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A B S T R A C T  

This article discusses various issues surrounding the general debate on knowledge 
representation methods and argues in favor of  the idea that while many methods are 
necessary, there also must be a kind of  unified nature to the enterprise if  it is to serve 
the needs o f  intelligence. Specific points include the misleading distinction between 
probabilistic and logical reasoning regarding the notion of  truth and also some 
matters of  nonmonotonicity. An effort is made to sample the broad range of  
approaches in the literature, with an eye toward such a unification. 
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I N T R O D U C T I O N  

The need for a highly expressive language in artificial intelligence, particu- 
laxly in formalizations of  commonsense reasoning, is widely recognized. That 
such a language will necessari ly incorporate many styles of  reasoning seems 
unaxguable. In particular,  reasoning about uncertainty is very important. Many 
people have been discussing these issues for decades,  and the literature has 
become quite sophisticated. Particularly t roublesome is the relationship of  
formal treatments to real-world prediction, which also is surely a large part of  
any test for appropriate commonsense reasoning. The situation is complex,  

* This paper is based on a much shorter commentary (Kanal and Perlis, [1]) that critiques 
Cheescman [2]. We will occasionally refer to his paper, but our points now are much broader than 
simply a rejoinder to his stance. 
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involving ramifications of logic, probabilities, logical probability, probabilistic 
logic, subjective probability, and some 46,656 different varieties of Bayesians 
(Good [3]). 

It appears to be agreed that many approaches are important in dealing with 
complex information. However, there is a need to integrate results from these 
approaches. Thus, for example, temporal information and probabilistic informa- 
tion both may bear on a problem, and special-purpose temporal and probabilistic 
reasoning engines may be used. However, each will provide "answers" within 
its special framework. This leaves us with the meta-problem of interpreting such 
answers in a unified context relevant to the original problem. 

Suppose, for instance, that the probability of being involved in a car accident 
in 1980 can be calculated with respect to certain priors. This does not mean it is 
the same as the current probability (in 1988) given today's priors. A temporal 
reasoner may be used to keep track of "now"  in an appropriate way, while a 
probability engine calculates the "odds"  given whatever priors. If an answer of 
7.5% is given to some probability query, it must be tagged with additional 
information as to what the temporal context is, and finally a meta-reasoner (a 
uniform accounter) must decide what significance to attribute to the various 
results. Thus it may or may not be deemed appropriate to use a 1980 probability 
in 1988. This again can lead to a probabilistic calculation as to the chance that 
the 1980 figure is a good fit to 1988, but note that it can be performed only on the 
basis of accounting for the temporal as well as probabilistic aspects. In 
particular, it would be strained and of dubious benefit to assign a probability to 
the statement that 1980 occurred before 1988. 

One way to view this example is that knowledge about priors is itself a 
sophisticated matter, independent of calculational methods for probabilities. Just 
how one decides what the priors for a given situation are, such as whether or not 
they represent current priors or 1980 priors (and how 1980 priors relate to 1988 
priors), are issues not in themselves settled by simply calculating a probability. 
The whole picture must be assessed, in ways not currently understood but 
clearly in ways that will have to make use of various kinds of information. That 
is, uniform accountability is needed in order for there to be cooperation between 
methods, and this in turn requires a language for assessing them. 

This language need not be used by each method, however. Viewing the 
different methods as the petals of a flower, we postulate a central pistil that 
serves both as communication bus and as arbiter between the petals. The central 
pistil must represent all methods in its own language. Of course, it is in principle 
possible to envision a hierarchy of ever-more-encompassing languages, account- 
ing for wider and wider ranges of reasoning modes, with no one superlanguage 
encompassing all. However, in that case, there would be a theoretical union to 
this hierarchy that could serve as a kind of universal language; moreover, 
sufficiently "h igh"  languages in the hierarchy would, from the perspective of 
any small number of more modest modes, seem highly general. Thus, in any 
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event, a very ambitious level of general accountability appears essential to any 
kind of reasoning organized toward unified goals in an intelligent way. 
Otherwise we simply have various petals (modes), none of which knows what 
the others are doing. 

PROBABILITY,  LOGIC,  AND UNCERTAIN REASONING IN AI 

Earlier in the history of AI, methods of approximate or uncertain reasoning 
including probabilistic and fuzzy-set approaches were largely ignored. The 
situation is no longer so bleak. For example, recent literature includes Kyburg 
[4], Kanal and Lemmer [5], Nutter [6], and Halpern and Rabin [7]. Recently, 
some have advanced probability as the one framework best suited for handling 
reasoning in the context of uncertainty (Cheeseman [2]). But the issues regarding 
probability as a particular means for addressing uncertainty are not cut-and- 
dried. The foundational status of probability theory is very much in debate. 
Some good references to the many sides of this are given by Fine [8], Good [3], 
Renyi [9], and a most interesting but apparently not well known book, Knowing 
and Guessing, by Watanabe [10]. 

In commonsense reasoning we are often not in a position to insist that a 
statement is absolutely true, but rather that it carries a degree of uncertainty. 
Now this is widely accepted and the basis for much research in AI from many 
different directions. There are on-going attempts to model this both with and 
without the explicit use of numbers to measure uncertainty. However, it is 
instructive to pursue the suggestion to use probability. A statement such as that 
"the probability of Fx given Bx in context C is p "  is a statement of (presumed) 
fact (about F, B, C, and p) and is easily written as 

prob( 'Fx' ,  'Bx & C ' ) = p  

(with quasi quote marks to ensure that propositional or sentential constructs Fx 
and Bx  are properly recorded as terms; see Perlis [11, 12] for details of quoting 
in regard to beliefs). A more general form is as follows: 

(*) p<_prob('Fx', 'Bx & C')<_q 

But the probability statement (*) itself is then apparently one we are being urged 
to take seriously, as true (about F, B, C, p,  and q). Thus (*) is a kind of axiom 
that is then subject to ordinary (logical) modes of inference. For instance, 
presumably all would agree that it would be quite awkward to have both (*) and, 
say, 

(**) q+O.3<_prob('Fx', 'Bx & C')_<0.9 

in the same reasoning system (where, say, q < 0.6), simply because they are 
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logically contradictory. There is then an underlying arena of full (logical) truth, 
even in probabilistic reasoning. 

Now one might acknowledge this while denying that the internal expressions 
such as F x  have definite truth values in common sense. But there are several 
objections that can be made to this. First, if the form of the internal expressions 
such as F x  allows them to take the form of a probability statement itself, such as 
(*), then what justification is there for saying (*) is true? Second, the conditions 
B x  and C are used as if true. Third, Bayesian alternatives seem to presuppose a 
fixed set of primitive (atomic) notions underlying all of common sense. Fourth, 
truth does not get in the way of attempts to model nonmonotonicity in logical 
terms; rather these attempts aim at avoiding the qualification problem of 
impossibly large numbers of special-case assertions, and a probability approach 
will suffer the same problem. Fifth, there are clear examples of commonsense 
statements that are intended to be taken as absolutely true. Sixth, reasoning 
about actions seems to demand a combination of probabilities and outright truth 
assertions. We will examine each of these in turn, especially with regard to our 
concern for uniform accountability. First, however, in the next two sections we 
attempt to outline approaches to modeling inquiry in general, and present some 
models for structure and uncertainty. Then we amplify on the six points above. 
Finally, we summarize our views. 

APPROACHES TO MODELING INQUIRY 

Churchman [13] has categorized approaches to the design of inquiring 
systems in terms of some underlying philosophical bases. Thus he speaks of 
Leibnizian, Lockean, Kantian, Hegelian, and Singerian modes of inquiry. He 
and his former students (Mitroff and Turoff [14]) have discussed the 
relationships and appropriateness of the different modes of inquiry to well- 
structured (i.e., information-rich and theoretically understood) and ill-structured 
problem domains and also to limited versus open-ended objectives of inquiry. 

A key virtue of Churchman's categorization is that it helps us see that different 
modes of inquiry and different models are more natural or useful in different 
problem domains, depending on our knowledge and on our view of where truth 
is likely to reside. Thus if we think that "truth is in the theory" and a good 
model is at hand, the Leibnizian model of inquiry, much used in the physical 
sciences, is most appropriate. In current parlance, this might be termed a top- 
down or model-directed approach, wherein the hypotheses are defined a priori 
and the data being sought are predicted from the model. On the other hand, if in 
our view, "truth is in the data," then the Lockean mode, which characterizes 
statistics and exploratory data analysis, is perhaps more appropriate, leading to 
bottom-up or data-driven methodologies. 

In practice, one more often encounters the Kantian mode of inquiry, wherein 
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"truth is partially in the theory and partially in the data," and one pursues a 
model-directed, data-confirmed, data-driven, model-confirmed feedback ap- 
proach to refining and selecting among closely competing models that may 
characterize a problem. 

The Leibnizian, Lockean, and Kantian modes of inquiry represent much of 
what is done in the physical and social sciences and in engineering and statistics. 
The Hegelian or dialectical mode of inquiry is more appropriate to ill-structured 
or less-controlled problem domains. Here one's world view determines how to 
interpret a body of data in order to get information. Thus " t ruth"  emerges from 
a logical clash between a thesis and an antithesis, leading to a synthesis. 
Examples from problem domains such as management, economics, law, and 
politics are easy to cite. The point is that there are many approaches to inquiry, 
and, depending on the problem domain, one may be more useful than another. A 
similar statement can be made about modeling structure and about modeling 
uncertainty. Should one then try to use one approach, namely, probability, to 
model all uncertainty? 

STOCHASTIC AND NONSTOCHASTIC MODELS FOR 
STRUCTURE AND UNCERTAINTY 

Numerous models have been proposed for generating and describing 
stochastic, nonstochastic, and mixed structures and for representing uncertainty 
within a given context. It would take us too far afield to attempt to do justice to 
the vast literature on such work. Here we simply cite some of the many topics 
that have been addressed, with a few references where additional information on 
such models and their relationships may be found. 

In addition to the references to Fine [8], Good [3], Watanbe [10], and others 
previously cited, numerous references to the literature on logic, probabilities, 
logical probability, probabilistic logic, subjective probability, nonnumeric 
measures of likelihood, fuzzy logic, and the foundations of probability may be 
found in three volumes of Uncertainty in Artificial Intelligence (Kanal and 
Lemmer [5, 15] Levitt et al. [16]). 

Of increasing recent interest are models for stochastic structure known as the 
Markov mesh and Markov random field models (Kanal [17], Geman and Geman 
[18]) and network models for probabilistic inference termed causal Bayesian 
nets (Pearl [19]). Computer science and artificial intelligence have contributed 
some very novel grammar and graph models for representing structuring, 
including problem-reduction models, Petri nets, attributed grammars, and 
semantic nets (see Shapiro [20]). Then, of course, there are various forms of 
logic (e.g., first-order, modal, temporal--again, see Shapiro [20]). The potential 
combinations of these various approaches are clearly numerous. 

It should perhaps be apparent that just as no single model of inquiry is well 
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suited to or natural for all problem contexts, no single characterization of 
uncertainty is likely to be suitable for all the many contexts of generative and 
descriptive models of stochastic and nonstochastic structure. Thus it is not 
surprising that several approaches to modeling uncertainty have been proposed 
and many surveys have been written on this subject (for example, Bhatnagar and 
Kanal [21], Berenstein et al. [22]). Nevertheless there appears to be a school of 
thought that the only way to model uncertainty is through probability. We are 
reminded of the aphorism: I f  the only tool you possess is a hammer, then the 
whole world looks like a nail. 

This is not to say that a probabilistic approach to uncertain reasoning is not 
valid in many contexts. Spieglhalter [23], in a section titled "Probability--Is it 
appropriate, necessary, and practical?" and in subsequent sections, makes a 
very good case for using probabilistic reasoning, in particular a subjectivist 
Bayesian approach, in characterizing predictive expert systems. Certainly, 
attempts to relate various ad hoc uncertainty calculi to established formal 
methods of reasoning such as probability need always to be encouraged. But to 
argue that probability is the best way to model uncertainty in all contexts is to 
ignore many aspects of reasoning, some of which are brought out in the 
following sections. 

EPISTEMIC ISSUES A N D  ACCOUNTABILITY 

Regarding the first of the six "objectives" we raised earlier, we ask whether 
the entire expression (*) is to be regarded as a belief of reasoner g, or is F x  a p -  

to-q-degree belief of g if B x  & C represents all g knows? It appears that at least 
some expressions of the form (*) must be available to g for reasoning. And these 
presumably are taken at face value. For instance, suppose an explanation of a 
previous choice is needed: Why did g choose A over B? Perhaps because it was 
more likely to achieve g ' s  goals. In drawing such a conclusion, g reasons abou t  
the probabilities! So the information that a reasoner needs, even a probabilistic 
reasoner, includes the probability numbers and even statements about those 
numbers. Of course, g might assign a degree to these as well, but this leads us 
into an infinite regress: Either we stop somewhere with an expression g is 
willing to use at face value, or we perpetually force g back to self-doubt of any 
expression whatsoever. Thus, in order for g to be able to account for its own 
reasoning, its belief set must contain meta-information about how it reached 
conclusions. Thus the variety of methods employed must allow a uniform 
representation, even if in detail they differ markedly. As another example, if 
P(flying xlbird x) = 90%, doesn't this strongly suggest that (3x)(bird x & 

flying x) (as true, and not merely possible)? And conversely, is it not the 
existence of nonflying birds that makes the probability statement useful? This 
seems to say that both probabilistic and nonprobabilistic statements are 
necessary and that they are closely interrelated. 
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Thus probabilistic information should be made to fit neatly into a reasoning 
system so that logical consequences can be drawn from the probabilities. What is 
needed is a graceful accountability for g's reasoning, so that the (undeniably 
many and complex) modes of reasoning can be related to one another by g, and 
further conclusions by g can be based on g's analysis of what g has thought. This 
is hard; we contend that it is one of the major stumbling blocks in efforts to 
capture commonsense reasoning. Yet much more effort seems to be expended in 
perfecting individual modes and arguing their primacy than in looking for 
flexible blends. The need for accountability suggests that whatever procedures 
and whatever assertional representations are available, some aspect of the 
reasoning must have uniform access to a large portion of these so that it can 
make general judgments about the reasoning behavior as a whole. Otherwise 
there would seem to be no possibility of our agent g responding to the question 
"Why did you do that?" with something like " I  did that because I thought X- Y- 
Z; and it was a mistake; next time I will do U-V-W." That is, the various 
methods employed by g(X, Y, Z )  must be at least somewhat accessible to 
looking backward and to interrelatability sufficient to allow intelligent conclu- 
sions. The language in which this occurs need not be that in which each separate 
reasoning method occurs; but the accountability language must be able to encode 
adequate portions or summaries of the others. 

In particular, uncertainties and certainties should satisfy such a requirement. 
Thus one area for research is the graceful incorporation of numerical 
probabilities and nonnumerical approaches to both uncertain and certain 
(traditional) modes of reasoning. We will explore some issues in the interrelation 
of (traditional) logic and (numerical) probability in what follows, as a 
preliminary step in that direction. We note that logic might be an interesting 
candidate language of accountability; this in no way would mean that other 
methods should be constrained to a formal logical form, but simply that suitable 
summary features of those methods should be encodable in it. As one further 
indication of what we have in mind, consider that algorithms used in computer 
vision do not resemble theorem-proving or formal logic; and yet the results of 
such algorithms must be representable in declarative form for us to reason about 
them--for example, to decide to take action from having seen a missile 
approaching. Note that this particular suggestion strongly resembles procedural 
attachment (Nilsson [24]) and is contested by Pentland and Fischler [25]. 

T R U T H  A N D  BELIEF 

Now to the second objection, that the very use of Bayesian probabilities relies 
on a sense of truth of basic propositions. For consider Cheeseman's [2] 
conclusion that " I  might decide to throw out the milk based on the probability 
value (95 %) using the information [that it has been in the refrigerator for three 
days and there is a bad smell]." Now, clearly he has decided that this is the 
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information to use (to regard as true about the real-world context) rather than his 
other scenario (in which there is no bad smell and the probability is then only 
1%). So whenever probabilities actually are used, one assesses what conditional 
assertions actually are to be trusted for the given situation, which amounts to 
regarding those conditions as representing the reasoner's unconditional beliefs 
as to the truth. For if the reasoner hedges and attributes further probabilities 
here, then the computation gets pushed back until at some point a final stance is 
taken. 

Now, one may argue that there is no problem with true primitive (atomic) 
assertions but rather that it is quantified logical conditionals that are not to be 
accorded full truth in commonsense settings. Thus perhaps it is only well-formed 
formulas (wff's) such as ( v x ) ( P x  --. Q x )  that are never really true or false but 
only contingent. But here there are clear counter examples. We will present 
these below in our discussion of point five. 

PRIMITIVES OF COMMON SENSE 

This brings us to our third objection--namely, that there seems to be no fixed 
set of primitive or atomic concepts that underlie all of commonsense reasoning. 
To be sure, some have argued otherwise (e.g., Schank [26]). But in order to 
employ Bayes' theorem, we first need to be given the prior probabilities, and the 
calculation from these of some further probability had better not conflict with 
already given information. Thus a successful use of the Bayesian approach 
depends on assuming as valid certain prior probabilities or distributions or 
empirical data, and then compound probabilities may be calculated from these. 
But if instead we are given various compound probabilities, there is no guarantee 
of consistency with Bayes. Moreover, even if there were an effective way to 
guarantee this, it would not be very useful for commonsense reasoning unless 
Schank turns out to be right about a set of universal primitives, and this appears 
unlikely. Many commonsense concepts are intertwined rather than defined in a 
neat hierarchy. 

NONMONOTONICITY 

Our fourth objection has to do with nonmonotonicity. Finding the whole of 
what is known about F, as is required in determining the context C, amounts to 
precisely the usual default problem. How is the totality of relevant things 
determined? The brute-force approach is to enumerate all special cases, such as 
that each of a very large number of conceivable situations is not to be taken as 
relevant. This is impractical and amounts roughly to the frame problem or the 
associated qualification problem. The logical approach has at least addressed this 
issue, and circumscription even has a computationally attractive handle on it. 
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Thus relevance is, in a sense, t h e  issue in nonmonotonicity, and it is unclear that 
probability has much to offer on this matter. 

For instance, if P(fl ieslbird)  = 90%, and we seek P(f l ies lbird  & ostrich) 
and we don ' t  know anything else, how can we decide that ostrich is irrelevant so 
that still P = 90%? That is, if we know nothing about ostriches (not even that 
they are birds), it is important to recognize that nothing is known and that 
therefore a default should be relied upon. Bayesian theory will not help us out; 
rather it will leave us high and dry with a question--What are the values of  
prob(flies I ostrich), prob(bird I flies & ostrich), prob(bird I ostrich)?--even if we 
know ostriches are  birds, so that the latter two numbers are 100%. ~ We still get 
no useful answer. One might want to assume that an ostrich is a very typical 
bird, in the absence of  contrary information; but what mechanism does this? In 
the absence of  contrary information, we (by default) make certain probability 
assumptions. 

One might argue that g should avoid any conclusion if certain probabilities are 
missing (e.g., for ostriches). But this is surely no good. If  instead of  Ostrich, we 
were told Blinked-eye(x), that x blinked its eye, should we also refuse to 
calculate the chance that the bird flies? Maybe only ostriches have eyelids, in 
which case, in fact, x will not fly. But we do not know this. As far as we know, it 
is a totally irrelevant bit of  data. How do we decide the irrelevance? It is not 
merely a matter of  s e a r c h i n g  the  whole database as Pearl says; it is worse. We 
must determine that no conclusion as to the flying status of  x is provable from 
anything in the database; that is, we must decide that flying is independent of  eye 
blinking and the rest of  hte data. Now this is in general an undecidable problem, 
and in special cases it is being addressed head-on by the various nonmonotonic 
formalisms. Cohen [28] and Grosof  [29] consider this point. 

D E F I N I T I O N A L  BELIEFS 

We now comment on our fifth objection. Consider definitional beliefs, such as 
democracy is a form of  government, or cabbage is a kind of  vegetable. These are 
not mere typicality (or plausible but uncertain) statements, and they (and 
countless more like them) are surely part of  everyday commonsense reasoning. 
For a more detailed example, if Bob is a state employee, and if state employees 

1 This is nontrivial, however. As Pearl has noted [27], the material implication P --* Q does not 
really correspond to the (single) conditional probability prob(QxlPx ) = 1, due to the implicit 
presence of all conditioning information in the latter; that is, it is assumed that P x  is all one knows 
when Qx is concluded from the given statement. This is the source of the supposed nonmonotonic 
component available in probabilistic reasoning. However, one can simulate the material implication 
as follows by the use of many conditional probabilities: (vX)(prob(QIP&X) -~ 1). This says that 
no matter what other information is present, the presence of P necessitates that of Q. Thus, there is 
a precise connection that can be expressed formally, but it is a complex one. 
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are not eligible to win the state lottery, then Bob is (literally and absolutely) not 
eligible to win the state lottery. This is, as far as we can see, a simple matter of 
ordinary reasoning that does not involve probabilities,and that would be strained 
if couched in terms of probabilities. Again, if a student asks "are all carcinogens 
related to cancer?" the answer is (by definition) "Yes !"  

TAKING ACTION 

This still leaves us with the issue of when to actually go with a particular 
belief, in terms of taking action. Here presumably we want not only that things 
be weighed in various terms, but also that directives be given--for example, i f X  
then DO Y. Here DO can be a predicate symbol whose truth value is connected 
to, say, physical events that occur when DO is proved. The form of X may even 
be probabilistic, such as 

prob(Z, all-I-know)= .9 

Moreover, often the best plan is to seek more information before taking further 
action. For this it again is necessary to recognize one's ignorance. Suppose you 
want to catch a plane, and you know that on the average planes depart about 30 
minutes late, say with probability 95 % of being at least 15 minutes late. Are you 
going to plan to arrive late at the airport in the expectation that the particular 
plane you want will be late, or will you call the airport to verify this? What if the 
probability had been 99.99%? What about 50%? There seems to be a clear need 
for judgments as to information-gathering action, based on some kind of cutoffs. 
To be sure, there is a well-known formalism for this kind of situation, namely, 
decision theory. However, decision theory makes use of assumed losses, values, 
or utilities, which themselves are not statistical or probabilistic, and the 
calculated outcomes will generally lead to nonrandomized decisions. So decision 
theory is already something partly outside of probability theory. 

A probability is not an end in itself; it is information that can serve to guide 
further thought and action. One might, on the basis of information that a glass 
has fallen and that falling glasses often break, decide to ask (or find out) whether 
indeed it has broken, or at least to consider that it might have broken. Despite 
frequently expressed belief to the contrary, classical logic does not fly in the face 
of this. Indeed, given the axiom Fallen(glass), neither Broken(glass) nor 
--1 Broken(glass) follows, and in fact the given axiom is perfectly consistent with 
the additional axiom Possible('Broken(glass)'). This is very much in the spirit of 
McCarthy's characterization of circumscription as a rule of conjecture, and was 
the point of Perlis [30], where in fact the latter wff is derivable on the basis of 
the given axiom (alone). The truth orientation of logic is not tied to any 
particular view of the world, and certainly not to one of guaranteeing certainties 
about matters of empirical fact. The user of a logic has to design it via suitable 
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choice of predicates and axioms, including statements of likelihood and 
uncertainty if desired. See Nutter [6] and Halpern and Rabin [7] for recent work 
on this. 

SUMMARY AND CONCLUSIONS 

Pearl [31] gives a convincing use of probability in solving the Hanks- 
McDermott shooting problem [32]. However, there are by now many solutions 
to this problem; among the most impressive, to our thinking, are those of 
Lifschitz [33] and Haugh [34], which use ordinary circumscription. Thus once 
again various methods show themselves to be useful, and arguing that any one is 
necessarily the right one seems counterproductive. The mark of intelligence 
should be the ability to look at things in many ways and assimilate them into an 
informed and rounded viewpoint. Humans easily go back and forth between 
multiple analyses of problems, recognizing that here is a probabilistic insight, 
there a default, and over there a deductive consequence. When we encounter 
someone who has trouble shifting mental gears to incorporate another view, our 
response is to regard them as demonstrating a certain lack of intelligence in that 
area. 

We have claimed that truths are part of commonsense reasoning. This does 
not mean that we think a/ /wff 's  are necessarily to be taken as true or as false, of 
course. We grant that many commonsense assertions have associated degrees of 
acceptance and truth; but this is already widely acknowledged in AI. We are 
sympathetic in particular to the contention that probabilistic thinking has a role 
in commonsense reasoning. For example, Spiegelhalter's case for using 
subjective probabilities in expert systems that are subject to numerical evaluation 
is quite convincing. There are other (engineering) examples such as optical 
character recognition, where a Bayesian probabilistic approach is possible to an 
important part of the problem but is very awkward in comparison to a simple 
nonprobabilistic structural approach (Kanal and Chandrasekaran [35]). It is 
necessary to demonstrate the natural contexts and advantages for different 
approaches with clear detailed examples based on problems taken from the 
literature to afford comparison among approaches, and even more important to 
allow effective work on combining approaches flexibly. Approaches for a 
general accountability language have been suggested at various times. One is 
that of predicate calculus, strongly urged by Nilsson [24] in terms of procedural 
attachment. It is true that logic is a very expressive medium, and we have 
qualified sympathy with this choice. It is also plausible, however, that for certain 
purposes other means of expression may be more useful or that new forms of 
" logic"  will have to be invented to adequately accommodate a broad range of 
reasoning modes. 

As noted earlier, AI, and more generally computer science, have shown a lot 
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of  creativity in developing models for nonstochastic structures. In like manner 
there has been considerable creativity in stochastic modeling. The modeling of 
commonsense reasoning will take even more creativity, requiring more than the 
current approaches to probabilities and logic. We suggest that it is important to 
come up with plausible and detailed solutions to problems requiring multimodal 
approaches, with graceful accountability allowing reasoned conclusions from 
assessments of  past reasoning. Thus the variety of reasoning methods must fit 
into a kind of unification, a currently elusive effort. 
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