then interpret ‘K(α)’ in M as T |− α, for

each wff α in the language of T. That is, Kx is interpreted over D=Domain(M) as meaning that x is the name of a

wff that is provable in T. This makes M a model of (all of) T, since the literal axioms involving K will be satisfied

from the autoconsistency: if Kα is an axiom of T then so is α and thus (by the interpretation of K in M) Kα is true

in M. And if ¬Kα is a theorem of T, then (any instantiation over D of) Kis false in M, for if it were true then (that

instantiation of) α would be a theorem of T which in turn (by autoconsistency) would bar (the instantiation of)

¬Kα from theoremhood.

But M is also a model of AUTO[T]. For AUTO[T] consists of T plus conclusions of the form ¬K W[P,y] given

antecedents T[Z] & ¬W[Z,y] for any vector of wffs Z. We hav e to show that if the antecedents hold in M then so

does the conclusion ¬K W[P,y], i.e., W[P,y] is not a theorem of T for any y in D. But if (some instantiation over D

of) W[P,y] were a theorem of T=T[P], then (the corresponding instantiation of) W[Z,y] would be a consequence of

T[Z], and so W[P,y] would hold in M. This contradicts the antecedent ¬W[Z,y], which we are assuming to hold in

M. This shows that (an instantiation of) W[P,y] cannot be a theorem of T after all. Thus (each instantiation of) K

W[P,y] is false in M, so ¬K W[P,y] is true in M. This shows that M is a model for AUTO[T], and therefore

AUTO[T] is consistent.

Now AUTO[T] also autoextends T, since if AUTO[T] |− Kα for some wff α of T, then Kα is true in M, so T |− α.

And if AUTO[T] |− ¬Kα, then again ¬Kα is true in M so T | /− α.

Note that the proof does not make any use of information as to which wff W is the one being ignorance-tested. This

corroborates our earlier claim that we may as well consider AUTO[T] to simultaneously be applied to all wffs W.

Corollary: If T is consistent and does not involve K in its proper axioms, then AUTO[T] is also consistent and

autoextends T.

These results provide a sharp formal distinction between autocircumscription and the standard (minimizing) vari-

eties. For as has been shown by Davis [1], Etherington et al [2], and Mott [16], peculiarities and even inconsistencies can

occur when a circumscription schema (or second-order axiom) is adjoined to certain theories. Indeed, these authors have

been at pains to isolate special cases in which consistency is preserved. But for autocircumscription, consistency is



preserved, barring the use of K for defaults. If we try to recapture actual minimizations by adjoining default rules using

‘K,’ then we again have the full force of minimizing circumscription and so once more the specter of inconsistency can

arise.

But even here we have a positive result. We recall a definition from [21]: a Moorean autoepistemic (or MAE) wff is

one of the form α → Kα. The prototypical example [15] is the sentence ‘‘If I had a brother I would know it.’’ These can

be regarded as defaults (true instances of having a brother typically are known), or, as Moore prefers, as autoepistemic

beliefs (true instances of my having a brother are known to me). The distinction between these, important for some pur-

poses, is not critical here, so we refer to MAE wffs as defaults.

Theorem 3: If T is autoconsistent and the only proper axioms of T involving K are literals and at most one MAE

wff α0→Kα0 where α0 is a K-free sentence, then AUTO[T] is consistent.

Proof: Construct M as in the proof of Theorem 2, such that if T | /− α0 then M |=/ α0; this is easy since α0 is K-free.

Now M will satisfy the MAE wff above since either T |− α0 and so Kα0 is true in M, or T | /− α0 and so by con-

struction M |=/ α0; in either case the MAE wff is true in M. Thus M is a model for T and then also for AUTO[T] as

in the proof of Theorem 2. So AUTO[T] is consistent.

Unfortunately, we cannot guarantee AUTO[T] to be an autoextension T in the above theorem. For instance, if nei-

ther α0 nor ¬α0 is a theorem of T, then we may find both ¬Kα0 and ¬K¬α0 as theorems of AUTO[T]. But the MAE wff

and ¬Kα0 produce ¬α0, which together with ¬K¬α0 violates autoextensionality (and of course also autoconsistency). We

see this, however, not as a defect of autocircumscription, but rather as a general feature of default (or non-monotonic) rea-

soning lying outside of ignorance-testing per se.15

It is also easy to see that the restriction to one MAE default is necessary (in general). For if T has the axioms PvQ,

P→KP, Q→KQ, then AUTO[T] yields ¬KP and ¬KQ, which in turn yield ¬P and ¬Q, contradicting PvQ. While this in no

way is a comment against ¬KP and ¬KQ (they are literally true about T) it is a comment against the free use of defaults.16

15 This issue is the point of another paper, in progress, on the essentially process-oriented nature of default reasoning.



IV. Applications

A. Suppose I have the belief that I am more knowledgeable than Bill about LISP, and in particular that if I don’t

know some proposition about LISP then neither does he. Now, this will allow me to infer ¬Know(Bill,y) if I can first infer

¬Know(me,y). This is where a technical ignorance-prover will be of use. Taking Know(me,x) to be the first-order predi-

cate K(x), the autocircumscription schema will facilitate establishing that I do not know (certain cases of) y, so that useful

conclusions (Bill’s ignorance of y) can follow.

Note that this example is not contingent on, or even significantly related to, the separate issue of whether the propo-

sition y happens to be true. Nonetheless, interesting conclusions are derivable, namely that it is indeed unknown to me,

and also unknown to Bill. Also note that this allows us at the same time to recognize two competing theories about the

world: that y is true, and that y is false. While clearly we know y v ¬y already (a tautology), we do not know, without the

negative introspection that autocircumscription affords us, that either of these is a possibility, let alone both. Further rea-

soning then might lead us to accept or reject one or the other of these theories.

B. As our second example, we offer one raised by McCarthy [personal communication, 1984]: How can an agent

decide that, on the basis of all it knows, the question as to whether Ronald Reagan is (currently) standing or seated is

indeterminate? Here the K predicate together with the autocircumscription schema, solves this problem. For instance, let

an agent have the following axioms A[Seated,Standing]:

{Seated(Bill), ¬Seated(Sue), Seated(x) →← ¬Standing(x), Ronald Reagan ≠ Bill, Ronald Reagan ≠ Sue}

Then letting Zv’0.4m’0
(x) be x=Bill, and Z

1
(x) be x≠Bill, we find A[Zv’0.4m’0

,Z
1
]. But then taking P0 to be W[P0, P1]

AUTO[A] will give us ¬Z0(y) → ¬K(‘Seated(y)’), from which we get ¬K(‘Seated(Ronald Reagan)’). Similarly we can

show ¬K(‘Standing(Ronald Reagan)’). Thus both Seated(Ronald Reagan) and Standing(Ronald Reagan) have been

shown not to be provable from the axiom set A.

C. Our final example is Moore’s Brother Problem, alluded to earlier. Let us suppose that we know Fc (Carl, c, is a

friend). We postulate the MAE wff Bc → KBc (if Carl is my brother, I will know it). The aim is to be able to derive

¬KBc (I do not know Carl to be my brother) and then ¬Bc (Carl is not my brother); and indeed, more generally, ¬KBx.

16See Reiter & Criscuolo [24] and Hanks & McDermott [5] for more on interacting defaults. It would be nice not to have to make this restriction;
however, in [19] and [21] evidence is given suggesting that any formalism for default reasoning that formally represents too much of its own behavior
will face problems of inconsistency.



Thus our theory T[B,F,K] has the axioms Bc → KBc and Fc.

Note that by Theorem 3, AUTO[T] will be consistent: T is consistent and involves K only once, in a single MAE

wff applied to the sentence Bc. We show that AUTO[T] |− ¬KBx. We simply interpret Bx as always false; that is, let Z0x

be x≠x. Then T[Z0,F,K] is readily provable, and so is ¬Z0x; we get immediately ¬KBx. Consequently from the MAE wff

we find ¬Bc, and we have established that Carl is not the agent’s brother!

It would be more natural, not to mention convenient, to postulate the more general MAE wff Bx → KBx; however

Theorem 3 then does not apply since Bx has a free variable and so is not a sentence. In fact, in this case the above exam-

ple will fail with disjunctive information such as Bc v Bd. However, the failure will occur not at the stage of negative

introspection or oracle (¬KBc & ¬KBd) but at the stage of default conclusion or jump (¬Bc & ¬Bd). Of course, a case

like this flies in the face of the original default or autoepistemic belief.

V. Conclusions

Certain more specialized forms of reasoning such as defaults and auto-epistemic conclusions may be viewed as

embellishments of theory-building (proving possibility) which in turn lends itself to formalization via autocircumscrip-

tion. This will not work in every case, due to the undecidability of consistency. But perhaps most cases of interest to com-

monsense reasoning can be so handled.
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