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I. Introduction

Set theory has long been known for its phenomenal success in providing a basis for virtually all of mathemat-
ics, both in the philosophical sense of a precise foundation, and in the more prosaic sense of naturalness for defining
other mathematical concepts with minimum pain. Here we explore the idea that also in commonsense reasoning
there is a natural role for sets, although perhaps not as a basis for all such reasoning. Despite the wide variety of
knowledge representation schemes that have been proposed, set theory seems not to have been explored as a vehicle
for representing commonsense knowledge. However, John McCarthy, in his address at IJCAI-85, spoke of the possi-
ble utility of set theory in commonsense reasoning. This, we will argue, is in need of doing. We will first make
rather general remarks on the uses of sets, and then work our way toward more concrete and technical proposals in
the concluding section.

In particular, we argue that sets provide a convenient tool for the representation of meta-knowledge, in the
following way: The formalization of meta-knowledge often is undertaken via an explicit handling of syntax; for in-
stance in [Attardi&Simi 1981], [Haas 1985,1986], [McCarthy 1979], [Moore&Hendrix 1979], [Perlis 1985],
[Weyhrauch 1980]. This in turn involves the use of names for wffs, i.e., the reification or reflection We employ the
word ‘‘reflection’’ in a technical sense distinct from its standard English sense of a cognitive introspection. However,
there is an important parallel: our use provides formal counterpart to the use and mention distinction of ordinary lan-
guage, which in turn seems to be a sine qua non of introspection. To go from believing x to ‘‘reflecting’’ that one is
believing x, one turns x from a use state into a mention state, often signalled by quotation marks. It is surprising that
this very simple cognitive facility turns out to be highly non-trivial from the point of view of formalism. The term
‘‘reification’’ is more particular as I am using it: it refers specifically to the creation of a syntactic term from a predi-
cate expression. It comes from ‘‘re-ify’’: to ‘‘thing-ify’’. This is just one version of reflection, as we will see. of
wffs into terms. On the other hand, sets can be viewed as vehicles for just this very thing: A set is typically an indi-
vidual that corresponds to (or is the extension of) a given wff.

Ideas of matching up portions of a formal structure I shall refer to as ‘‘reflection principles’’. These can take
many forms. Two are of particular interest in the present discussion: (i) what we shall call ‘‘hierarchical’’ reflection,
and (ii) ‘‘universal’’ reflection. The use of hierarchies does have important uses, but so does a universal reflection
principle. Our goal here is to explore both of these and seek a way to combine them. The former refers to step-like
constructions that themselves are reflected (or reified) into concepts and thereby collections, as in the case of the clo-
sure of a constructive ordering such as the ‘‘tower’’ of blocks arising from the ‘‘on top of’’ relation. The latter is
seemingly more ambitious, in that it forms an entity out of (virtually) any concept whatsoever without concern for
its origins or possible self-referential aspects; it is more commonly called a ‘‘comprehension’’ principle.

Thus, while not totally sharp, there is a distinction between hierarchical and universal principles. Indeed, ef-
forts to date to formalize the latter in such a way as to capture the former (as would be philosophically pleasing),
have not been as successful as might have been expected. It appears this is due to the following observation: the for-
mation of hierarchical closures depends for its power on the existence of constructions in the first place, and these
seem to hinge on principles that go beyond mere universal reflection in itself. That is, universal reflection is fine, but
it doesn’t in itself provide enough concepts for the reflection process to yield every hierarchical construct we want.
A separate rule (or set of rules) defining important constructions seems needed so that reflection can use these con-
structions to generate reified hierarchies. Thus without an on-top-of operator, universal reflection will not produce a
tower of blocks.

The explicit first-order treatments of self-reference in [Feferman 1984] and [Perlis 1985] involve a kind of
universal reflection principle that reifies any wff whatsoever into a name for the wff together with an assertion that



the name bears a strong relation to the wff it names. Hence the set of wffs is matched up with a set of names of wffs,
which leads to self-reference in that a wff now may refer to its own name, or even to itself via its name. In particular,
a wff may refer to all wffs by universal quantification over names of wffs and an appropriate name-named relation
(what amounts to a truth predicate). In effect, this allows for a language in which the concept of ‘‘everything’’ is pre-
sent.

Yet as just mentioned, although ‘‘everything’’ sounds like a lot, it isn’t so much if one has few ideas about
what there is. So constructions are needed to enrich the world and give more body to ‘‘everything’’. This is where hi-
erarchical reflections come in. For example, a principle of infinity in the context of a theory of numbers amounts to
reifying or reflecting the implicit infinitude of symbols 0,1,2,... into an explicit totality N, based on the construction
‘‘plus 1’’. The well-known Zermelo-Fraenkel set theory (ZF) consists largely of such constructions. See Appendix
for the axioms of ZF .

Note that circumscription is also a kind of implicit reflection principle in that it provides a (somewhat) com-
putationally tractable means to isolate inner models of a given set of axioms. That is, a given universe is reflected in-
to itself (with respect to the axioms) so as to provide a minimal interpretation of that universe. See [McCarthy
1980,1984]. Thus what might otherwise be formalized as a meta-principle reduces, in the case of circumscription, to
first- or second-order formulas. In effect, one is saying via such formulations that the very set of axioms (all one
knows) is a totality to be taken account of in one’s reasoning. However, circumscription does this implicitly, in that
the set of axioms is not formally reified. This is equally true of other standard formalisms that aim at representing
default knowledge, for use is made of an implicit accounting of all one knows, as in Reiter’s Closed-World Assump-
tion [1978], Reiter’s Default Logic [1980], or McDermott and Doyle’s Non-Monotonic Logic [1980]. That is, there
is a strict hierarchical distance kept between the intended topic of discourse and the meta-principle of minimization
provided by circumscription.

Sets were exploited in [Perlis 1987] in an attempt to render more explicit the minimization properties of cir-
cumscription; there McCarthy’s scheme was revised to refer directly to containment properties of sets as individual
entities, including the very set of axioms with respect to which the minimization is to occur. The advantage of ex-
plicit representation is clear: the meta-knowledge that is being employed then itself can be the object of analysis. For
instance if a question should arise about the appropriateness of some prior conclusion (e.g., Tweety flies) made on
the basis of meta-knowledge (e.g., birds fly unless known otherwise), this can be reasoned about with the same tools
as for the rest of one’s reasoning. One can say that it was drawn on the basis of incomplete knowledge, or that it was
a guess, or that one’s meta-rule is not strictly true. Such considerations are elementary for us, yet formulating then
implicitly amounts to denying our formal models any corresponding commonsense about their own mechanisms.
Some particularly vexing aspects of this are described in [Perlis 1986].

Here we will be concerned with the problem of constructing theories suitable for broad-scale reifications so
that meta-knowledge can exist formally on a par with the rest of one’s knowledge. As mentioned, [Feferman 1984]
and [Perlis 1985] take steps in this direction, in that paradoxes of self-reference that can arise in such an undertak-
ing were shown to be surmountable within a first-order setting. But this left untouched the issue of strengthening the
axioms to allow powerful expression of relations between reified commonsense concepts, i.e., what are essentially
commonsense set-theoretic notions. In effect, the analogue of a truth-schema allowing self-reference is needed in a
commonsense set-theory to provide for universal sets, i.e., sets that can contain themselves. Although considered
somewhat in work of Gilmore and Feferman, this must be carried out explicitly in a commonsense setting.

The rest of our presentation is as follows: in section II we set out some very general precepts indicating areas
in which set theory might be expected to play a role; in section III we review particular axioms that appear to have
usefulness in commonsense reasoning; in section IV we extend these to hierarchical sets along lines due to Acker-
mann; in section V we observe some further desiderata (‘‘universal sets’’) that arise in the use of sets in common-
sense reasoning, and suggest a solution; and in section VI we provide some technical suggestions toward combining
the above into a single theory that has both hierarchical and universal (full reflection) features.

II. General Arguments for Sets

The usefulness of sets in mathematics surely rests on the following observation: Apart from the indivisible
units of any abstract discussion, all other entities are compound and therefore consist of structures made of other en-
tities. But structures are in essence collections of their parts, if by ‘‘parts’’ we include whatever relationships (be-
tween other parts) pertain to the given structure. Since the very notion of a relationship is readily represented in
terms of sets, the general applicability of sets to mathematics follows.

It should be pointed out that there are some areas of mathematics in which this argument falls down, specifi-
cally in precisely certain foundational considerations involving self-reference. Thus Cantor’s paradox and, more re-
cently, its analogue in category theory (the category of all categories), do not appear to have natural and satisfactory
representations in traditional set theory. Nev ertheless, the success of set theory as a basis for mathematics is impres-
sive.



We are led then to ask whether the same general considerations are likely to apply to commonsense reason-
ing. It would appear that a prima facie case could be made in the above vein: in commonsense reasoning, as in math-
ematics, an item of discussion or thought is either considered, for the moment, to be an indivisible unit, or composed
of other items, where again we view the structural relationships of such composition to be part of the compound set
description. Thus democracy might be considered by some to be a relationship between a set of persons, laws, cus-
toms.

This however hints at a deeper issue, not so persistently present in the domain of mathematics. Mathematics,
being largely synthetic, affords precise definitions agreed upon by the community of mathematicians. But common-
sense ideas, such as democracy, appear to us not so much in terms of definitions as by example, counter-example or
partial description, and even then in terms not of an underlying realm of indivisibles but in intertwined ways. This
calls to mind the qualification problem, the frame problem, and natural kinds; see [McCarthy&Hayes 1969], [Mc-
Carthy 1980], and [Drapkin&Miller&Perlis 1986]. Thus one might be given the following ‘‘definition’’:

Democracy giv es people choices as to the organization and behavior of their social structures, whereas a
dictatorship directs those structures without there being inputs or other recourse by the people.

Such a ‘‘definition’’ does not easily lend itself to the approach we are exploring here. The notions of country
and social structure appear to be as complex as that of democracy, so that it is difficult to isolate indivisibles, or even
relatively simple compounds, out of which to build a definition. The above description is perhaps best viewed as an
appeal to the listener’s experiences with these complex entities rather than as a definition in the mathematical sense.

Nevertheless, set theory seems to hold out at least two strengths for us. One is simply that even though many
aspects of commonsense reasoning may lie beyond the usual use of sets in forming definitions, other aspects remain
that do fit this traditional definitional form rather well, as we will see in later sections. The second is that whether or
not a set-theoretical definition is provided (or possible) for many terms such as democracy, still sets are enormously
useful for conceptualizing such terms. For instance, countries of the world include a number of democracies; these
are often the topic of discussion, i.e., we focus on the set of democracies, and view it as disjoint from the set of dic-
tatorships, even though we may not have a well-formed formula whose extension is usefully identified with either of
these sets. Not only is the familiar visual picture of a set as (part of) a Venn diagram an undoubtedly important one,
but also the very formation of internal expressions of any sort that can be used to collect imaginatively a variety of
entities at once for further thought. This latter phenomenon corresponds in certain respects to the set formation pro-
cess present on most set theories, often as a so-called comprehension principle. Its chief functions are two-fold: to
provide a supply of names for the totalities of interest, and to state that these names in fact name what they should.

This second use of sets, as aids in conceptualizing terms when we are not provided in advance with a precise
definition, is suggestive of the problem of inductive reasoning: a set or concept is supposed to exist, and a name is
provided for it, but beyond that only examples, counterexamples, and analogies are given. Often in fact the problem
is even harder: one is not informed of the existence of a concept worth learning, but rather is left to ferret out what
concepts might or might not exist in a given realm of experience. Set theoretically one might say that many sets ex-
ist but only a few hav e useful or succinct descriptions. The rich language that sets afford for making contrasts be-
tween other entities would seem to be useful here. For instance, entities can be contrasted in terms of which sets they
belong to, as in ‘‘Some dictatorships are supported by democracies.’’ One can picture this in the mind’s eye in terms
of overlapping sets, and the further issue readily comes to mind as well: are there many such instances?

We will not delve more deeply into this particular line of thought here. Our purpose in this section is to sim-
ply delineate some plausible considerations for further thought. In what follows we turn instead to areas where we
are able to present more technical arguments as to the usefulness of sets on commonsense reasoning.

III. A first attempt at a commonsense set theory

In [Perlis 1987] we proposed an axiom schema in a first attempt at formalizing a naive set theory, CST0

(‘‘Commonsense Set Theory’’), with the caveat that additional axioms will be needed for more sophisticated appli-
cations. We quickly review CST0 here for comparison with more ambitious theories we will study. CST0 is noncom-
mittal with regard to hierarchies or universal reflection. That is, it does not have an axiom of universal reflection,
and yet it does not specify hierarchies either except in a very weak sense, much like circumscription, simply by fo-
cussing on a fixed domain of discourse from above.

The most important notion to axiomatize is that of set formation. This also is perhaps the subtlest axiom of
the standard versions of formal set theory, since care must be taken to avoid Russell’s paradox. It appears that certain
aspects of commonsense reasoning actually require a very strong axiom of set formation. However, in CST0 we
confine our attention to very limited kinds of set formation.

The choice for a set formation axiom in CST0 is a weak version of the Aussonderungs axiom of ZF set theo-
ry, and indeed is equivalent to adopting a second-order theory over a ‘‘set’’ of individuals. Namely, we postulate:



(y)(x)(x ∈y→← φ (x)&Ind(x))

where φ is any formula and Ind is a predicate symbol with the intended extension of ‘‘individuals’’. I.e., this is really
a schema, saying intuitively that for any formula φ, there is a set consisting of all individuals having the property φ.
Here individuals are whatever one wants them to be, Within reason. Letting all entities be individuals allows Rus-
sell’s paradox back in the door; we either explicitly restrict the intended range of Ind, or simply observe that not ev-
erything is an individual (which in any case is provable by attempting to form the paradox). so that CST0 can be ap-
plied in a broad range of situations. It was shown in [Perlis 1987] that this works nicely in conjunction with (first-
order) circumscription to produce intuitively correct answers in situations that may be awkward or impossible for
(second-order) circumscription alone. Now in CST0 we can establish many familiar set-theoretic notions. For in-
stance, the wff x∈s & x∈t for φ(x) in the above schema guarantees the existence of a set y that is the intersection of
(the Individuals of) s and t. Many other such constructions follow in like fashion. Absent however, is the key notion
that a set is defined by its elements, i.e., the notion of extensionality, which says that two sets are equal if they hav e
the same elements. Although we could include this as an axiom of CST0, we will not for now, as this issue will arise
in a more technical setting shortly.

[Perlis 1987] points out a further objection to CST0, namely that the richness of Ind is a critical matter in
many situations, so that a theory guaranteeing a hierarchical extension for Ind is desirable. In fact, the suggestion
was made of incorporating ZF wholesale into CST0. Now we wish to discuss whether this is reasonable for a com-
monsense theory of sets, and also what further set-theoretic notions may be useful in this regard.

IV. Hierarchical Set Formation

Instead of arguing directly that ZF constructions such as power sets and infinite sets are needed for common-
sense, we instead take a more basic approach, inquiring into general principles about set formation that have such a
fundamental nature as to be difficult to exclude from ordinary reasoning. Let us begin by considering whether an in-
tuitive set but powerful theory can be devised on the basis of CST0, in which we experiment with the Ind predicate.
One’s initial impulse might be to allow everything to be an individual, but this leads immediately to Russell’s para-
dox. So the question arises, just which things can be individuals? Consider again Aussonderungs:

(y)(x)(x ∈y→← φ (x)&Ind(x))

This guarantees us the existence of a ‘‘class’’ y that contains all individuals satisfying φ. But we are not told whether
y itself is an individual, and that is the whole difficulty. Clearly, for example, if φ refers to Ind itself then y may be
‘‘too large’’ to be an individual. But suppose that φ does not refer to Ind (does not contain the predicate symbol Ind).
Then when is it reasonable to have Ind(y)? More generally, when is it reasonable for all ‘‘things’’ satisfying φ to
form a collection that itself is an individual?

Since we are discussing individuals here as things constructed out of previously constructed things, let us use
the notation HC (for hierarchical construct) Often the phrase ‘‘cumulative hierarchy’’ is used for the class of such
constructs. instead of Ind. That is, HC(x) has intuitive interpretation of ‘‘x can be built up as a collection from previ-
ously obtained entities’’. We reserve Ind, vaguely, for any entity we wish to regard as part of a totality, whether or
not built up constructively. Thus a column of blocks is a hierarchical construct, as is a wall of columns, a room of
walls, etc. We ask the question: what is it that allows certain φ-things to be so collected from below? The obvious an-
swer is that all φ-things are already hierarchical. Once all blocks are granted to be HC’s, a column of blocks can be
collected into a new HC; and once columns are thus made into HC’s, they can be collected in turn.

Ackermann [1956] has provided a very streamlined set theory A based on a schema that can be seen as ele-
vating this notion into a formal principle, which we formulate here in terms of our predicate HC:

HC(y1)&. . . &HC(yn)&(x)(φ (x)→HC(x)) . →. (z)[HC(z)&(x)(x ∈z→←φ (x))]

for all φ not containing the symbol HC and having free variables among x, y1, ..., yn. Ackermann’s full theory in-
cludes as well the axiom of transitive completeness of HC That is, all elements of elements of HC, and all subsets of
HC, are themselves elements of HC. extensionality (for all sets, not only those in HC), and a comprehension princi-
ple like that of CST0 except for HC instead of for Ind.

The biconditional subformula of the above schema supplies a rich variety of collections which may or may
not be well-behaved enough to be among the hierarchical constructs HC. The remaining portion of the schema to its
right gives a further condition sufficient for such a collection to in fact be in the hierarchy. Note that intuitively this
tells us that if we are thinking of a property φ, and if φ is not self-referential (well-behaved with respect to previous-
ly-collected entities) then it makes sense to speak of φ as a finished thing, i.e., reified into an existing hierarchy of
discourse. In particular, A guarantees a very rich domain of individuals as described in [Perlis 1987]: given blocks, it
will generate towers of blocks, walls of towers, rooms of walls, buildings of rooms, cities of buildings, etc. Again,
we can easily form many familiar set constructions, such as intersections and powers, simply by choosing the appro-
priate wff for φ. But now there is an added feature, namely, the results of such choices are sets in HC ! So we get an



ev er-expanding supply of new sets in the hierarchy. While this is interesting, the real significance is that these new
sets, being in HC, then are fodder for another round of application of the schema. Thus A becomes quite a powerful
tool. Let us use the name CST1 for the theory consisting of the above version of Ackermann’s schema together with
CST0 and the axiom HC(x) → Ind(x).

I propose that CST1 captures the intuitive sense of collecting previously gotten individuals into a new indi-
vidual, in a way appropriate to commonsense reasoning. However, experience with set-theoretic paradoxes shows us
that we should be cautious about adopting new axioms. Nevertheless, in this case we are on safe ground. It has been
shown by Levy [1959] that Ackermann’s theory A is consistent relative to ZF. Indeed, results of Levy and of Rein-
hardt [1970] show that when combined with a further axiom (Regularity), See Appendix. A is strongly equivalent to
ZF ! Although there are important differences. For one thing, ZF was devised principally as a foundation for every-
day mathematics, while A seems to have served largely as a spring-board to large cardinals, as in [Perlis 1972] and
[Reinhardt 1974]. In fact, A is usually motivated in terms of a reflection principle concerning the universe of classes:
that the class HC of sets reflects all ‘‘HC-free describable’’ properties of the universe. In this respect it resembles
circumscription; and it also is only a hierarchical reflection, in that one is forbidden to reflect the extension of HC it-
self; the treatment exploits hierarchies to the utmost but does not tread beyond that into self-reference or full reflec-
tion of all properties. Thus whether or not infinite sets, power sets, and so on, are explicitly asserted, they are conse-
quences of Ackermann’s ‘‘collection-principle’’.

Theorem: CST1 is consistent (relative to ZF).
Proof: We know from Levy that A is consistent (relative to ZF). But CST1 is consistent relative to A, since we can
interpret Ind to be HC and then any model of A will be one of CST1 as well.

Have we then found in CST1 the commonsense set theory sought? While it does bear on issues, such as the
acceptability of ZF-style axioms, and while it certainly is powerful in that it supplies a very rich interpretation for
HC, it unfortunately suffers from being totally hierarchical That is, Ind is given no teeth to distinguish it from HC,
although that possibility is left open. and so does not provide for a set that can contain itself. This latter phe-
nomenon however is critical for explicit representation of meta-knowledge, and corresponds to the concerns ad-
dressed in [Feferman 1984] and [Perlis 1985]. We consider this in the following section.

V. Difficulties and possibilities

Here we argue that a much stronger set theory is needed for commonsense reasoning, and that a plausible ap-
proach is possible on the basis of ideas in [Feferman 1984] and [Perlis 1985]. The theory CST1 developed above is
useful in situations involving ‘‘levels’’ of sets, i.e., sets of sets or of individuals. But for many purposes this is insuf-
ficient. For instance, if people are viewed as individual elements, then organizations can be viewed as (or associated
with) Of course, organizations are more complex than mere collections of individual members. sets of individuals,
e.g., the Boy Scouts of America (BSA) as the set of boy scouts; and then non-profit organizations together form (or
can be associated with) a set of such sets. Such situations can be reasonably expressed in CST1. Howev er, the situa-
tion can be even more complicated. For we can imagine an organization consisting of (or having as members) vari-
ous non-profit organizations (say, The Non-Profit Organizations of America, or NPOA), itself also being a non-profit
organization. It is then reasonable to consider that NPOA might be one of its own member organizations. Although
it might appear to be an unexpected event, it is not outright impossible nor even without conceivable practicality.
(For instance, NPOA might benefit by law from being a member of a non-profit organization.)

It is therefore appropriate to view the expression of such a possibility as part of commonsense reasoning, and
to require a formal language for such reasoning to allow such expressions. This however can lead into the treacher-
ous waters of Russell’s paradox. A similar issue was addressed in [Feferman 1984] and [Perlis 1985], in which it
was found that a suitably arranged treatment of self-reference can be both powerful and consistent. This suggests the
following approach.

We propose a theory, which we shall call GK (‘‘Gilmore-Kripke set theory’’). Much the same theory is
called PST´ by Gilmore, and CA+/− by Feferman. One (inessential) difference is that these latter employ two mem-
bership notions, corresponding to a∈[b] and a∈[¬b] in GK. GK has the following axiom schema, where each wff
α(x) has a corresponding reification (name) [α(x)] with variables free as in α and distinguished variable x:

y∈[α (x)]→←α * (y)

Here y does not appear in α and the * operator is a short-hand for the result of first writing all → symbols in terms of
& and ¬, then passing negations in α through to predicate letters, and finally replacing each occurrence of a subfor-
mula ¬a∈[b] in the result by a∈[¬b]. (This corresponds exactly to the schema True([α]) →← α* Recall from [Perlis
1985] that the sole function there of the * is to interchange ¬ and True when they occur suitably juxtaposed in α. as
given in [Perlis 1985], so that we have here a set theory based on a theory of truth.) We also include in GK the defi-
nitional axiom

Equiv: s ≈ t→←(x)(x ∈s→←x ∈t)



which provides notation to express when two names correspond to the same underlying collection.

There is the immediate question as to whether GK is consistent, for it is not obvious that GK can be viewed
as a subtheory of a standard set theory such as ZF. Howev er, here our worries can be laid to rest:

Theorem: GK is consistent (relative to ZF).
Proof: GK is simply a version of the theory of truth given in [Perlis 1985], which was proven there to be consistent
(using methods easily formalized in ZF).

In fact, CST1 together with the axiom of regularity can prove consistency of GK, so that in some sense GK is
a weaker theory; but this is illusory, for GK embodies principles not provable in CST1, as we shall see in the next
section. Once more, the theory in question (GK) allows many familiar results to be established, such as the exis-
tence of intersections. However, a new twist occurs, that has features difficult to incorporate into a familiar setting,
and this is due to the self-reference that is allowed. For now, certain constructions must be handled (automatically by
GK) in a way that prevents Russell’s Paradox, and this has the consequence of allowing sets to exist that nonetheless
do not behave as expected. One severe instance is that of the power set. Although we can define what seems to be the
power set p of a set t, using the wff (x)(x∈z → x∈ t) for φ(z), p still may not in fact contain all subsets of t since this
depends on the * of φ rather than simply φ itself. In cases where these are the same (as will happen for ‘‘ordinary’’
sets) we do get p being the full power set of t; but in other cases, there may be no set which is exactly the power set,
and p as *-power set may be the best we can do. Another odd feature of GK is that it deals not with sets per se but
with names of sets, or attributes, so that extensionality fails. This we address more later.

An example

Suppose we are given a  predicate NP(x) for non-profit organizations x. Then the existence of the collection
of non-profit organizations follows automatically from GK. For we simply take that very predicate expression and
reify it: [NP(x)]. It is a name, of which GK formally asserts that it applies to (or has as members) those organiza-
tions that satisfy NP: y∈[NP(x)] →← NP(y). We hav e left off the * operator here since we have taken NP to be
atomic and not explicitly involving the notion of truth or membership. Now, whether or not this new entity [NP(x)]
itself corresponds to an organization (which then may or may not itself be non-profit) is not a matter for logic to de-
cide; it is contingent on events of the world. However, it provides us with the concept of such a collection, and from
there an enterprising organizer might try to convince others that such an idealization would be useful in practice.
Discussions that might ensue would involve serious talk about properties of [NP(x)] in its ideal as well as potential-
ly organizational states.

Suppose now that an organization with the name NPOA has been created and that many (and only) non-profit
organizations have become members. We may have reason to suppose that, by and large, NP(x) → x∈NPOA. Let us
treat this as a default rule, so that a non-profit organization is assumed to belong to NPOA unless known otherwise.
Under plausible conditions, we can actually prove (without risking inconsistency or paradox) that NPOA∈NPOA. Of
course, we will not be shocked if we learn that this is not the case; yet we should be able to see when our axioms
have this implication. The theory ORG will now be formalized out of the above precepts for organizations, among
others.

If we further take as a default that an organization is profit-making unless known otherwise, it is reasonable
to inquire whether circumscription can produce the intuitively correct conclusions. But General Motors (GM) is not
known to be a member of a profit-making organization, nor is it known to be non-profit, so by default we wish to as-
sume it is for-profit. Circumscribing non-profit should do the trick. Since we will already consider the circumcrip-
tion of NP(x) & x ∈/ NPOA for the first default above, there is no need for a further (multiple) circumscription to
achieve this second goal as well.

Specifically, let ORG have the following axioms:

NP(x)&x ∈y. →NP(y)
Let us suppose by legal definition any member organization of a profit-making organization is itself a profit-making
organization. For instance, if BSA is non-profit and a member of NPOA, then so is NPOA non-profit.

NP(BSA)
BSA∈NPOA

¬GM ∈NPOA

Let CIRC be first-order formula circumscription of the formula NP(x) & x ∈/ NPOA with respect to ORG. Then the
following are readily established in GK+ORG+CIRC:

NPOA∈NPOA.
This we obtain by first deriving NP(NPOA), and then using the wff x=NPOA v x=BSA in the circumscriptive



schema.

¬NP(GM).
Now this follows from the same circumscription, since it can be proven that GM ≠ NPOA and GM ≠ BSA.

VI. A Proposed Synthesis

Finally we wish to suggest a synthesis of a universal (reflection) theory a la Gilmore-Kripke and a hierarchi-
cal theory a la Ackermann. This we shall call CST2; its axioms consist of those of GK together with:



Ext1: ext s = ext t →← s ≈ t
Ext2: s ≈ ext s

Ext3: z∈HC→(w)(z = ext w)
Aext: y1, . . . , yn ∈HC&(x)(φ x→x ∈HC) . →. ext[φ ]∈HC&(x)(x ∈[φ ]→←φ (x))

We take the notational liberty of using HC both as predicate and as term.

Here Aext and Ext1-3 provide extensional constructions i.e., collections determined solely by their members.
while still further sorts of collections are permitted as well due to GK’s contribution. The two formations are related,
since a collection formed as an extension of a formula φ a la GK could turn out to have as well a hierarchical con-
struction in which case the name given it by GK should be related to the latter. This is provided in Aext , specifically,
by the presence of [φ] and ext [φ]. That is, whereas GK is essentially name-oriented, HC has the intended orientation
of underlying sets rather than their names. So ext [φ] is the underlying set corresponding to [φ]. It is as if someone
(in the role of GK) postulates an abstract entity, and someone else (in the role of Aext) shows that it is concretely pre-
sent. This is indeed a familiar form of rational experience, both in scientific investigations and also in everyday de-
liberations. Put differently, GK provides a sort of philosophical architecture, and Aext some constructive engineering
techniques, for sets.

The following now are easily established:

Lemma: CST2 |-- (ext s ≈ ext t) .→←. (ext s = ext t) .→←. (s ≈ t)
Proof: The second →← equivalence is simply axiom Ext1. For the first →← equivalence, suppose the left-hand side.
Then if z∈ext s, we also have (by definition of ≈ ) z∈ext t, and conversely, hence the right-hand side holds. The oth-
er direction follows immediately from the usual first-order axioms of equality.

Theorem: CST2 |-- (x ∈HC)(y∈HC)(x ≈ y →← x = y)
Proof: By axiom Ext3, every element of HC is itself an extension, and by Ext1, extensions are determined solely by
their members. So, extensionally equivalent elements of HC are equal. More formally, if x=y then we have x ≈ y as
in the Lemma, from axioms of equality. Conversely, if x ≈ y, then ext x = ext y from Ext1; but from Ext3, we have x
= ext u and y = ext v for some u and v, so ext ext u = ext ext v. But from the Lemma we then find ext u = ext v, i.e.,
x=y.

Thus in HC we have a universe of sets not unlike the classical sets of everyday mathematics, in which set-
hood is determined solely by abstraction (extension) rather than by name (intension). This has close ties to common-
sense in that we dance a fine line between intensions and extensions in our reasoning, as witness the famous de dic-
to/de re distinction.

We hav e not specified CST2 as an extension of CST1; howev er, this is not an oversight, since each instance of
the schema of CST1 is easily proven in CST2. Thus CST1 is a subtheory of CST2. The (relative) consistency of CST2

is an open question. It would appear that a model a la Gilmore/Kripke built on top of a model for A ought to show
CST2 consistent relative to A; this would however inv olve linking two notions of membership: that of A and that of
the GK-extension of A.

It would be premature to make grand claims for CST2. Howev er, I hope to have illustrated that set theory has
a role to play in commonsense reasoning, and that it will be a fairly sophisticated one, rivaling the best current foun-
dational theories of sets in mathematical logic. This should be no surprise. The (set-theoretic) foundations of mathe-
matical logic are deeply and appropriately tied to the philosophy of reasoning in general.
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Appendix: The axioms of Zermelo-Fraenkel set theory.

1. Extensionality: (z)(z∈x →← z∈y)→x = y

2. Regularity or Foundation: (y)(y∈x) → (y)(y∈x&¬(z)(z∈x&z∈y)))

3. Aussonderungs or Subset schema: (z)(y)(x)(x ∈y →← x ∈z&φ (x)))

4. Power set: (y)(x)(x ∈y →← (z)(z∈x→z∈w))

5. Infinity:
(w)(y)[¬y∈w & (x)(x ∈w → (z)(z∈w & (u)(u∈z →← u = x or u∈x)))]

6. Replacement schema:
(x)(y)(z)(φ (x, y)&φ (x, z) → y = z) . →. (w)(y)(y∈w→←(x)(x ∈s & φ (x, y)))

7. Sum or Union set: (y)(x)(x ∈y→←(z)(x ∈z & z∈w))

8. Empty set: (y)(x)¬x ∈y

9. Pair set: (y)(x)(x ∈y →← x = s or x = t)

Axioms 7, 8, and 9 are redundant, i.e., they follow from 1-6. Moreover, the concepts (and vast bulk of re-
sults) of modern mathematics are definable (or provable) in ZF . See [Shoenfield 1967] for a concise development of
some basic notions, and [Drake 1974] for general background on set theory related to large cardinals. One further
‘‘axiom’’ often employed together with ZF is the axiom of choice. This has important uses in mathematics and log-
ic. Its significance for commonsense is unclear.
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