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ABSTRACT 
Negative results of Montague and Thomason have diverted research in propositional attitudes away 
from syntactic ("first-order") approaches, encouraging modal formalisms instead, especially in 
representing epistemic notions. We show that modal logics are on no firmer ground than first-order 
ones when equally endowed with substitutive self-reference. Nonetheless, there may still be remedies, 
hinging in part upon a distinction between "dynamic" and "static" notions of provability and belief 
(an earlier version of this paper emphasized a somewhat different distinction). 

Introduction 

The focal point  of  this investigation is a result of  Montague  [23], whose 
cus tomary  in terpreta t ion as an a rgument  in favor  of  modal  logics for belief and 
knowledge  as opposed  to a classical first-order approach ,  I challenge. (For  
o ther  responses  to Montague ,  see [1 ,4 ,  33].) I shall argue that  modal  logics are 
on no firmer g round  than first-order logics when equally endowed  with 
substitutive self-reference.  Bo th  modal  and first-order t rea tments  of  knowledge  
and belief for  commonsense  reasoning can readily lead to inconsistencies. Yet 
there still may  be remedies ,  depending  on the part icular  forms of  commonsen -  
se reasoning (and specifically of  auto-epis temic reasoning)  cons ide red)  

Let  us write Bel(x) and Know(x)  to indicate that  x is believed, respectively 
known,  by an implicit agent  g. The  syntactic status of  x is one  of  the issues to 
be addressed.  If  Bel and Know are predicate  symbols,  then x is an ordinary  
first-order term which in part icular  may be the name  of  a sentence.  2 On the 

* This is a sequel to the paper "Languages with Self-Reference I: Foundations", Artificial 
Intelligence 25(3) (1985) 301-322. 

An earlier version of this paper [30] proposed remedies along somewhat different lines, that I 
now feel to be of less generality and usefulness. 

2 See [21] for an early call for naming, or reification, in AI. 
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other hand, if Bel and Know are modal operators ,  then x will be a well-formed 
formula. In [26, 28] it was suggested that for an intelligent reasoner g, a 
self-referential language is desirable in order to represent (to g itself) such 
notions as that g has a false belief. We may write, for instance, 

(3x)(Bel(x)  & -TTrue(x)) . 

But if this very wff is a belief of g, then it too can serve (either in quoted 
first-order form, or in f o r m u l a - - m o d a l - - f o r m )  as an argument within another  
belief formula. I have contended [28] that this is such a basic aspect of 
language and thought that any reasonable representational mechanism for 
commonsense reasoning must include facilities for expression of self-reference 
and syntactic substitutions. We will see that this has significant consequences 
regarding consistency and modal treatments,  in that apparent  advantages of the 
latter over nonmodal  ("syntact ic")  ones disappear in the presence of self- 
reference. 

Now, the theorems of a proposed theory S for beliefs of an agent g can be 
viewed as themselves being the conclusions held by g, so that S is thought of as 
g 's  own reasoning context. Alternatively S can be viewed as the theory of 
someone,  h, other than g, who is reasoning about  g's conclusions. In the 
former case, g will be able to reason about g 's  own conclusions, and in the 
latter h may reason about g 's  reasoning about g 's  own conclusions. Of  course, 
even more complex scenarios are possible, and have been considered in the 
literature, e.g., [4, 8, 14, 16, 19, 39]. In any case, such conclusions by g amount  
to beliefs of g. This will play a key role in our analysis. 

A variety of theories has been considered for the study of belief and 
knowledge, many of them modal. $5, to be presented below, is perhaps the 
most famous of these. For now, 1 simply observe that $5 and other similar 
theories (modal or classical first-order) are very limited as theories of epistemic 
behavior of intelligent agents. In effect, they view knowledge (or belief) fixed 
once and for all in a timeless world; there are no processes, no mistakes, no 
guesses, no decisions, no plans, no goals, no new information. This is un- 
derstandable: the idea here and elsewhere in formal studies has been to get a 
simple view right first, before turning to the complexities of real reasoning. 

Still, the thrust of these theories has been one of deduction, that is, of 
additional beliefs an agent should come to, given certain original beliefs. There  
is in this an underlying, if not explicit, notion of process. While at times such 
complexities can be safely ignored for the sake of simplicity of analysis, at 
other times the very analysis can be impeded by such limitations. The more 
complex problem of real-time on-going reasoning actually suggests key ideas 
about the nature of knowledge and belief that cannot easily be seen from the 
more restricted idealized view. This will emerge in Sections 6 and 7. While we 
will not here endorse an explicitly process-oriented formalization of knowledge 
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and belief, the underlying idea of process will serve in our analyses. Key to this 
is the idea that an agent 's  set of beliefs may change over time. 

Montague and Thomason  showed that certain apparently plausible formali- 
zations of the concepts of knowledge and belief have turned out to be 
internally inconsistent. I will recall some of these results here, and supply still 
more.  Does  this mean we must surrender formalism altogether,  and look only 
at heuristic algorithms? I do not think so. Some of our results (Theorems 6.2 
and 7.2) and an Open Problem point in directions that may be fruitful. What  
perhaps should be concluded is that timeless approaches may not be a good 
way to study knowledge and belief, or at least that timeless theories should be 
formulated with an eye to an underlying temporal  f ramework.  

My examination of formalizations of the propositional attitudes of belief and 
knowledge will lead to a distinction between two rather different kinds of 
theory I shall call "static" and "dynamic ."  To offer a brief preview, I call 
attention to the highly introspective feature present in theories of belief and 
knowledge. These are, largely, theories of sel f-bel ief  and se l f -knowledge .  That  
is, reasoning is specified so as to allow conclusions like Bel ~ or Know a from 
already having concluded ~, and so on, in a succession of " layers ."  This 
layering however has been collapsed in most formalisms into a single flattened 
sea of conclusions. In the next section, I indicate in intuitive terms why this is 
suspect in general. Later  sections give technical difficulties and potential  
solutions still within a flattened context. Roughly, dynamic theories, although 
flattened, are devised to take account of the (implicit) layers in a way congenial 
to commonsense reasoning, while static theories are not. 

To set the stage for the rest of this paper ,  I briefly comment  on the nature of 
knowledge and how it contrasts with that of belief. Indeed,  the differences 
seem striking. Whereas  knowledge is firmly tied to the notion of truth (as 
evidenced in the first-order schema K n o w ( ' a ' ) - +  ~), that of belief is another  
mat ter  entirely. In fact, knowledge has at times been characterized as simply 
true belief (or alternatively as justified true belief; but see [11]). In any case, 
there need be no presumption at all in agent h that a sentence believed by 
agent g is for that reason true. It may be true or false, and h 's  calling a 
sentence o- a belief of g distinctly raises the possibility of ~r being false. That is 
not to say, however,  that the agent g believing the sentence ~r regards cr as 
anything but true. 

Here  I am taking the word "bel ief"  in the (admittedly imprecise) sense of g 's  
very definitely believing o- to be true, rather than merely suspecting o- to be 
true (as in " I  believe so") .  It may seem advisable to regard the beliefs of an 
agent g as simply some set or other of wffs. For some purposes this is too lax 
an approach;  see [29] for a suggested narrowing of the definition of belief. 
However ,  as with knowledge, much of the literature has tended to treat belief 
as obeying very stringent " ideal"  conditions such as logical omniscience (for 
example,  obeying Bel(a--~/3)---~(Bel ~- -~Bel /3) ) .  It is this approach that I 
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will explore here. (See [6-8, 17, 19, 26, 27] for exceptions.) We will find that 
many such approaches lead to inconsistencies, but eventually find others that 
are more promising. 

The remainder  of the paper  addresses the following topics: Section 1 
presents a sketch of the underlying intuitions motivating my analysis of 
introspective reasoning, which will crop up at a technical level again toward the 
end of the paper.  Then Section 2 briefly reviews the importance of self- 
reference in eommonsense reasoning, in particular with regard to formal 
substitution. In Section 3 general troubles with paradoxes of substitutive 
self-reference are reviewed, and modified consistent substitution-assertion rules 
are given based on [10, 28]. Then Section 4 reviews modal logics and prob- 
lematic aspects of first-order analogues of modal logics for knowledge and 
belief in the presence of substitution /~ la Montague and Thomason,  and in 
Section 5 we see that modal logics in the presence of substitution are 
problematic as well. 3 In Section 6 these problems are studied in terms of formal 
provability, providing a consistent static theory STAT of belief and knowledge; 
and in Section 7 a result of L6b as well as an example of Moore lead us to the 
aforementioned distinction between dynamic and static notions of provability 
and belief and suggest a dynamic theory DYNA.  Then in Section 8, I 
summarize and suggest where more attention may be needed. 

1. Flattened Layers of Introspection 

Smith [34, p. 40] tells us "Perfect  self-knowledge is obviously i m p o s s i b l e . . .  
The self can never be viewed in its entirely, because there is no place to 
s t and- -no  vantage point from which to look."  In terms of our earlier remarks,  
the "obviously" here may mean that at best one can look back at ones 
"ent i re ty"  of a time prior to the present.  There  are layers of time to the 
phenomena  of deduction and introspection. Flattening the layers into one is an 
enticing formal device, but a problematic one, whose only apparent  usefulness 
is greater ease of study. But certain features of reasoning may persist invariant 
over layers and these may then be "f lat tenable,"  without the problems ~ that 
can beset this formal simplification. This is the issue addressed in this paper,  
and motivated in the rest of Section 1. 

Example 1.1. If g 's  beliefs do satisfy some condition C, is it not reasonable for 

3 I caution the reader that this paper focuses principally on first-order modal logics rather than 
propositional ones, since we are interested in studying how self-reference is handled, and for this, 
quantification is needed, although the form that quantification takes is not necessarily that of 
first-order logic; see Theorem 5.3 and associated discussion. 

Compare [29] for a related use of problematic self-knowledge. 
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g to (come to) believe C itself? Yes and no. It may be that in coming to believe 
C, g ' s  beliefs change in ways that may invalidate certain conditions, even C! As 
a simple example,  if g has (initially) only two beliefs, A and B, then it is a fact, 
C, that g has only two beliefs. But if g then comes to believe this fact C about 
itself, it thereby ceases to have only two for it has now come by a third, C, 
which is therefore no longer true. On the other hand, if C were instead the fact 
of having at least two beliefs (rather than only two), then g 's  coming to believe 
C would not render C false. 

Moreover ,  it seems clear that not all beliefs of an agent g should remain 
believed as new statements become believed. An obvious example is that the 
belief ~ B e l / 3  ("/3 is not one of my beliefs") should not remain if/3 comes to 
be believed. This is an example of what we can loosely regard as a local 
perturbation on g 's  belief set S. That  is, many beliefs are contingent on small 
details, and can easily change. 

Certain other beliefs, however,  seem to be of more permanent  character,  
such as 

Bel(c~ ~/3)---> (Bel c~ ~ B e l / 3 ) ,  

which asserts a global feature of g 's  reasoning processes. Of  course, such a 
belief need not be true, or remain true over time. But it is perhaps plausible 
that some such general beliefs might remain true (for g) over  a long period, 
and that g might come to believe those. 

Herein lies the risk: will g 's  coming to believe a general belief y about its 
very set of beliefs, alter that set in such a way that y no longer holds, or so that 
it contradicts other beliefs of g? As with Example  1.1, it depends on y. We will 
be concerned here to outline some broad categories of y. But one thing we do 
want, is to be able to make local perturbations without thereby being forced to 
alter whatever  global beliefs are held. Coming to believe /3 should not force 
giving up, say, Bel(~-->/3)---~ (Bel c~---~ Bel /3) .  Theories that tend to respect 
this requirement  we call dynamic; ones that do not leave such global wffs 
inv~riant under local perturbat ions we call static. 5 

Another  approach would be to openly embrace a hierarchy of theories, each 
looking back into the previous one. This latter suggestion we will not explore 
further here, although it is one that deserves attention (see [6, 9, 17, 29]). In 
this paper  we will confine attention to single (flattened, ideal) theories of 
knowledge and belief, to see whether  any can be made to avoid the kinds of 
difficulties mentioned.  

We will not be able to give necessary and sufficient conditions defining these terms. Neverthe- 
less, they will serve our needs in directing our analysis and reformulation of various theories. 
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2. Self-Reference as a Principal of  Language and Thought 

In [26] the term syntaxal was used to describe languages having terms 
represent ing the syntactic features of  that  same language,  the idea being that 
such self-descriptive power  is essential for many  purposes  within natural 
language and commonsense  reasoning. Rieger  [32] uses the term reference- 
ability for a similar not ion,  namely,  that  it is of ten impor tant  to reason (and 
communica te)  about  a part icular  feature of  an ut terance,  viz., "Tha t  you said 
howdy struck me as unusual . "  Here  elements  of  speech themselves are being 
referenced;  for this some device is needed in a formalization.  The quota t ion  
mechanisms presented in [10, 26, 28] are a possibility. An  alternative device is 
found in modal  logic, in which formulas  (if not  arbitrary expressions) are 
allowed to be operands  to o ther  expressions. One  of  our  concerns here will be 
to contrast  these approaches .  ~ 

We will use the expression "self-referential"  as a gloss for either of  these 
concepts  (referenceabil i ty and syntaxali ty),  noting that this leaves open  
whether  all syntax is to be available for reference,  as opposed ,  say, to whole 
formulas  alone,  or  o ther  aspects of  language.  This ambiguity will serve our  
needs, however ,  when we consider the alternatives of  modal  and first-order 
languages.  

A further  feature of  natural  language,  and one that effective self-reference 
appears  to hinge upon,  is that of  substitutivity. By this I mean  the ability to 
refer to the result of  making alterations in a s ta tement ,  such as " I f  you had said 
John is here instead of  Mr. Smith is here, I would have unders tood  who you 
mean t . "  The ability to form and compare  such variations on our  ut terances is 
so e lementary  and fundamenta l  to our  use of  language,  that  it is hard to 
imagine taking seriously any proposed  formal language for a mechanical  
version of  natural  language processing that does not have a cor responding  
facility. Indeed ,  it seems t an tamount  to the ability to represent  the very fact 
that  language involves using symbols (e.g. John) to stand for o ther  entities 
(e.g., John himself),  as in " Y o u  used Mr. Smith to refer to J o h n . "  Modal  logic 
(as well as first-order logic) is in general b road  enough  to allow expression of  
such notions (if desired).  

However ,  individual substitutions are not  enough,  as already suggested 
above in contrast ing John and John.  The  very concept  of  substitution should be 
expressible, as in " I f  the subject  is made  plural, the verb should be also, so that  
if people is substi tuted for person as subject  of  a sentence or, then the verb 

Boolos [2] and Smorynski [35] deal with another point of contact between self-reference and 
modal logic, namely, the use of a modal operator for the provability relation, and the correspond- 
ing treatment of self-reference as it derives from G6del's Incompleteness Theorem [13]. This has 
connections with the present work, in that provability is one plausible model for a belief predicate 
as treated here; however, our focus is on surmounting certain paradoxes related to belief and 
knowledge rather than studying provability per se. See Section 6 below. 
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should be changed to its plural fo rm."  That  is, the expression o- that is 
undergoing internal changes is not specified in detail, for a general rule is being 
given. This means that variables are needed to refer to expressions in the 
language. This amounts  to little more than the ability to recognize symbolic 
strings, and so is not a computationally unreasonable condition to place on a 
language. Now here a modal logic in its usual form may need to be extended to 
allow variables for this purpose,  whereas first-order logic does not require such 
modification. 

Our  starting point then is the contention that giving up such substitutions 
would be an unrealistic simplification of any formal language for commonsense  
reasoning. This would be analogous to a reasoning system g that behaves as 
follows: First, g makes  assertion A and then is asked why it chose to make that 
particular assertion, instead, say, of a similar one with " John"  used instead of 
"Mr.  Smith."  But g, having no concept of making a particular assertion made 
up of elements of some language, let alone of altering those elements,  simply 
fails to comprehend what is asked of it. Of  course, the design of full-fledged 
reasoning techniques to deal with such cases may involve many things; I 
contend however  that an adequate t reatment  of self-referential substitution is 
one of them. Thus before turning to specific aspects of belief and knowledge, I 
explore some aspects of substitutive self-reference in first-order and modal 
logics. 

3. Preliminary Results 

We shall call a theory (over a language L)  with mechanisms for expressing and 
asserting substitutions unqualifiedly substitutive. The hallmark of an unqual- 
ifiedly substitutive language is that it possseses an opera tor  or predicate 
Sub(P, Q, a, n) directly • 7 asserting the result of substituting in an expression P 
the expression Q for the nth occurrence of the subexpression a. I .e. ,  if 
P[Q/a, n] is the expression that results from the indicated substitution, then 
we are requiring Sub(P, Q, a, n) to be provably equivalent to P[Q/a, n]. Note 
that Sub here is to be an actual symbol (predicate or otherwise) of L, while 
P[Q/a, n] is a meta-notat ion denoting some actual expression of L, namely the 
one resulting from the actual performance of the substitution. Of  course, for 
the above-ment ioned equivalence to be meaningful, the substitution must 
result in a well-formed formula of L. 

It turns out that for the applications to be pursued here, a rather special 
variation on the Sub opera tor  is required, namely one in which the substitution 
of Q for a in P be performed for precisely all occurrences of a in P except the 

7 That is, Sub(.) is to behave intuitively as if it were True(sub(-)) where sub is a function 
symbol. This will appear in more detail below. The reason I do not simply import True and sub 
wholesale here is that 1 have in mind various applications not all of which fit the mold of predicates 
and arguments (i.e., modal theories will have operators instead of predicates). 
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last. Therefore I will write simply Sub(P, Q, a). Contexts will vary slightly in 
that sometimes certain occurrences of terms will be quoted, s 

• 9 As will be seen, the asserting of the results of substitutions, i.e., relating the 
referenced syntactic elements to their intended meanings, runs into paradoxes 
of self-reference. Firstly, a means of unquoting quoted elements is needed, 
i.e., of saying formally that "c~" carries the meaning a. l~ That is, Sub(P, Q, a) 
can be thought of as consisting of two conceptually distinct aspects: forming the 
new expression, and asserting it. These we can conveniently distinguish by 
writing the formula True(sub(P, Q, a)) where sub is a function producing (a 
name for) the expression that the indicated substitution leads to, and True 
asserts this expression. Again of course this can be meaningful only if the 
substitution leads to a wff of L. 

However,  this apparently cannot be done in such a direct way, for as Tarski 
[37] showed, the schema 

T r u e ( ' a ' )  ~ c~ 

leads, in any reasonably expressive language, to inconsistency. 
The Sub concept described above is the key ingredient here. Unless care is 

taken, it will be possible to use the variables that range over expressions in 
such a way that they refer to that very symbol, Sub, and then it is often only a 
short step to paradox. I formulate this as a theorem in the first-order case; later 
1 will present it as well for modal theories. In the present form it can be 
considered a variation on Russell's paradox as well as on Tarski's result above. 
Since Theorems 3.2 and 3.3 below amount to variants on ideas already present 
in the literature (in particular [10, 26, 28, 37]), their presentation here will be 
abbreviated, especially regarding quotation conventions. The reader can skim 
quickly through these preliminary results without loss. 

For precision's sake I offer the following definition: 

Definition 3.1. Let S be a first-order theory over a language L containing a 
three-place predicate symbol Sub together with the axiom schema Sub( 'P ' ,  
'Q ' ,  a),~-,P['Q'/a] where P['Q'/a] is as previously described, for all wffs P 
and Q and terms a of the language L (which is assumed to contain a constant 
' a '  for each wff a of L).  Then S is said to be unqualifiedly substitutive, 

s This  is, again,  since both  moda l  and  n o n m o d a l  contex ts  will  arise. I have b lur red  deta i ls  of 
quo tes  so as not  to cons tan t ly  wri te  two forms for eve ry  p red ica te  express ion .  The  in t en t ion  is 
a lways  to have  subs t i tu t ions  resul t  in wffs of  the app rop r i a t e  sort  for the context .  1 also have  
wr i t t en  P[Q/a] for the resul t  of subs t i tu t ion  in e i the r  case.  

Here  again I m e a n  s imply  tha t  we are using a fo rmula  with e i the r  an o p e r a t o r  or  p red ica te  

whose  in tui t ive  i n t e rp re t a t i on  is to be tha t  of the t ru th  of its o p e r a n d  or  a rgumen t .  
~0 This  is of ten r ep re sen t ed  as def in ing a t ru th  p red ica te :  T r u e ( ' a ' )  is to tell  us tha t  the sen tence  

" ' a "  is t rue,  so tha t  T r u e ( ' a ' )  and  a should  hold  in the same mode l s  of a su i tab le  theory.  
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Theorem 3.2. Let S be an unqualifiedly substitutive first-order theory. Then S & 
incons&tent. 

Proof. We use R(x) to abbreviate -TSub(x, x, y) and then R('R(y) ')  abbre- 
viates 

-TSub( 'TSub(y,  y, y) ' ,  '-TSub(y, y, y) ' ,  y ) ,  

which by the schema is equivalent to 

-77Sub( ' -TSub(y,  y, y) ' ,  '-TSub(y, y, y) ' ,  y ) .  

Here we are using the special substitution feature mentioned earlier, so that all 
except the last occurrence of y in -TSub(y, y, y) is replaced by 
'-TSub(y, y, y)'. Thus we have R('R(y) ')  is equivalent to TR( 'R(y) ' ) ,  a 
contradiction. 

An alternative (although less precise) argument is as follows: Define True(x) 
to be Sub(x, a, a) and apply the schema for Sub. This yields T r u e ( ' a ' )  ~ a for 
each a, which as mentioned above was shown in [37] to be inconsistent under 
fairly general conditions. 

Part of what is required for the above kind of arguments is the mechanical 
ability to find and erase a symbol and put another in its place. As we saw 
above, this is fundamental to the expression of everyday (and significant) 
features of natural language and reasoning. Of course, all this depends on Sub 
having axioms that give it the intended meaning of actual symbolic substitution 
and assertion of the result, and so we can conclude that this is not possible 
without qualification, in a consistent first-order system. 

In [10,28] the difficulty of formalizing a truth predicate in first-order 
languages was circumvented, based on ideas in [12, 18]. Specifically, it was 
found that the above problematic schema can be replaced by 

T r u e ( ' a ' )  ~ a* 

for all sentences a, where a* is essentially ~ the result of replacing in a all 
subformulas of the form 7 T r u e ( ' .  ') by T r u e ( ' 7  • '). I will refer to this as GK 

1 (the Gi lmore-Kr ipke  schema). ~ GK is consistent in a broad setting. I am using 
the notation of [28] here. ~3 It turns out that this approach can be applied fairly 
directly as well to the Sub predicate, and leads us to the following result: 

~t There  are some qualifications regarding the form of a ;  see [10, 28] for details. 
~2 This schema is adapted f rom Gi lmore ' s  work  [12] on formalizing set theory,  to capture  ideas of  

Kripke [18] regarding truth predicates.  
t3 However ,  I f requent ly abuse nota t ion in that quotes  and even parentheses  may be left off. 

Thus  B e l 0 -  1 .-- ,0 = 1 abbrevia tes  Bel( '0  = 1')---~0 = 1. 
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Theorem 3.3. A ("qualifiedly substitutive") first-order theory S formed from 
extending a consistent u theory S' not involving the symbol Sub, by the addition 
of the (qualified) schema 

Sub( 'P ' ,  ' Q ' ,  ' a ' )  ~-> ( P I ' Q ' / a l ) * ,  

where now we define a* to be the result of replacing ~ S u b ( ' P ' , . )  by 
S u b ( ' ~ P ' , .  ) in c~, is consistent. 

Proof. First extend S'  to S" by adjoining consistently a function symbol sub 
and monadic predicate symbol True with axiom schema GK. Then define Sub 
as follows: 

Sub(x, y, z)<---> True(sub(x, y, z) ) .  

It follows that this extension S" is consistent, and clearly S is a subtheory of S". 

One thing I wish to investigate here (Section 5) is the extent to which the 
same result holds for modal theories. First I turn to a question addressed by 
Montague [23] concerning first-order analogues of certain modal theories. 

4. Modal Theories and First-Order Analogues 

The advantages of first-order logic over modal logic were pointed out by 
Montague [23] (I will review these later). However ,  Montague found that the 
"obvious"  approach to using first-order logic instead of modal logic can lead to 
inconsistencies. Here  I look again at Montague 's  results, to see whether the 
simplicity of his original suggestion for using first-order logic can be preserved 
somehow, and just why a modal syntax seems to manage what first-order 
syntax does not. 

It will turn out that both answers are forthcoming, namely, we will see why 
modal syntax (sometimes) avoids contradiction, and we will be led to a better  
understanding of how to represent propositional attitudes in self-referential 
contexts (whether modal or first-order). 

A modal language is characterized by modalities, i.e., operators  that can be 
applied to formulas to produce new formulas, which however are not definable 
in terms of the standard propositional connectives. The most familiar examples 
are the necessity and possibility operators,  sometimes written Nec and Poss, 
where usually one is defined in terms of the other,  e.g., Poss a iff ~ N e c  ~c~. 
Thus Nec a and Poss a are (modal) formulas, where c~ is any formula in the 

~4 Actually we need a consistent theory with at least one infinite model, but this is a very minor 
restriction, for any consistent theory can be relatively interpreted in a consistent theory with 
infinite models. 
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language in question. Indeed,  a may itself contain one or more instances of 
Nec or Poss or both. Thus a modal logic has an extended notion of formula,  in 
which for any formula a and any modal operator  M, Ma is also a formula. In 
particular one can adjoin new operators  (and axioms and rules) to a first-order 
language, creating thereby first-order modal logics. This is the case of pr imary 
interest for us. 

It is a well-known result that the standard connectives (e.g., & and -7) are 
sufficient to define all truth-functional operators  in a propositional language, so 
operators  that are not truth-functional are called modal to distinguish them 
from those already definable. Note that indeed the intuitive sense of Nec and 
Poss depends on more than the mere  truth or falsity of their applicands. For 
instance, unless we are fatalists, a fire may have truly occurred in the house 
across the street yesterday, without it thereby being necessary that such a fire 
occurred there yesterday. On the other  hand, we may feel inclined to say it was 
necessarily true that when the tempera ture  of the house reached 451 degrees 
Fahrenheit ,  the books began to burn. In both cases, we may suppose the 
s tatement  which is claimed to be necessary or not, is a true one. But in one 
case it merely happens to be true, and in the other it apparently follows from a 
general law about  the ignition point of paper.  This is not to say that this is a 
perfectly unambiguous distinction; nonetheless it serves to illustrate operators  
that cannot be treated as mere  shorthands for expressions built of the 
propositional symbols. This has been taken as evidence that classical proposi- 
tional logic therefore is inadequate to the task of representing non-truth- 
functional operators ,  and that modal logic should be introduced when such 
operators  are needed. 

In the hands of Hint ikka [15] and Montague (see [25]), modal  logics for 
representing concepts such as knowledge and belief have become powerful 
tools, and consequently a modal extension of first-order logic is regarded as a 
standard and natural representational medium for dealing with such matters.  
Thus once again the suggestion appears  that extensions to standard logics are 
needed to represent  appropriately the concepts of natural language, especially 
of belief and knowledge. 

This unfortunately is not without its disadvantages. For one thing, first-order 
logic is much better  understood than any modal logic formalisms, and con- 
sequently easier to apply coherently. Secondly, if some reins are not placed on 
the proliferation of new logics except when the latter are shown to be 
genuinely different (if not also useful!) f rom first-order logic, then we will end 
up with a tower of Babel,  and research will probably suffer. 

However ,  other avenues are open within first-order logic. One that appears  
promising is to use, instead of a formula as such, rather a quoted formula or 
term, so that the intended opera tor  applies to such terms instead of formulas. 
That  is, the opera tor  becomes a predicate symbol: N e c ( ' a ' )  or P o s s ( ' a ' ) .  
Then,  so the hope goes, the corresponding axioms can be formulated satisfac- 
torily without going beyond first-order logic. 
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This allows us to state a third technical benefit that would accrue from a 
first-order approach to propositional attitudes; in particular, in the words of 
Montague [23], "if modal terms [i.e., modal operators] become predicates, 
they will no longer give rise to non-extensional contexts, and the customary 
laws of predicate calculus may be employed."  For instance, if in fact Bill and 
Kathy have the same phone number, a modal wff such as 

Bel(John, phone(Bill) = 277-1265) 

when coupled with Leibniz' Rule of Substitutivity (that equal terms may be 
substituted for one another without disturbing logical equivalence), yields 

Bel(John, phone(Bill) -- phone(Kathy))  

even though John may n o t  know this. Thus modal treatments combined with 
normal substitution practice is problematic, and special conventions are re- 
quired to keep the unwanted consequences at bay. This suggests the attractive- 
ness of remaining within a first-order language. 

This is not to say that no problems remain in a first-order setting, of course. 
However,  a first-order approach would instead involve the wff 

Bel(John,"phone(Bil l)  = 277-1265") 

which no longer has phone(Bill) as a term; rather the entire second argument 
to Bel is one constant term. Other similar difficulties that arise in substitution 
in modal contexts (sometimes referred to as opacity versus transparency of the 
modal operator  in question), when treated instead via arguments that are 
quoted formulas, do not occur in first-order logic. The abandonment of 
first-order logic then is not to be taken lightly. 

Motivated by these concerns, Montague [23] applied this approach to a 
modality for necessity. That is, writing Nec('c~') instead of Nec c~ he obtained a 
quotational first-order construction. Montague proposed axioms for such a 
formulation, in analogy with standard axioms in the corresponding modal 
treatments. Unfortunately he found these versions to be inconsistent, whereas 
each corresponding modal operator  version M is consistent. This seemed to be 
strong evidence in favor of the modal treatment. However,  it appears that the 
inconsistency Montague uncovered hinges on certain fundamental expressive 
strengths of quotational first-order languages which are lacking in usual 
propositional modal languages. This is, first-order logics have richer sets of 
formulas than have traditional modal logics. Variables allow the formation of 
(self-referential) wffs that otherwise would not appear in the language, and 
thus more is being asserted in first-order logic than in the corresponding modal 
logic. The question then arises: if a modal theory M is made self-referential 
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( i . e . ,  e n d o w e d  w i t h  e x p r e s s i o n  a n d  a s s e r t i o n  o f  s u b s t i t u t i o n s ) ,  is it st i l l  

c o n s i s t e n t ?  15 

O n e  p a r t i c u l a r  m o d a l  t h e o r y  o f  i n t e r e s t  is $5.  I t s  l a n g u a g e  is t h a t  o f  

p r o p o s i t i o n a l  log ic  t o g e t h e r  w i t h  a m o d a l  o p e r a t o r .  I t  was  f i rs t  s t u d i e d  as  a 

f o r m a l i z a t i o n  o f  t h e  i n t u i t i v e  n o t i o n  o f  n e c e s s i t y ,  w i t h  m o d a l  o p e r a t o r  Neck% 

b u t  a l so  s e r v e s  as a ( t e n t a t i v e )  f o r m a l i z a t i o n  o f  t h e  n o t i o n  o f  k n o w l e d g e .  W h e n  

I h a v e  k n o w l e d g e  in m i n d ,  I u s e  K n o w  i n s t e a d  o f  N e c ,  a n d  w h e n  I h a v e  b e l i e f  

in  m i n d  I u s e  Be l .  I n  t h e  i m m e d i a t e  s e q u e l  I will  e m p l o y  K n o w .  N o t e  t h a t  a is 

a f o r m u l a  in a l a n g u a g e  c o n t a i n i n g  K n o w ,  so  t h a t  a r b i t r a r y  n e s t i n g s  o f  K n o w  

a r e  p e r m i t t e d .  

$5  h a s  t h e  f o l l o w i n g  a x i o m  s c h e m a t a : I T  

K :  K n o w ( a  ~ / 3 )  ~ ( K n o w  a ~ K n o w / 3 ) ,  

T :  K n o w a . ~ a ,  

I : ~ K n o w  a ~ K n o w - n K n o w  a ,  

as  wel l  as al l  ( s u b s t i t u t i o n  i n s t a n c e s  o f )  t a u t o l o g i e s ,  a n d  t h e  f o l l o w i n g  r u l e s  o f  

i n f e r e n c e :  

M P  : f r o m  a a n d  a --~/3 i n f e r / 3  , 

N : f r o m  a i n f e r  K n o w  a .  

$5 as  p r e s e n t e d  a b o v e  is a p r o p o s i t i o n a l  t h e o r y ,  a l t h o u g h  it a l so  h a s  b e e n  

~5 It is of separate interest whether a first-order version of a modal logic can be kept suitably 
"weak" so as not to intrude, via its variables, new kinds of wffs that destroy a faithful match with 
the modal logic. This has been explored by des Rivieres and Levesque [33]. Our purposes here are 
somewhat different, namely, how to represent propositional attitudes in an explicitly self- 
referential context. Our contention is that apart from a desire to avoid inconsistency, there should 
be an underlying intuitive model justifying ones axioms. Then presumably whatever underlying 
intuitive model justifies the use of any particular modal formulation should apply as well to the full 
first-order formulation, unless that model itself indicates a principled argument to the contrary. 

'~ Often written as L or a box D. 
~7 In the literature, schemata K, T, and 1 are sometimes called Distribution, Knowledge, and 

Negative Introspection, respectively, and rule N is called Necessitation and sometimes written as 
RN. I is also sometimes called schema 5, since it is the distinguishing schema of $5. If 1 is dropped, 
the resulting system is called T (not to be confused with schema T, although schema T is the 
characteristic schema of the system or theory T). If schema T is dropped as well, the resulting 
theory is called K (with then characteristic schema K). Theory $4 has schemata K and T and the 
"Positive Introspection" or "'Poslnt" schema Know a ~ KnowKnow a as well as rule N; so $4 is 
stronger than T; it turns out that Poslnt is provable in $5 so that $5 is stronger than $4. Thus K, T, 
$4, and $5 are in increasing order of strength, and all have rule N and schema K; any such system 
(at least as strong as system K) is called (essentially) a normal system of modal logic. Another 
system, G, is studied in [2]; note that there "normal" is used as here except that rule N is not 
required. We refer the reader to [5] for more information on the (enormous) variety of modal 
systems studied. For a recent modal logic specifically designed for AI, see [20]. 
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s tud ied  in a p red i ca t e  con tex t ,  with an under ly ing  f i r s t -order  l anguage  sup- 
p l e m e n t e d  with the  o p e r a t o r  Know,  and  with the  usual  logical  ax ioms and rules 
of  in ference  as well as the  ax iom schemata  K, T, and  I, and  rule N. It  is in the  
f i r s t -order  con tex t  tha t  we are  in te res ted ,  so that  in the  r e m a i n d e r  of  this p a p e r  
$5 will be t aken  to mean  f i r s t -order  $5. TM Note  tha t  not  only  is the  l anguage  
e x t e n d e d  b e y o n d  classical p ropos i t i ona l  or  f i r s t -order  languages ,  but  also there  
is a nonclass ical  rule of  in ference .  This  requ i res  c o m m e n t .  Rule  N is to be 
app l i ed  str ict ly to ac tual  t h e o r e m s  of  $5, not  to any hypo thes i s  a we may  wish 
to e m p l o y  in proving ,  say,  a- -~/3 .  Tha t  is, a l though  if  a were  a t h e o r e m  of  $5 
then  so would  be Know a ,  this does  not entai l  tha t  the  wff a - -~  Know a is a 
t h e o r e m  of  $5. In pa r t i cu la r ,  ex tens ions  to $5 f o r m e d  by ad jo in ing  new ax ioms 
are  not  a s sumed  to obey  rule N for any wffs o t h e r  than  the or iginal  ones  
p rovab le  in $5 itself,  unless  o the rwise  s ta ted .  

As  a theo ry  of  knowledge ,  $5 has the  fo l lowing intui t ive i n t e rp re t a t i on :  
Know a means  a is known (by  some  th ink ing  agent ) .  Then  K, T, and  I may  be  
p laus ib le  for  an " idea l  t h i n k e r "  g. Schema  K says that  g ' s  knowledge  is c losed 
u n d e r  modus  ponens ;  s chema  T that  wha teve r  g knows is t rue;  and schema  I 
that  g knows w h e n e v e r  it doe sn ' t  know some th ing  ( i .e . ,  it can in t rospec t  
nega t ive ly) .  A l so ,  rule  N is p laus ib le  if the agen t  is smar t  enough  to know 
every th ing  that  can be es tab l i shed  in $5, which may  seem easy to grant  for  an 
ideal  th inker .  This  p r e s u p p o s e s  that  we are  v iewing $5 as our " e x t e r n a l "  t heo ry  
about g's " i n t e r n a l "  knowledge .  H o w e v e r ,  rule N then has the  fur ther  con- 
sequence  that  g will end  up tak ing  as its own knowledge  all the  ax ioms and 
t h e o r e m s  of  $5 so that  $5 ends  up also be ing  g ' s  own theory  af ter  all. In this 
light,  rule  N serves  as a k ind  of  posi t ive  in t rospec t ion  mechan i sm.  19 

M o n t a g u e  s tud ied  severa l  systems re l a t ed  to $5, with the  pa r t i cu la r  a im of  
changing  Know into a p red i ca t e  symbol  app l i ed  to names  of  formulas .  I need  
not  p resen t  deta i l s  of  these  moda l  var iants  in o r d e r  to s ta te  the fol lowing resul t  
of  his: 

Theo rem ( M o n t a g u e  [23, T h e o r e m  3]). Any  first-order "arithmetical" theory 
having the schema T', namely, K n o w ( ' a ' ) - - ~  a for each closed wff a, and also 
satisfying condition N', that ~- K n o w ( ' a ' )  whenever ~ a, is inconsistent. 

~ See [2, 5] for more detail on $5 and its uses. 
'~ The arguments to Know in $5 are interpreted as p r o p o s i t i o n s  rather than ( q u o t e d )  sentences 

as in a syntactic first-order approach. This has some benefits, such as corresponding to Pierre's and 
Peter's knowing the "'same" proposition that Londres est jolie and London is pretty, respectively. 
Also there are technically elegant semantics (due to Kripke; see [5]) that can be provided for $5 
and other modal systems. However, this does not alter the fact that Pierre and Peter express their 
propositions sententially, nor that actual sentences are very important features of language. Thus 
our comments about the central role of self-referentiality and syntax seem to hold up. There are 
other qualifications regarding propositions as objects of knowledge or belief as well; for an 
overview of much of the philosophic literature, see [36]. 
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Note  that  schemata  I and K have been left out.  I will hencefor th  however  
drop the pr ime on T and N, letting context  de termine  whether  a modal  or  
first-order schema is meant .  Also,  I will retain the names  T and N even when 
the predicate  symbol  is o ther  than Know,  e.g. ,  Bel or  the usual provabil i ty 
predicate  Thm described later. The  term "ar i thmet ica l"  need  not  concern  us; it 
is a gloss for a technical requ i rement  that  has the effect of  allowing asserted 
substi tutions into wffs. 2° We can establish an alternative theorem with a quick 
proof ,  if we stipulate a sub funct ion directly, to get a variat ion on Mon tague ' s  
result that  is more  tai lored to our  needs.  I begin with a definition. 

Definit ion 4 .1 .  If S is a first-order theory  with funct ion symbol  sub of  three 
arguments ,  and supplied with a distinct funct ion term ' a '  for  each expression a 
(such that the free variables of  ' a '  are those of  a )  as well as axioms 

s u b ( ' P ' ,  ' Q ' ,  ' a ' )  = 'P[ 'Q'/ 'a '] ' ,  

i.e., the name  of  the result of  the indicated substi tution, then S is first-order 
self-referential. 

Theorem 4.2. Let S be a first-order self-referential theory having a monadic 
predicate symbol Know and axioms K n o w ( ' a ' ) - - ~  c~ for each closed wff  ~, and 
satisfying the condition ~- Know( 'c~ ' )  whenever ~ a. Then S is inconsistent. 

Proof.  Much as in the p roof  of  T h e o r e m  3.2, let R(x) abbreviate  the formula  

~ K n o w ( s u b ( x ,  x, ' y ' ) )  , 

so that  R('R('y ') ')  abbreviates  

7 K n o w ( s u b ( ' - T K n o w ( s u b ( ' y ' ,  ' y ' ,  ' y ' ) ) ' ,  
' -TKnow(sub( ' y ' ,  ' y ' ,  ' y ' ) ) ' ,  ' y ' ) ) ,  

which is equivalent  to 

7 K n o w ( ' 7  Know(sub( ' -7  K n o w ( s u b ( ' y ' ,  'y' ,  'y')) '  , 
' -TKnow(sub ( ' y ' ,  ' y ' ,  ' y ' ) ) ' ,  ' y ' ) ) ' ) .  

So R('R('y') ')  is equivalent  to TKnow('R( 'R( 'y ' ) ' ) ' .  We fur ther  abbrevia te  
R('R('y') ')  as RR, so that  we have RR iff 7 K n o w ( ' R R ' ) .  If  we then use the 

20 Moreover, the use of substitution is virtually tantamount to the introduction of a certain 
amount of arithmetic in any case (see Quine [31]), and I have argued that substitution is an 
essential feature of commonsense reasoning. 
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axiom K n o w ( ' R R ' ) - - >  RR, we get 

K n o w ( ' R R ' )  ~ - T K n o w ( ' R R ' ) ,  

so that K n o w ( ' R R ' )  is impossible and therefore  ~ K n o w ( ' R R ' )  is proved.  But 
this is (equivalent to) RR, so RR is proved.  But then by the postulated 
inference condit ion,  we deduce K n o w ( ' R R ' )  after all, a contradict ion.  

What  does this result tell us? It appears  that even a very weak subtheory  of  
$5, 2~ when " t rans la ted"  into a first-order context ,  goes awry, at least in the 
presence of  substitutivity. But is this reason to think that the modal  version is 
bet ter  off? It is true that  $5 (and therefore  its subtheories)  are consistent.  But 
$5 by itself is not  in a substitutive context.  So the quest ion arises as to whether  
modal  theories such as $5 remain consistent when augmented  with substitution 
capabilities. 

In a similar vein, T h o m a s o n  [38] has provided another  apparent  failure of  
our  intuition, as follows: If an agent g believes (a suitable theory  of) ari thmetic 
and also g ' s  beliefs (given as a rguments  to the predicate Bel) satisfy the 
following condit ions:  

Bel('c~ ') --~ B e l ( ' B e l ( ' a ' ) ' ) ,  
B e l ( ' B e l ( ' a ' ) - - ~  c~'), 
Bel( 'c~') for all valid c~ , 
B e l ( ' a  --->/3')---> (Bel('c~')---~ Be l ( ' / 3 ' ) ) ,  

then g is inconsistent in the sense that g will believe all wffs. 
To relate this to the intuitions of  Section 1, I offer the following critique for 

T h o m a s o n ' s  and Montague ' s  theories as theories of  omniscient  ideal reasoning: 
In each case, an axiom schema (either T or  the second schema above) 
attr ibutes to g a global belief about  g ' s  own beliefs. This self-viewing is best 
taken as layered or  steplike, and when instead it is f lattened in one fell swoop 
then internal contradict ions can arise. In effect, when g takes a position 
regarding the contours  of  its set S of  beliefs, it may be embracing  a " n e w "  
belief/3 which, if we force/3  E S, can run into a self-referential di lemma.  If  g is 
aware of  this, it might prudent ly  choose to be more  circumspect  about  its use 
of  self-reference and in the process bet ter  merit  our  designation of  it as 
"omnisc ien t"  or  " idea l . "  

5. Substitutive Modal Logic 

If we endow a modal  logic M with the proper ty  of  substitutivity in the form of 
an opera to r  Sub(P, Q, a), with the intention that this thereby create suitable 

2~ In fact all we need arc schema T and rule N along with first-order logic and self-reference, so 
that not even the full system T is essential here, since schema K is not used. 
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conditions for referenceability within such an extended version of M, we have 
at least two available approaches.  We can let P and Q be quoted expressions 
and Sub a predicate symbol,  or we can let P and Q be formulas and Sub 
another  modality. 

Let us begin by exploring the first alternative. Since we already know that a 
first-order unqualifiedly substitutive theory is inconsistent (Theorem 3.2), so 
will be any modal theory M that extends such a first-order theory. Therefore ,  if 
we endow $5 with a predicate symbol Sub, we cannot allow it the unqualified 
substitution axioms as well. What  then if we use only qualified substitution 
axioms of the sort known to be consistent in the first-order case? That  is, can 
we extend $5 to include 

Sub(x, y, z ) ~  True(sub(x,  y, z)) 

together with the consistent t reatment  of True and sub mentioned earlier, and 
thereby retain consistency in the modal theory that results? Unfortunately,  the 
following result shows that we cannot. 

Theorem 5.1. If  M consists of  $5 22 extended by the Sub predicate with axiom 

Sub(x, y, z ) o  True(sub(x,  y, z)) 

and associated qualified axioms for True and sub, then M is inconsistent. 

Proof. We proceed by defining R(x) to be the formula 

~ K n o w  Sub(x, x, ' y ' )  . 

Then R( 'R(y) ' ) ,  which we will abbreviate as RR is 

~ K n o w  S u b ( ' R ( y ) ' ,  'R(  y) ' ,  ' y ' ) ,  

i.e., 

~ Know True ( sub( 'R(Y) ' ,  'R(  y) ' ,  ' y ' ) )  . 

Now s u b ( ' R ( y ) ' ,  R ( ' y ' ) ,  ' y ' ) )  = 'RR' and so 

True(sub( 'R(  y) ' ,  ' R ( y ) ' ,  ' y ' ) )  o T r u e ( ' R R ' )  , 

22 An anonymous referee has pointed out that the proof does not use schema 1, hence the 
theorem actually holds if $5 is replaced by any modal system with schemata T and K and rule N, 
i.e., for any logic as strong as modal system T. 
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whose right-hand side is equivalent to RR since True simply strips off quotes 
from its argument except when the symbol True itself is directly negated in this 
argument.  What  we have then is 

T rue ( sub( 'R(y ) ' ,  ' R ( y ) ' ,  ' y ' ) )  ~ RR 

and from rule N and schema K we then get 

Know[True(sub( 'R(y) ' ,  ' R ( y ) ' ,  ' y ' ) )  ~-~ RR] 

and then 

[Know True ( sub ( 'R(y ) ' ,  ' R ( y ) ' ,  'y ' ) ) ]  ~ [Know RR] . 

It follows that 

[-TKnow True ( sub( 'R(y ) ' ,  'R(  y) ' ,  'y ' ) ) ]  ~ [--nKnow RR] .  

But RR is equivalent to 

~ K n o w  True ( sub( 'R(y ) ' ,  'R (y ) ' ,  ' y ' ) )  , 

and so we get that 

RR ~-, ~ K n o w  RR 

Now, Know RR-->RR by schema T, and so Know R R - ~ - n K n o w R R ,  which 
means that -1Know RR is a theorem of M. But we have just seen that RR is 
equivalent to --nKnow RR,  so then RR also is a theorem of M, and by rule N so 
is Know RR,  a contradiction. 

We then consider the second alternative mentioned above, namely, that 
Sub(P, Q, a) be a modality in which P and Q are formulas. Here we are faced 
with a difficulty of syntax, if we wish to keep to our underlying premise in this 
paper,  namely, that not only should language be substitutive and assertional, 
but that the very feature of substitutions should be expressible, in the form 
Sub(x, y, z) where x, y, and z are variables. This becomes problematic when x 
and y are intuitively to range over  formulas (rather than names of formulas). 
What is called for is a quasi-second-order modal logic, in which the arguments 
to which modalities are applied (namely predicates, or more generally, rela- 
tions) can be the values of variables. Thus we wish to write Sub(X, Y, z) where 
X and Y are predicate variables, and z is an individual variable that ranges 
over names of expressions. However ,  it turns out that it is not necessary to 
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adopt  such a syntax, for even without  variable a rguments  to modalit ies,  
contradict ion arises. 

Definition 5.2. S is an unqualifiedly substitutive modal  logic if S has a modal i ty  
Sub(P,  Q, A) and the (by now familiar) substi tution axioms using P[Q/A], 
where  P, Q and A are wffs. Tha t  is, Sub(P,  Q, A) is equivalent  to the result of  
substituting Q for  all but  the last occurrence  of  A in P. (We need  not  even use 
names  at all, for instead of  arbi t rary expressions,  it suffices to refer to whole  
formulas.)  

Theorem 5.3. Any unqualifiedly substitutive modal theory is inconsistent. 

Proof.  We simply pick an arbi t rary wff, say P, and consider  the formula  (1) 
below: 

Sub(TSub(P ,  P, P ) ,  ~ S u b ( P ,  P, P) ,  P ) .  (1) 

The  indicated substi tut ion will then replace the first two occurrences  of  P in the 
first a rgument  -TSub(P, P, P )  of  (1), with the second argument ,  which also is 
7 S u b ( P ,  P, P) .  This results in 

7Sub( -TSub(P ,  P, P ) ,  -TSub(P, P, P ) ,  P ) ,  (2) 

which is in fact simply 7 ( 1 ) !  That  is, (1) is equivalent  to 7 ( 1 ) ,  which is a 
contradict ion .23 

So $5 and even weaker  systems such as T are inconsistent with ei ther  form of  
self-reference that  naturally arises. Thus  any advantage  in a modal  language 
seems to be lost, and we might  as well remain  with a classical first-order 
language.  Still, this does not  settle p roblems of  formal representa t ion of  belief 
and knowledge.  W h e t h e r  fo rmula ted  in terms of  classical first-order substitu- 
tive or  modal  substitutive languages,  special axioms and rules of  inference for 
proposi t ional  at t i tudes are problematic .  We now turn to remedies  of  this 
situation, hinging on separat ing the two mutual ly  t roublesome features,  namely  
the schema T, K n o w ( ' a ' ) - - ~  a ,  and the rule N for inferring K n o w ( ' a ' )  f rom a. 

23 It is of some interest that the requirement for "variable substitution" has been obviated by the 
very means of substitution. That is, in some sense the significance of variables is precisely that they 
allow for the possibility of substitution. This is not so apparent in first-order logic, where variables 
are central to the entire structure; but in modal logic where seeming arguments (to modalities) are 
not usually treated in argument fashion, the presence of substitutions is evidently just what brings 
things back to the first-order fold (at least in regard to self-referential paradox). 
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6. Belief as Provability 

Our  results indicate that modal  logics, when endowed  with sufficient power  to 
represent  substitutions, face the same inconsistencies found in first-order 
t reatments .  Much of  the appeal of  these logics is then lost, since one might  as 
well then simply stay within first-order logic and employ  a s t ra tagem there for 
retaining consistency, instead of  hunt ing for an analogous s t ra tagem in modal  
logic. Indeed,  we saw f rom Montague ' s  and T h o m a s o n ' s  theorems and f rom 
our  Theorems  5.1 and 5.3, that  there are severe difficulties whether  the formal 
syntax is dressed in first-order or  modal  clothing. In effect, if we are going to 
have substitutivity of  even a very mild sort we have to choose something less 
than full use of  both the not ion Know a.--~ a (schema T) on the one hand,  and 
on the o ther  hand  ~ -Know a whenever  ~ - a  ( the familiar rule N) .  24 What  
principled justification can be given for this, and what  principled decision can 
be made  toward a resolut ion? 25 One  point  of  view emerges  f rom the idea of  
provability. 

Consider  an agent g, whose conclusions are to be represented.  Here  I use 
the term "conclus ions"  as a deliberately neutral  g round  between knowledge 
and belief: whatever  is in the agent ' s  reasoning is to be used as if t rustworthy.  
While this is still ra ther  vague,  it is sufficient for our  purposes.  26 What  we can 
say is that  an agent ' s  conclusions would seem to be tightly related to what  the 
agent can prove (establish, decide, conclude) ,  so that a natural  idea is to 
explore ideas of  provabili ty in an effort to characterize possibilities and 
limitations on formal  t rea tments  of  belief and knowledge.  This idea was the 
basis for much of  Konol ige ' s  efforts in [16], in which however  provabil i ty was 
represented as a concept  external to a given reasoner ,  i.e.,  one agent  might 
reason about  the provabil i ty relation of  another  agent but not  about  its own 
provabili ty relation. In [17] Konol ige comes closer to self-provabitity, but  
retains a kind of  hierarchical approach  in which what is provable  at one  level is 
then recorded  as provable  in the next. Here  I am more  concerned  with a 
" f la t tened"  theory  that involves a predicate  for its very own provabili ty not ion,  
yet  in equal standing with the o ther  predicates in the language;  that  predicate  
itself then forms part  of  the grist for those very proofs  to which it is in tended to 
refer. Boolos  [2] and Smorynski  [35] examine formal notions of  provabili ty,  but  
in relation to ari thmetic ra ther  than epistemic concerns.  In this and the next 
section, I study the extent  to which various notions of  provabil i ty are applic- 

~4 I henceforth routinely drop quotes. All theories will be first-order (nonmodal). 
2, Asher and Kamp [1] pursue much the same question, and with a similar course by applying 

methods for truth predicates to a knowledge predicate. Their work involves a hierarchy of 
decisions about knowledge, and remains fairly close to Kripke's original idea [18] in that it is 
model-theoretically oriented. However, the needs of artificial intelligence (and possibly even of 
logic) seem better served by a more syntactic and proof-theoretic (i.e., computational) approach, 
as argued in [10, 28]. I will comment again on their approach below. 

26 1 refer the reader to [29] for discussion of the issue of what constitutes a belief. 
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able to belief and knowledge. Initially I focus on the classical static theories; in 
Section 7, I turn to commonsense  constraints. 

Let us pursue the idea that an agent g ' s  beliefs 27 are its theorems. But then if 
g is to have a Bel predicate of its own, it may be a kind of provability 
predicate. What  do we mean,  formally, that Bel be a provability predicate? 
Several things may suggest themselves. One,  given in [3], follows. 

Definition 6.1. A provab i l i t y  pred ica te  for a theory S is a wff P ( x )  that satisfies 
rule N- - i f  a is a theorem of S, then so is P( 'o~ ' ) - -and  also schemata K and S4's 
Poslnt: 

K :  P(  a --> fl ) --> ( P a  --) Pfl  ) , 

PosInt : Pa  --) P P a .  

So, what is available for a provability predicate? There  are many pos- 
sibilities, most of which have little to do with provability. However ,  one 
provabili ty predicate has played a special role in logic; it is due to G6del ,  and 
we write it as Thm. 28 In this section I will focus on Thm. In the next section we 
will find that, for certain kinds of commonsense  beliefs, this will not do, and we 
must examine alternative " introspect ion" predicates that are not provability 
predicates at all (as we have defined them). 

Thm stands for the usual G6del  predicate symbol for provability in a 
"sui table"  theory of arithmetic S, i.e., Thm is defined as 

T h m ( ' a ' )  ~ (3x) (Proof (x ,  ' a ' ) ,  

where Proof(x,  a )  in turn formalizes in terms of arithmetic the proof- theory of 
S: it says x is (the G6del  number  of) a proof  of (the wff with G6del  number)  
' a ' .  Thm then pins down the mechanical details of what goes into a proof. This 
makes  it static, for no  new beliefs (axioms) can be adjoined now, without 
undoing the intended meaning of Thm. Thm lays out explicitly all the steps 
allowed in a proof,  and even says that these are the only ones allowed. This 
explicit sense of Thm roughly corresponds to the specification of a mechanical 
listing of all and only the wffs that can be established by g (a recursively 
enumerable ,  but not recursive, set of wffs). 

But how much of Thm is needed,  anyway, in actual use of a belief predicate? 
A reasoner  need not (and cannot)  know all about  itself, but might well benefit 
f rom knowing certain things about  itself. 

z7 We start here with belief, letting knowledge come in later. It turns out that knowledge is quite 
a tricky notion; see [11]. 

z8 Also often written as Prov or Bew (for Beweis). 
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In fact, Thin gives so much detail about proofs within a theory S that it 
inflexibly binds S away from any new knowledge. Thus if S is extended to S', 
the syntactic definition of Thm, if it is to now express proofs in S', must 
change. Moreover,  certain facts will be new simply because they are not 
provable within S, and thus Thin cannot ever express them with reference to 
the theory for which it is formulated. In fact, the same happens with any 
provability predicate,  as we shall see, regarding auto-epistemic knowledge of 
certain sorts. 

Now, Montague 's  result shows that we must give up schema T, if we are to 
retain rule N and substitutivity (and consistency). That  is, not all wffs of the 
form Bel ~ . ~ a will be theorems of our agent g 's  theory S. What  does this 
mean in terms of Thm? Intuitively, Thin c~---, a means that each theorem a of 
S is true (in a fixed standard model) .  Now, if S really has such a model,  then 
each of these statements Thm o~ .---~ a is correct; that these cannot all be 
provable in S is an interesting limitation of a computat ional  mechanism to fully 
express its own computat ional  behaviour.  This is closely allied with G6del 's  
Second Incompleteness Theorem and also L6b 's  Theorem,  discussed later. 
However ,  the underlying idea of the limitation has an intuitive sense to it, and 
will be the basis for the general picture that will emerge.  The idea is that of 
Section 1, that the actual processes of a reasoner g can never be known in full 
detail by g itself, except by g 's  gaining this as new information which in turn 
changes g's structure so that what g has gained is a faithful picture of what it 
was, not what it is. 

As I have stated, Know ~ is often taken to mean ~ is among those beliefs of 
g that are true. Then Know ~ means to g that ~ is one of its true beliefs, even 
though in general g cannot identify which these are! Indeed,  each of g ' s  beliefs 
is individually believed (by definition) by g; as soon as any one is seen to be 
false, it is no longer believed. 2~ So g cannot isolate its true beliefs from the rest; 
it simply can refer to them in the abstract, just as it can refer to its entire belief 
set. In effect, g may believe that (the extension of) Know is a proper  subset of 
(the extension of) Bel, but can give no examples of the relative complement  
(i.e., a false belief)! 

Nevertheless, using Know as true belief, we can now employ schema T so 
that it applies to Know rather than to Bel. This manages to get around some of 
the difficulties we have seen. Specifically, the following result provides one way 
to endow g with its own knowledge and belief predicates and yet avoid 
inconsistency. This is a static approach,  so that g will not be able to accommo- 
date new beliefs and yet retain the intended meanings of Bel and Know. 

Theorem 6.2. Let S be any consbtent qualifiedly substitutive first-order theory, 

2. Try to imag ine  a r ea sone r  g hav ing  s i m u l t a n e o u s  bel iefs  Bel  a and ~ T r u e  a ,  as in " I  be l ieve  
1337 is p r ime ,  but  it is no t ! "  
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not containing the symbol Bel.  Then there is a consistent first-order theory 
S T A T ( S ) ,  which is an extension of  S having predicate symbols True ,  Bel ,  and 
Know,  and obeying rule N for Bel ,  with axiom 

K n o w a  ~ B e l a  & T r u e a ,  

where True  satisfies schema G K .  3° 

Proof .  Le t  T rue  be as in G K ,  and  then  let  Bel  be  T h m  and let  K n o w  be as 
s t a t ed ,  bo th  as ex tens ions  by  def ini t ions .  Rule  N is a u t o m a t i c  for  Bel  ( i nhe r i t ed  
f rom Thin) .  

H o w  much of  $5 does  this resul t  give us? We get  rule  N for Bel ;  s chema  T 
for  T rue  and  Know;  schema  K for  Bel ,  T r u e ,  and  Know.  T h e o r e m  6.2 does  not  
give schema  I for  any of  T rue ,  K n o w ,  or  Bel .  H o w e v e r ,  we do get  S4 's  pos i t ive  
in t rospec t ion  s chema  P o s l n t  for  Bel ,  s ince Thm h a p p e n s  to o b e y  
T h m  a ~ T h m T h m  a.3 

E x a m p l e  6.3. (Be l i e f  b i cond i t iona l s  and  cats).  A key  t echn ique  impl ic i t  in 
M o n t a g u e ' s  and  T h o m a s o n ' s  resul ts ,  as well  as in Ta r sk i ' s  and  G 6 d e l ' s ,  is the  
F ixed  Poin t  or  D i a g o n a l i z a t i o n  L e m m a  (e .g . ,  see [22]). This  al lows us to find,  
given a p r e d i c a t e  P(x), a wff a such tha t  a ~ - ~ - T P ( ' a ' )  is p r o v a b l e  in a su i tab le  
t heo ry  S. Subs t i tu t iv i ty  (qual i f ied  or  no t )  is one  c r i t e r ion  that  m a k e s  S su i tab le  
(see [31]). The  pr inc ipa l  app l i ca t ion  for  us is the  fol lowing:  Le t  Bel  be a 
m o n a d i c  p r e d i c a t e  symbo l  of  a t heo ry  S. We m a y  then  let  BB be such tha t  S 
has the  t h e o r e m  BB ~-~-~Bel BB (which I re fer  to as the  be l i e f  b i cond i t iona l ) .  

Le t  C be (a fo rma l i za t ion  of) the  sen tence  " T h e  cat is on the  m a t , "  e .g . ,  
O n ( c a t , m a t ) .  Tha t  is, C is a p la in  o r d i n a r y  wff wi thou t  se l f - re fe rence ,  and  
wi thou t  use of  the  p r e d i c a t e  symbols  Bel  or  K n o w  or  True  or  Thm.  Its t ru th  
then  shou ld  be  d e t e r m i n a t e ,  even  if unknown .  Thus  g should  be  safe in 
conc lud ing  not  only  C v - ~ C  and  K n o w  C v - 1 K n o w  C, but  also K n o w ( C  v 
-7C)  and  K n o w ( K n o w  C v ~ K n o w  C) .  This  fol lows f rom T h e o r e m  6.2, and  

3o In [30] a GK version of rule N was used for Know: a**lKnow a, where ** is the Gilmore 
operator applied to Know rather than to True. This has the unfortunate consequence that 
straightforward (nonparadoxical) instances of theorems of g were not provably Known by g. For 
instance, even many harmless theorems such as /3 v /-7/3 did not have corresponding theorems 
Know[/3 v 7/3]. Thus we have dropped this approach and retained the Gilmore technique for the 
predicate True alone. Similarly, GK is not very satisfactory as a rule for Bel, for it severely 
undermines the introspection properties. For instance, if 7Bel/3 is a theorem, so should be 
Bel-TBel/3; but GK will not provide this. Also, as for Know, theorems of the form/3 v 7/3 should 
have counterpart theorems Bel[/3 v 7/3], but again GK will not provide this in general. 

3~ It is of interest that Asher and Kamp [1] similarly arrive at a (semantical) framework for Bel, 
in which schema K and Poslnt are preserved but schemata 1 and T are not. However, as mentioned 
earlier, their treatment has no corresponding proof theory for direct comparison to our work. 
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forms an interesting contrast with the wff BB. Let S satisfy Theorem 6.2. Then 

STAT(S)  [- Know(C v ~ C ) ,  

STAT(S)  [- Know(Know C v -TKnow C ) ,  

STAT(S)  ~ Know(BB v -1BB), 

STAT(S)  ~ Know(Know BB v -~Know BB),  

STAT(S)  ~- Bel (a  v ~c~) for all wffs c~ . 

Thus tautologies seem to behave well with respect to Bel, and ordinary wffs 
such as C also do so with respect to Know. But some explicitly self-referential 
wffs like BB fail to do so. In short, STAT(S)  seems to represent a somewhat  
reasonable static theory of belief and knowledge. But it does not satisfactorily 
answer our doubts about schema T for Bel. For this, we need to look more 
closely at what use beliefs are put to, in order to assess what role schema T 
might or might not be reasonably expected to play. 

7. Belief as Introspection 

Theorem 6.2 above provides a version of Bel (and Know, etc.) that will suffice 
for certain purposes,  such as nesting of belief sentences. As such it may be fine. 
But more might be desired. Let us see what this might be, by returning to the 
issue of schema T. Now, we know we may not have the full schema T (for Bel) 
in g 's  theory S, if S is to obey rule N (for Bel). And perhaps not all instances of 
schema T (for Bel) are even plausible for g to conclude. But perhaps certain 
instances are both plausible and possible. So first we should ask whether 
commonsense reasoning has need for these. 

Another  desideratum arises from rule N itself, for this rule does not 
necessary apply to new axioms that may be adjoined to S, even though the idea 
of rule N as an introspection facility should require this. We would like to have 
a formulation of Bel that is dynamic, in that as g gains new beliefs, the broad 
characteristics of Bel do not change, and thus that the rules for Bel should also 
not change simply because g has some additional beliefs. That  is, there should 
be a core theory of belief that is invariant under mere  accretion of (at least 
some 32) information. If rule N is to be in this core, then it must be applicable 
to new (local) beliefs that arise. 

We lead into this by observing that a different approach to introspection than 
the "static" one of Thm can be conceived. In particular, as L6b 's  Theorem will 
show, certain wffs when adjoined to a theory S result in the meaning of Thm 
becoming out of date, in the sense that Thm will express provability in the 

32 That is, what we loosely called "local perturbations" in Section 1. 
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original but not the extended theory. This is because Thm is so pinned down by 
its arithmetical definition to exact procedures of proof,  that it cannot refer 
abstractly or generically to the general concept of proof. It is statically tied to 
one and only one set of conclusions. On the other hand, a reasoner g may not 
even be aware of its precise algorithm for reasoning, and yet refer to it 
generically in ways that do not depend on details (and therefore may remain 
consistent with a greater  variety of extensions). 33 That  is, perhaps a kind of 
referring to one's  theorems or beliefs can be made,  without explicitly stating in 
detail just how they arise. Possibly then Thm is then too fine-grained and 
unrealistic for commonsense  reasoning, both conceptually (who could ever 
know all their mental  processes?) and formally (L6b's  Theorem below). 

Where  does introspection arise in commonsense  reasoning'? One prominent  
place is in nonmonotonic  reasoning, in which account is taken of not having 
(believing, proving) a certain wff. For instance, one can believe ~ la Moore 
[24] that one always knows (or believes) that one has an elder brother  if this is 
in fact the case, without necessarily knowing a way in which that conclusion or 
belief ( that one had an elder brother) would be arrived at. 34 This is then generic 
or abstract information about  ones set of conclusions. Just how such a notion 
might be approached and how it should differ from G6del 's  explicit Thm will 
be taken up below. The point however  is that an intelligent agent g may not 
need to know in any great detail just how its mental feats are accomplished; 
certainly human beings are in this situation. In fact, we will see formal 
requirements virtually forcing us into this position when we try to give 
auto-epistemic weight to Bel. 

Now, can we think of a situation in which g ought to believe an instance of 
schema T, i.e., of Bel a .--~ a ?  Well, there are trivial cases, the ones in which 

is already a theorem. These of course are instances which STAT(S)  will also 
produce.  So how about  nontrivial ones? Yes, following (or rather reversing) 
the example of Moore.  We can suppose g to believe "if  I believe I have an 
elder brother,  then I have an elder bro ther"  even if g does not believe "I  have 
an elder bro ther . "  This would be a kind of infallibility belief for g, but a special 
one regarding brothers,  and it seems perfectly plausible that an agent might 
have good grounds for such a belief as this. 

Moore ' s  (unreversed) example itself is also of interest; it has the form: 
~ Bel a. Although this is not an instance of schema T, it is also not obvious 

that it is consistent with STAT(S)  as long as Bel remains a provability 

33 This raises a number of issues, only some of which will be dealt with in the remainder of this 
paper. One I will not touch is that of hierarchical "cycles" of reasoning over time, as the agent 
realizes more and more about its (changing) inference algorithm(s). However, this would appear to 
be a key one for future work. See [9] for very interesting results on hierarchies of theories of 
arithmetic, and [6] for an approach to commonsense reasoning viewed as a steplike process. 

3~ Hence, from the not knowing (of an elder brother), one concludes the not having. 
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predicate. Of  course, here too there are trivial (or vacuous) cases, when - l a  is 
a theorem of S. 

Definition 7.1. A wff a is simple auto-epistemic over theory S if a is of the form 
Bel/3 -->/3, or /3  --~ Bel/3, or 7Be l /3 ,  where 13 is in the language of S. (S may 
or may not contain the symbol Bel.) I name the three types: M A E  is the set of 
wffs of the Moorean form/3 --~ Bel/3, R A E  of the reverse form Bel/3 ~ / 3 ,  and 
N A E  of the negative form 7Bel /3 .  Note that M A E  wffs include instances of 
Poslnt,  and all R A E  wffs are instances of schema T. I will sometimes 
abbreviate "simple auto-epistemic" as "simple A E . "  

This is not to say that all wffs of interest in auto-epistemic reasoning must be 
of one of the three given forms. Far from it. However ,  these three types seem 
to be the simplest ones and arguably the commonest ,  and also plenty of 
questions arise even for them. 

Note that Thm does not satisfy schema T--this  is essentially G6del 's  
Theorem on consistency proofs, and also can be seen in Montague 's  [23, 
Theorem 3]. That is, not all wffs Thm a .--> a will be theorems of g. However ,  
a theorem of L6b carries this much further, so that not a single instance of T 
will be provable except trivial ones for which a itself is provable. Call a wff 
Thm a .--> a trivial if a is a theorem of S. We suppose here (as throughout the 
paper) that S has sufficient substitution properties,  in this case the Fixed Point 
Lemma referred to earlier. 

L6b's Theorem [2, 3, 22, 35]. If  P is a provability predicate for  a consistent 
theory S, then no nontrivial instance o f  schema T ( for  P) is provable in S. ~s 

Corollary. No N A E  or nontrivial R A E  wffs are provable in S i f  P & Bel. 

Thus if Bel is formalized (defined) as Thm,  then no nontrivial R A E  wff is a 
theorem of S. This is stronger than Montague 's  result that some R A E  wff will 
fail to be provable (i.e.,  schema T in its full form clashes with rule N).  Now we 
are faced with the fact that each instance of schema T (except trivial ones) 
clashes with the Thm interpretation of Bel. 

What is going on here? After  all, if a system (or reasoner) g does happen to 
have beliefs or theorems that are true (in some standard interpretation for 

~' This is a very striking result that seems counterintuitive at first. One consequence is that n o  

wff of the form ~ P a  can be a theorem of S if S is consistent. This also arises out of G6del's 
Theorem on consistency proofs, which is easily proved from Lob's theorem and conversely. 
G6del's result--his Second Incompleteness Theorem-- is  that 7 (3x ) [Thm x & Thin 7x ]  is not a 
theorem of S. 
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which Thm has the standard meaning), then all wffs Thm a .--~ a will also be 
true in that interpretation. But why then cannot g be made to prove this, since 
it is true? Well, on our suggested intuitions from Section 1, g can come to do so 
(by being given this extra information), but in the process g will change (as a 
formal system) and Thm will then characterize what g was, not what g is. Put 
differently, the result of L6b tells us g cannot know Thm to capture precisely 
its means of drawing conclusions; in fact it will not as soon as g thinks that it 
does! Or in AI  terms, an ideal 36 g can never fully catch up declaratively with its 

• 3 7  
own procedures for drawing conclusions. For instance, the wff Bel0  = 1 
.--~ 0 = 1 will not, by L6b, be provable in S, even though it will be consistent 
with any reasonable such S. Now if we extend S to 

S'  = S + Bel0  = 1.---~0 = 1, 

S' will be consistent but then Bel cannot be a provability predicate for S'  
(unless S'  is inconsistent)• Thus provability predicates are static: their proper- 
ties do not remain invariant over additions of even very modest new introspec- 
tive information. 

Note that -7 Pa v -7 P-7 a is a kind of consistency statement for a provability 
predicate P. So -7Bel a v -TBel 7 a  can also be regarded as a kind of self- 
consistency belief. Now, while this may in general be too strong for a realistic 
agent g, still certain cases of it seem unassailable. For instance, -7Bel 0 = 1 
should be concludable by g, on the basis that -70 = 1 and that Be1-70 = 1. Yet 
L6b precludes this for provability predicates. Thus we separate two studies: 
static provability systems, and dynamic introspection systems that allow for the 
incorporation of new beliefs while retaining invariant general or generic 
information about beliefs as a whole. The latter requires giving up provability 
predicates as models for Bel; in their place we substitute what we shall call 
"introspection predicates." 

It is true that L6b's  Theorem applies to more than simply Thm; any 
provability predicate P(x) gives us ~--7Pa for any a. However,  the two 
postulates for a provability predicate in addition to rule N, namely Poslnt and 
schema K, are not ones we should necessarily assume for Bel. That is, even 
though they may be true about g's reasoning, they are not facts g will 
necessarily know about itself. We then have the following result, toward a 
dynamic theory of belief. 

Theorem 7.2. Let S be any consistent qualifiedly substitutive first-order theory 
not including the predicate letter Bel in its language, and let A E  be any set o f  

36 I.e., consistent, logically omniscient, and knowing sufficient arithmetic. 
37 m similar notion is exploited in [29] to characterize certain forms of default reasoning. Also 

Konolige [17] treats a similar theme from a different formal perspective. 
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Moorean or reverse auto-epistemic wffs over S. Then there is a consistent 
extension D Y N A ( S )  in which all A E  wffs are provable. 

Proof. Let  M be a model  for S, and then form a model  M '  of  S + A E  by 
interpreting Bel as truth in M;  this will satisfy all auto-epis temic wffs of  AE.  
For  given a wff Bel a .---* a ,  if a is t rue in M, then a (and hence Bel a .---* a )  
already holds in M ' ;  and if a is not  true in M, then Bel cr is false in M '  and so 
again Bel a .---~ a holds. For  a wff a ---* Bel a ,  if a holds in M '  then it also holds 
in M and so Bel a is t rue in M' ,  making a ~ Bel a true in M ' ;  and if a does not 
hold in M '  then a ~ Bel a holds trivially. Then  the theory  of  M '  extends S and 
has all wffs in A E  as theorems.  

Corol lary  7.3. D Y N A ( S )  above can be taken to obey D Y N A ( S ) } - B e l  a 
whenever S ~ a. 

Proof.  The same model  M '  in the p roof  of  T heo rem 7.2 is a model  of  Bel c~ for 
all theorems u of  S, and so again the theory  of  M '  serves. 

It is necessary to restrict S and A E  as above,  namely  S must not contain the 
symbol Bel, so that A E  will not  contain wffs in the language of  S. 3~ If a were 
allowed to be any wff in the extended language including Bel, then we could 
easily create Liar-type wffs and run into Tarski 's  theorem.  39 But we have 
already done  what Thm (or any provabili ty predicate) cannot  do,  in having 
even one nontrivial auto-epis temic belief present.  Note  that in modell ing Bel as 
provabili ty for S, we have not made Bel the same as Thin, for Bel is in the 
language of  the extension S +  AE ,  not  of  S. That  is, Bel is not  Thm for 
S + A E ,  and so L6b  does not apply to the extension. But  by the same token,  
Bel then is not an introspection predicate in the extension either. 

Do  we get similar results to S T A T ( S )  for cats and BB here? Yes, f rom 
Corol lary  7.3, letting S have the G K  schema for True,  and defining Know a be 
Bel a & True  a as before,  we have: 

D Y N A ( S )  ~- K n o w ( C  v ~ C ) ,  

D Y N A ( S )  ~ K n o w ( B B  v --qBB) , 

D Y N A ( S )  ~- Bel(c~ v -7 c 0 for all wffs c~ in the language of  S. 

Some natural cases have been missed, since we are working with a restricted 

3s And thus Corollary 7.3 does not  provide the full rule N for Bel. 
39 Or Montague's theorem; e.g., from M A E  wffs we would get rule N, and from R A E  wffs we 

would get schema T, making the by now familiar deadly mix. 
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language in which there is no nesting of belief or knowledge. Thus we still have 
not achieved our goal of making g highly introspective as to its own beliefs. In 
particular, rule N is present only in very restricted form, applied to theorems of 
S but not to the extension in which the predicate Bel enters the language. Is 
anything else lacking? What might we want, for Bel to be an introspection 
predicate? Several things may suggest themselves. However,  among the sim- 
plest is what I shall call the double-N rule, NN, which amounts to our familiar 
rule N from $5 and its converse N 1, that is, a is a theorem of g iff Bel a is a 
theorem of g. Thus g can recognize (prove) it has a as a theorem (i.e., g can 
prove Bel a) ,  precisely when it really does have a as theorem. This makes Bel 
in some sense "correct ."  Whether  such a g is still realizable as a purely 
first-order theory is another  matter. We are using rules of inference (N and its 
converse) outside of standard first-order logics, unless the logic in question 
obeys NN as a consequence of its axioms (note, for instance, that schema T in 
a theory makes N - '  is redundant) .  Thm does happen to obey NN, although 
due to L6b this will not help us here. 

Definition 7.4. P(x) is an introspection predicate for a theory S if it obeys rule 
NN: 

S ~ - B e l a i f f S ~ a  for a l l w f f s a .  

Lemma 7.5. I f  P and Q are introspection predicates for S, then for every term t, 

S ~- P(t) iff S ~- Q(t). 

Proof. Trivial. 

It might appear from Lemma 7.5 that at most one predicate (up to 
equivalence) could satisfy NN, thus forcing it to coincide with Thm. For NN 
seems to characterize fully just what atoms of its associated predicate (e.g., 
Bel) can hold. After all, Bel a will be forced on g as a conclusion whenever 
(and only when) a itself is a conclusion. This might then seem to limit our 
formal choices for Bel very severely, indeed perhaps force us back to Thm and 
the loss of simple A E  wffs. However ,  this is not necessarily the case, and leads 
to an open problem below. Roughly, L6b might not ruin our chances at an 
auto-epistemic formalization for Bel, because there might co-exist more than 
one introspection predicate for the same theory. 4° 

Now we might ask whether introspection should go even further than than 

40 The beliefs of g will still be (the same as) the theorems of S; but it is not obvious that this 
necessitates, say, S ~ Bel ~ .---~ a iff S ~ Thm a .---~ a,  despite Lemma 7.5. 
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our new definition. In particular, the following may seem reasonable to 
consider: 

Definition 7.6. A theory S with introspection predicate Bel is fully introspective 
if whenever a wff a in the language of S is not a theorem of S, then -7Bel a is a 
theorem of S. 

A fully introspective reasoner then would always be able to tell correctly for 
every wff whether it believed it or not: S ~- Bel a or S ~- -TBel a for each c~. 

Now, such a reasoner,  if consistent and knowing sufficient arithmetic, would 
have a non-recursively-enumerable set of theorems. Still, it may be of epis- 
temological interest to know that in principle such reasoning could be en- 
visioned. However ,  it is not to be. 

Theorem 7.7. 41 Every fully introspective qualifiedly substitutive first-order 
theory S is inconsistent. 

Proof. We form BB as usual, so that BB ~ 7 B e l  BB is a theorem of S. Now 
either BB is a theorem of S or it is not. If  BB is provable,  then (rule N, from 
Bel 's being an introspection predicate) so is Bel BB. But also from the 
biconditional we get ~ B B ,  a contradiction. Suppose then that BB is not 
provable in S. Then by negative introspection we get -TBel BB, hence (from 
the biconditional again) BB, and finally (rule N)  Bel BB, contradiction. (Note 
that we used only rule N, not full NN, so actually we have a stronger result 
than the stated one.) 

We seem to be stuck then with (at best) the more modest  introspection 
notion of rule N N  for Bel. To recapitulate: static notions of introspection as in 
Thm are subject to L6b's  Theorem while auto-epistemic versions of Bel ought 
not to be. We can do pretty well in a static (Thin- and NN-based)  theory of 
belief, if we avoid consideration of A E  wffs (Theorem 6.2). And conversely we 
can do pretty well in an A E  theory of belief if  we avoid N N  (Theorem 7.2). 

It is getting both together that remains problematic.  We offer as a "Belief 
Doctrine" that Bel should satisfy both N N  and a wide variety of cases of M A E ,  
R A E ,  and NAE.  It is then worth seeing whether  some introspection predicate 
(other than Thm) might achieve this. In short, what kind of theories D Y N A ( S )  
obey rule NN? We know that if Bel is such a predicate,  and if it obeys (within a 
theory S) schema K, then by L6b it cannot obey PosInt and so will not coincide 
with Thm. In our terms Bel would be dynamic and generic, failing to 
correspond in detail to the actual reasoning mechanisms of g. But we have 

4~ This was inspired by a conversation with Richard Weyhrauch, Sardinia, October 1986. This 
result is not necessarily negative. Commonsense reasoners may well be inconsistent [29], and yet 
have interesting formal properties [6]. 
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argued that this is appropriate  for introspective reasoning. I leave the existence 
of such an AE-  and NN-based (but not Thm-based)  Bel as an open problem: 

Open Problem. What  subsets of M A E ,  R A E ,  and N A E  are consistent with 
NN? 

Regarding A E R  in particular, we know of course ~ is fine ( take Bel to be 
Thm),  and that using all reverse wffs is never so (Montague).  In fact, we 
cannot include Bel BB ~ BB for the same reason. But is there any nonempty  
subset of R A E  that is consistent with NN? If  so, then there can be more than 
one introspection predicate for one and the same theory: a provability predi- 
cate will not be the only choice, despite L e m m a  7.5. 

In terms of our notion of flattened layers, certain global statements such as 
Poslnt and K will not allow mundane local statements such as R A E  to be 
present.  If  we " force"  them into an extension, we simply end up changing the 
theory so that we are, after all, looking back at the earlier "ent i re ty"  rather 
than the present (new) one. The Open  Problem then is asking how much local 
perturbat ion (individual instances of simple A E  wffs) we can get away with and 
yet preserve a useful amount  of globality in the form of rule NN.  Note that we 
did get a weak answer, in the Corollary 7.3, since rule N is obeyed there for 
wffs a that do not themselves contain the symbol Bel, and this already gives a 
number  of cases useful in commonsense.  

8. Conclusions 

When a formal language is endowed with self-referential capabilities, especially 
in the presence of unqualifiedly substitutive mechanisms, difficulties of con- 
tradiction can easily arise. This holds for modal as well as (pure) first-order 
logics. However ,  the features of self-reference and substitutivity appear  fun- 
damental  to any broad knowledge representat ion medium. Moreover ,  when 
remedies are taken,  the modal  t reatments  seems to offer no advantage over  the 
first-order ones, and indeed the latter carry advantages of their own. 

One can argue that although an agent g cannot know its beliefs to be true, 
still they might be true by good luck (or by the clever design of the agent 's  
reasoning devices by a godlike artificial intelligencer), and all g ' s  inference 
rules might be sound as well. But then, if g is an ideal reasoner,  wouldn' t  it be 
appropriate  for g to believe this too? Wouldn' t  such an ideal g be able to 
believe B e l a . - - - ~ a  for all a ?  The odd answer (which we have seen in 
Montague 's  [23, Theorem 3]) is: not if g ' s  beliefs are to be consistent, which of 
course they must be if they are to be true. But this can be seen as an overly 
bold flattening of an essentially layered concept of Know. Of  course, Thm is 
also a kind of flattening, but one in which no new information is to be brought 
in, by the very concept of Thm which pins down precisely what is allowed. 
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In fact, L6b shows us even more: that schema T can be allowed for no c~ 

except trivial cases, unless we give up provability as the measure of belief; then 
PosInt and other vestiges of pinned-down provability must be left aside. But 
since auto-epistemic reasoning depends on (certain instances of) schema T, 
agents will have to rely on dynamic (perturbation-tolerant) reasoning about 
their own beliefs. They cannot fully introspect; in particular, they will have to 
rely on pragmatic means to tell, for instance, that they do not have a certain 
belief. 

I have been occupied here in showing that, after all, a flattened picture of 
commonsense may be available, a once-and-for-all set of wffs closed under 
certain procedures. This is what DYNA(S)  really does, and it does so by 
leaving out wffs that might force the meaning of Bel to no longer be an 
introspection predicate. That is, the tradition of research that I have been 
exploring throughout this paper is in the mold of finding a fixed set of 
conclusions that g can believe, but allowing a reasonable amount of introspec- 
tive self-reference at the same time. 

Perhaps ironically, the static and flattened provability predicates, such as 
Thm, which obey PosInt and schema T, and which were found to thwart some 
attempts at a commonsense view, are the ones that would force a major change 
in any agent dealing with them, in a cycle of ever-expanding interpretations of 
its growing mechanisms of proof. Thus our dynamic version of Bel is not really 
one for a real-time agent at all. The conclusion, then, is that people have 
sought fixed formulations for belief using what are intrinsically nonfixed 
notions of self-description. For a single (and hence flattened) theory of belief 
to be viable, it must deal with predicates that are tolerant of self-description in 
a context of simple A E  wffs; such theories are what I have called dynamic. The 
real trouble is that if Bel is made to look at itself closely enough, then it ends 
up describing a theory different from the one being investigated. This is fine if 
a cycle of ever-stronger theories is the focus of interest. However,  single 
theories are vastly simpler to study, and so it is worth seeing how far this 
flattened approach can be carried. 

The formalization of (fixed theories of) knowledge and belief still faces 
conceptual difficulties, especially in the case of agents whose beliefs are closed 
under logical consequence. In particular, it is unclear whether rule N N  can be 
made consistent with reasonable commonsense instances of schema T. But it 
also appears that the study of agents with limited reasoning power, as has been 
initiated in [6, 7, 8, 19, 26, 27] is in great need of further study. Key to those 
approaches is the absence of the rule of inference "from c~ infer Know c~" (with 
respect to a deductive engine which is sound and complete). Although some of 
these latter efforts utilize modal formulations, our work here strongly suggests 
that this is more a matter of taste than any real technical distinction, and thus 
that it may be preferable to stick with a common formal language to facilitate 
comparison in future work. 
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