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to do with the underlying understanding of the func-tion of nonmonotonic reasoning than with the particu-lar details of existing frameworks. We then show that asimple idea, simple in its realization, solves these prob-lems. This not only greatly enhances the usefulness ofthe theories, but seems to bring them into much closerharmony with an intuitive understanding of common-sense reasoning.\Paradoxes" of NonmonotonicReasoningA study of the problems with existing theories of non-monotonic reasoning|Default Logic [Reiter, 1980b],Circumscription [McCarthy, 1980, ; 1986], and Au-toepistemic Logic [Moore, 1985]|presupposes at leastsome familiarity with those formalisms. Space limita-tions preclude reintroducing the formalisms here; theunfamiliar reader is referred to [Etherington, 1988] fora detailed introduction. Familiarity with the basics ofnonmonotonic reasoning should su�ce for most pur-poses in this paper.Di�erent variants of these formalisms have beenstudied for many years. For most of that time it wasbelieved that they (or at least some of them) cap-tured the essential ideas of nonmonotonic reasoningand that it would only be a matter of time before theycould be adapted to practical reasoning systems. Re-cently, problems have been noticed that seem to shakethese optimistic projections. Some of these|such asthe \Yale Shooting Problem" [Hanks and McDermott,1986]|seem more indicative of the di�culty of ade-quately axiomatizing even a relatively simple world;others seem more paradoxical, since the formalisms'basic mechanisms block the conclusions they were, in-tuitively, designed to produce.We briey recount four such \paradoxes" of non-



monotonic reasoning, and show how they a�ect thevarious formalisms. We then argue that the observedproblems can be viewed as stemming from a com-mon root|a misapprehension, common to all the ap-proaches, of the principles underlying this type of rea-soning. Once identi�ed, this de�ciency is readily cor-rected with simple tools whose bene�ts, we believe,easily outweigh their cost.The Lottery ParadoxThe �rst problematic example is the \Lottery Para-dox" [Kyburg, 1961; Perlis, 1986]. The lottery para-dox arises in situations in which the conjunction of aset of assumptions, each reasonable individually, is in-consistent with what is known about the world. Forexample, in the paradigmatic case, it is usually safe toassume that any particular ticket in a lottery will notwin|given the overwhelming odds against it. Assum-ing the lottery is \fair", however, the conjunction ofsuch an assumption for each ticket with the fact thatsome ticket must win is inconsistent.1To maintain consistency, some (or all) of the as-sumptions about tickets not winning must be fore-gone. Since there is no basis for determining whichassumptions to forego, however, any is as good as anyother, and none are unequivocally sanctioned. Thereare as many preferred models (or extensions) as thereare tickets, each with a di�erent ticket chosen as thewinner. Since nonmonotonic formalisms generally li-cense conjectures based on what is true in all preferredmodels (extensions), nothing can be assumed aboutthe individual tickets. The most that can be assumedis that if some particular ticket wins, it will be the onlyone.Counterexample AxiomsProblems also occur when there are counterexampleaxioms [Perlis, 1986] that assert that there are excep-tions to defaults. Counterexample axioms specify theexistence of individuals lacking some default property,without specifying their identities. For example, giventhe \birds y" default, a counterexample axiom mightlook like 9x: Bird(x) ^ :F lies(x). Circumscriptionhas trouble with such axioms because it stipulates thatthere are as few exceptions as possible, without neces-sarily determining which individuals are exceptional.Thus, any of a number of individuals might be excep-tional without changing the number of exceptions. Forexample, if we minimize the set of ightless birds in thetheory fBird(Tweety); 9x: Bird(x)^:F lies(x)g, wecannot conjecture that Tweety ies, since there is aminimal model in which Tweety is the only bird, andhence the ightless bird stipulated by the counterex-ample axiom. Even if we posit the existence of other1 We assume the set of tickets is �xed and �nite. Other,related, problems arise if not.

birds di�erent from Tweety,2 circumscription has noway to prefer Tweety's ying to that of any other bird.The obvious patch is to try to somehow distin-guish Tweety from the existentially-speci�ed ight-less bird, for instance by naming the latter (sayOpus), and replacing the original counterexample ax-iom by a Skolemized version such as: Bird(Opus) ^:F lies(Opus). However, F lies(Tweety) still does notfollow by circumscription unless the further axiom thatTweety 6= Opus is adopted. But this amounts to as-suming that Tweety is not the exceptional bird|whichseems to obviate the circumscription.Default logic and autoepistemic logic are less suscep-tible to counterexample axioms, since their conclusionscan a�ect the ontology, but they are not immune. Thepeculiar conclusions that sometimes arise, especiallyin the context of domain closure axioms3 or axioms re-stricting the reference class (e.g., Bird), are discussedin [Etherington et al., 1990].Everything is AbnormalYet another inappropriate result occurs when there aredefaults describing the typical values of a variety of(possibly orthogonal) properties for some class. If thatclass consists of several subclasses, each but one ofwhich is atypical with respect to a di�erent property,then current nonmonotonic formalisms will conjecturethat individuals known to belong to the class must be-long to the completely typical subclass [Poole, 1989].For example, imagine that birds typically y, sing,are drab, and build nests, except that penguins don'ty, swans don't sing, and mynahs don't build nests.Now if birds must be penguins, swans, mynahs, or ca-naries, default reasoners of the type envisioned in theliterature will assume that arbitrary birds are canaries,in order to minimize the violation of defaults!Even more counterintuitively, if it turns out that allsubclasses are atypical (e.g., canaries are found to beabnormal by virtue of being brightly coloured), thennonmonotonic formalisms will suddenly no longer beable to make any normality conjectures: di�erent atyp-icalities will hold in di�erent minimal models (exten-sions); the theory entails that some abnormality holdsin each. Thus, e.g., learning that canaries are not drabblocks the assumption that Tweety ies.Poole [1989] and others have noticed that situationsin which everything is abnormal in some way occur fre-quently in practice. This suggests that the problem isnot an isolated baroque instance where the formalismsdo not perform well but is, rather, symptomatic of fun-damental di�culties.2 Since circumscription cannot generate new equalityfacts without resorting to variable terms [Etherington etal., 1985], explicit inequalities are needed to rule out modelswhere only Tweety is a bird, but she goes by various aliases.3 A domain-closure axiom (DCA) [Reiter, 1980a] is aformula of the form 8x: x = t1 _ ::: _ x = tn, for some setof ground terms, t1; :::; tn.



There's Nobody Here But Us Chickens4Another counterintuitive aspect of some nonmonotonicformalisms is that, in their e�orts to maximize typical-ity, they conjecture that exceptional classes are empty.Since belonging to an exceptional class entails violatinga default, they naturally infer that exceptional classeshave as few members as possible. This is both rea-sonable and nonsensical: reasonable because defaultreasoning does seem to involve assuming things are asnormal as possible; nonsensical because the assump-tion that some object of interest is typical should notnecessarily rest on the absence of atypicality elsewherein the world.Circumscription is particularly susceptible, explic-itly stating that there is no less exceptional world thanthis; its semantics explicitly prefers those models whereall exceptions are forced. For example, if we are toldthat penguins are ightless birds, that birds normallyy, and that Tweety is a bird:8x: Penguin(x) � Bird(x) ^ :F lies(x)8x: Bird(x) ^ :Abnormal(x) � F lies(x)Bird(Tweety)and minimize the set of abnormal individuals, we con-clude that Tweety ies, and hence is not a penguin|but also that there are no penguins! Conversely, ifthe objection to this conclusion is made explicit, byasserting 9x: Penguin(x), the enriched theory impliesthe counterexample axiom, 9x: Bird(x) ^ :F lies(x),and F lies(Tweety) is no longer conjectured.The obvious answer, including Penguin in the set of�xed predicates, prevents the conclusion that there areno penguins, at the expense of the ability to concludethat Tweety ies. With Penguin �xed, the strongestconjecture that can be made about Tweety is that sheies unless she is a penguin, which seems unsatisfac-tory.The problem is more subtle in default logic, since thee�ects of default reasoning are conditioned by the prov-ability of the prerequisites of defaults, and the formof the default plays a greater role. For example, thedefault: Bird(x) : F lies(x)F lies(x) will sanction the conjec-ture that none of the known birds are penguins, butnot that there are no penguins at all. The former seemsmore innocuous, although perhaps less so as the num-ber of known birds becomes very large. If all birdsare known, the conclusion that there are no penguinsfollows. Other popular default representations (e.g.,\abnormality" theories) can exaggerate the problem.This is discussed in detail in [Etherington et al., 1990],where similar problems with autoepistemic logic arealso outlined.4Or whatever class of birds is quintessentiallyprototypical.

A Common ThreadEach of the above di�culties with existing theories ofnonmonotonic reasoning can be attributed to a sin-gle cause|overzealousness. In the attempt to capturedefault reasoning, a subtle twist has been introduced.The commonsense notion that such reasoning is es-sentially the elimination of unforced abnormalities hasbecome the notion of the introduction of forced nor-malities.Assumptions are necessary in everyday reasoning be-cause what follows from what we know about the worldleaves too many questions undecided. Paradoxically,the mechanisms developed to redress this shortcomingleave too few questions undecided. Using such tools todecide whether Tweety ies is akin to cracking walnutswith a cannon|not only are there likely to be unde-sired side-e�ects, but the meat of the matter may bemuch harder to �nd among the irrelevant fragments.We frequently know that there are exceptional indi-viduals without knowing who they are. If defaults areapplied injudiciously, paradoxes are bound to arise|yet paradoxes rarely arise in people's default reasoning.It seems clear that defaults are usually not broadly ap-plied.The directed nature of reasoning seems to have beenignored. We contend that the intention of default rea-soning is generally not to determine the properties ofevery individual in the domain, but rather those ofsome particular individual(s) of interest. Incorporat-ing uncertain beliefs into a belief system when thosebeliefs are not of direct interest is likely to be coun-terproductive, simply increasing the probability thatsome beliefs will have to be retracted.Reconsider the paradoxes discussed above. In eachcase, problems arise because something atypical mustexist and default reasoning might encompass it. Inthe case of the lottery paradox, by considering the fateof every ticket, we face the problem that some ticketmust win|giving rise to numerous \preferred" mod-els. If we could reason about only the small set oftickets we might consider buying, there would be noproblem with assuming that none of them would win,and we would �nd ourselves safely past the lottery ven-dor. Similarly, faced with a counterexample axiom, solong as there was no expectation that the posited coun-terexample was among the individuals of interest, onecould make assumptions about the interesting caseswithout wrestling with the identity of the counterex-ample. Analogously, when everything is abnormal insome aspect or other, it should be possible to reasonabout a few aspects of interest, and ignore all the oth-ers. Finally, when the scope of interest does not coverwhole domains, conjectures to the e�ect that atypicalclasses are empty would not arise.The risk associated with making any particular con-jecture on the basis that it is supported by all exten-sions of a scoped theory is generally higher than thecorrespond risk for standard default reasoning. How-



ever, provided the scope of interest is su�ciently nar-row vis �a vis the antecedent class(es) for the defaults,the risk does not seem disproportionate to that of doingdefault reasoning in the �rst place. Intuitively, sincefewer substantive default conclusions are made, it isreasonable to believe that the net result is more prob-able. Of course, if the scope is too broad, or there isevidence that exceptional cases are within the scope,the advisability of making assumptions decreases pro-portionally.Scope in Nonmonotonic ReasoningAt the conceptual level, then, it is clear that makingthe default reasoning processes dependent on the scopeof interest enables intuitively-desirable conclusions inotherwise intransigent cases. We next show that thiscan be done easily for the existing formalisms, thatmore powerful conjectures obtain, and that appropri-ate notions of consistency are preserved.As a methodological point, we require that the scopeof reasoning be narrow. We do not attempt to de-�ne or enforce this, beyond noting that the scope ofinterest should not include a \signi�cant fraction" ofwhatever reference class we are drawing default con-clusions about. Our approach to limiting the scope ofreasoning ensures that|even when this requirement isviolated|performance and consistency will be at leastas good as that of the unscoped approaches, however.The technical requirements for limiting the scope ofdefault reasoning are methodological rather than struc-tural. The contribution of this work is not sophisti-cated new versions of the formalisms|developing yetanother nonmonotonic formalism is unnecessary. Theimportant result is that a simple, uniform, represen-tational technique provides signi�cant leverage on avariety of problems across a variety of formalisms.Scoped CircumscriptionCircumscription can accommodate scope by minimiz-ing only within the extent of a predicate represent-ing the scope of interest. Speci�cally, we minimizeW [P; y]^ Scope(y) rather than just W [P; y], resultingin the scoped circumscription schema, CIRCScope:5A[P 0]^�8y:W [P 0; y]^Scope0(y) !W [P; y]^Scope(y)�! �8y:W [P; y] ^ Scope(y) !W [P 0; y] ^ Scope0(y)�.Scoped circumscription overcomes many of the limi-tations of its unscoped counterpart. For example, itprovides a solution to the counterexample problem.Given a nontrivial domain with Tweety in the scopeof concern, it is possible to conclude that Tweety ies5 Notice that this is not a new form of circumscription.Rather, the circumscription is made relative to the Scopepredicate. This approach can be used independently ofwhich major variant of circumscription is chosen.

from Bird(Tweety), despite the presence of a coun-terexample axiom. To see this, consider the followingaxioms, A[Scope;Bird; F lies] :Bird(Tweety)9x: Bird(x) ^ :F lies(x)Charlie 6= TweetyScope(Tweety):We introduce Charlie here to ensure an ontol-ogy rich enough to allow the formation of variousinterpretations. In particular, we need an objectother than Tweety that we can at least imagine tobe a potential ightless bird, to let Tweety o� thehook. However, Charlie's role as \scapebird" is quitelimited|we do not conclude :F lies(Charlie) nor evenBird(Charlie). It would even su�ce to have simply9x: x 6= Tweety instead of Charlie 6= Tweety. Since,in general, we expect any realistic ontology to providemany individuals, this requirement presents no partic-ular hardship.From A and CIRCScope, with W [Bird; F lies; y]being :F lies(y), F lies(Tweety) follows. The nec-essary substitutions are x = x for Bird0(x), andx = Tweety for Scope0(x) and F lies0(x). We get8x: F lies(x) _ :Scope(x)|all non-iers are outsidethe scope of reasoning|and so F lies(Tweety), sincewe have Scope(Tweety).More generally, even given some known scoped ex-ceptions, scoped circumscription can frequently pre-clude unknown exceptions in the scope, as the followingtheorem shows.Theorem 0.1 If A ` W (P; �i) ^ Scope(�i), forground terms �i 2 f�1; :::; �ng, and no consis-tent extension ofA by ground (in)equalities entails9x: x 6= �1 ^ ::: ^ x 6= �n ^W (P; x) ^ Scope(x),then CIRCScope[A] ` 8x: [x 6= �1 ^ ::: ^ x 6=�n ^ Scope(x)] � :W (P; x); provided all predi-cates are variable, and A entails a domain-closureaxiom.It is easily seen that scoped circumscription is simi-larly e�ective in the other paradoxical cases.As the example just above shows, the restrictions inTheorem 0.1 are stronger than necessary. Essentially,what is required is an ontology with \enough" distinctindividuals, but in which exceptions and the scope donot depend on the ontology of the model. Thus, forexample, the result cannot be generalized to cover the-ories such as: a 6= b[8x: x = a _ x = b] � P (a) ^ Scope(a);where P is to be minimized since, in models withdomain fa; bg, a must be a scoped exception, eventhough a need not be exceptional (nor scoped) in gen-eral. The need for \domain independence", capturedin the conditions imposed on equality in the theorem,



is a consequence of circumscription's inability (withoutuse of variable terms) to produce conjectures entailingnew facts about the ontology [Etherington, 1988]. Itmay be possible to relax this requirement by allowingvariable terms, or using \Equality Circumscription"[Rathmann and Winslett, 1989]. This remains to beinvestigated.Although the necessary conditions for e�ectivescoped circumscription are di�cult to make precise,the problematic cases do not seem particularly trou-blesome. It seems likely that a realistic theory ofa reasonably-complex problem domain will have anabundance of individuals known to be distinct fromthose known to be in the scope. Similarly, predicatingexceptionalness on what exists or what things are iden-tical seems inappropriate for commonsense theories.It is crucial that the theory not entail that theunknown exceptional individuals claimed to exist arealso in the scope; otherwise the problem resurfaces.We argue that it is unreasonable for an agent to usea default while believing that an anonymous objectof concern is a counterexample to that default. No-tice that there is no problem, however, in believingthat there are known exceptions in the scope (e.g.,Bird(Opus) ^ :F lies(Opus) ^ Scope(Opus)).Is scoped circumscription consistent, however? Thisquestion is important because inconsistency hasplagued certain applications of circumscription [Ether-ington et al., 1985]. Etherington [1988] shows thattheories without existential quanti�ers have consistentcircumscriptions, but counterexample axioms take usout from under this umbrella of safety. Nevertheless,scoped circumscription is consistent, regardless of theform of the original theory, provided the scope is �nite.Theorem 0.2 If A has a model in which Scopeis �nite, then CIRCScope[A] is consistent.We consider other cases that are \well-behaved",and what can be said about them, in [Etherington etal., 1990].Scoped Default LogicThe greater expressive power of default logic [Ethering-ton, 1987] means there are many more candidate meth-ods for restricting the scope of reasoning in defaultlogic than were available in circumscription. In [Ether-ington et al., 1990], we study a variety of possibilities,and compare their representational power. Here, werestrict our attention to one particular representation,and say the scoped representation of a normal default,�x : �x�x , is �x ^ Scope(x) : �x�x .6 The latter defaultsays that individuals known to be �'s in the scope canbe assumed to be �'s.6 � and � may be arbitrary formulae in which x occursfree.

The introduction of scope to default logic is su�cientto circumvent the lottery paradox, as the following ex-ample shows. Imagine a lottery with 10,000 tickets,t1; :::; t10;000, and imagine we are considering buyingone of the tickets, t100{t175, available at the cornerstore. This corresponds to the theory with the axioms:8t: T icket(t) � t = t1 _ :::_ t = t10;000Scope(t100); :::; Scope(t175)9t: T icket(t) ^Wins(t)and the default:T icket(t) ^ Scope(t) : :Wins(t):Wins(t) :This theory has a unique extension in which:Wins(t100); :::;:Wins(t175), but the fate of the re-maining tickets is undecided. Conversely, the unscopedtheory has 10,000 extensions, including 76 in which oneof the tickets of interest wins.It is no accident that the desired result holds; wehave proved that ground terms in the scope are con-jectured to be unexceptional whenever possible.Theorem 0.3 If D = ��x ^ Scope(x) : 	x	x �andW 6` 9x:�x^:	x^Scope(x), then any exten-sion, E, for � = (D;W ) has no scoped exceptions.Speci�cally, if E ` �� ^ Scope(�) then E ` 	�,for any ground term, �.Analogous results hold for the other representations,and the results generalize to cases where there areknown exceptions, and/or multiple defaults.It can be shown, in many cases, that every extensionof the scope-limited theory is a subset of an extensionof the unscoped version. These results are comfort-ing, since they mean that narrowly-scoped reasoningdoes not lead in directions that would be rejected asunreasonable if the scope of reasoning were broader.Theorem 0.4 Let � = (D;W ) be a normal de-fault theory, and let D0 be the result of replac-ing each default in D with its scoped counterpart.Then every extension of �0 = (D0;W ) is containedin an extension of �.Scoped Autoepistemic LogicUnscoped reasoning also presents problems in au-toepistemic logic which are ameliorated by restrict-ing the scope of reasoning. However, since a fully-quanti�cational �rst-order autoepistemic logic has notyet been formalized (but see [Konolige, 1988; Levesque,1987] for suggestions), we restrict our discussion to apropositional version that approximates quanti�cationby grounding variables over a closed domain.First, consider the Lottery Paradox again. As inthe previous section, suppose we have 10,000 lotterytickets, and wish to buy one among the 76 from



t100 : : : t175. The only change required for autoepis-temic logic is that, instead of a default rule, we use theschema:LT icket(t) ^ LScope(t) ^ :LWins(t)! :Wins(t)where t ranges over the 10,000 ticket constants. In sucha case, as with default logic, we get only one extension,in which we have :Wins(t) for the 76 scoped ticketsbut not for the rest.To see how multiple, orthogonal, properties can behandled in this framework, suppose there are onlythree kinds of bird, Canary, Mynah, and Penguin, andthat canaries are typical but mynahs and penguins arenot, since mynahs do not build nests and penguins donot y, as in [Poole, 1989]:8x: Mynah(x) � :Nests(x)8x: Penguin(x) � :F lies(x)8x: Bird(x) �Mynah(x) _ Penguin(x)_Canary(x):We certainly do not want to conclude that all birds arecanaries, although that is the result of straightforwardapplication of autoepistemic logic. Speci�cally, fromthe above axioms and the defaults that birds typicallyy and build nests:LBird(b) ^ :L:F lies(b)! F lies(b)LBird(b) ^ :L:Nests(b)! Nests(b)(where again b ranges over the �nite set of constants),we get that there are no mynahs or penguins|i.e., allbirds are canaries. Scope can help if we employ thetwo scope-limited schemata:LBird(b) ^LScope(b) ^ LScope(flying)^:L:F lies(b)! F lies(b)LBird(b) ^ LScope(b) ^ LScope(nesting)^:L:Nests(b)! Nests(b):The new constants, flying and nesting, represent par-ticular aspects of the descriptions of birds that mightbe of interest at a particular time (see, for example,[McCarthy, 1986]). Provided scope is narrow and in-cludes nesting and flying, there will be only one ex-tension, in which all scoped birds are canaries, but un-scoped birds are indeterminate as to species (as well asying and nesting behaviours). If Scope only includesflying, we conclude that birds in the scope y andare not penguins, but remain agnostic on their nestingbehaviour.The examples suggest that scoped autoepistemicreasoning provides an intuitively-plausible solution tothe paradoxes. Obviously, general results would bebetter, even if based on strong restrictions. For thecase of strongly-grounded autoepistemic extensions(see [Konolige, 1988]), we can provide such results. Webegin with a su�ciency result.

Theorem 0.5 If W entails a domain closure ax-iom, W 6` 9x: �x ^ :	x ^ Scope(x), and D =fL�(c) ^ LScope(c) ^ :L:	(c) � 	(c)g is aschema over all the constants, c, of W; thenno strongly grounded autoepistemic extension ofW [D contains any scoped exceptions.The obvious generalizations to n-ary predicates andmultiple scope terms follow directly. Similarly, we geta consistency result analogous to Theorem 0.4.Theorem 0.6 Suppose W entails a DCA and isL-free, and D consists of schemata of the formL�(c)^:L:	(c) � 	(c). Let D0 be the result ofreplacing each schema inD by L�(c)^LScope(c)^:L:	(c) � 	(c). Then the L-free subtheory ofany strongly-grounded autoepistemic extension ofW [D0 is contained in the L-free subtheory of astrongly-grounded autoepistemic extension ofW[D.These results are not as broad as those above forcircumscription or default logic; however, they suggestthe same trend, indicating that a Scope predicate canbe useful in treating the \paradoxes" of overzealous-ness (forced normalities) surveyed above.Related WorkKraus and Perlis [1988] suggest restricting default rea-soning to \named" individuals (individuals for whomthe reasoner has a standard name) in order to solvethe counterexample problem in a particular variant ofcircumscription. This approach does not seem to gen-eralize to the other problems we addressed here, norhas it been worked out for the other formalisms wetreat. Furthermore, the notion of limiting the scope ofreasoning seems to be more exible and intuitive thanthat of restricting reasoning to named individuals.Poole's [1988] Theorist system provides for goal-directed default reasoning by searching for explana-tions for goals. An explanation consists of a set ofdefaults which are mutually consistent with the knownfacts and jointly entail the goal. In paradoxical sit-uations such as those we have discussed, however,Theorist can generally explain both a goal (e.g.,:Wins(ticket1)) and its negation (Wins(ticket1)), de-pending on which defaults it chooses to apply. Basedon the correspondence between Theorist's defaultsand those of default logic [Poole, 1988], it appears thatour notion of scope can be added directly toTheorist,providing both more tightly focused reasoning and analternative to paradox. Similarly, Ginsberg's [1988]circumscriptive theorem prover provides facilities forgoal-directed nonmonotonic reasoning, but the conclu-sions it reaches are circumscriptively sound and hencesubject to paradox. It seems, therefore that Ginsberg'ssystem might also bene�t from our approach.



Conclusions and Future WorkWe have pointed out common roots underlying foursigni�cant problems with existing approaches to non-monotonic reasoning. We showed that these problemsvisit all the major current approaches, and argued thatthey were real impediments to using these formalismsfor commonsense reasoning.We then introduced the idea of restricting the scopeof reasoning, providing powerful leverage on the prob-lems. This idea has direct application in the variants ofcircumscription, in default logic, and in autoepistemiclogic; it is similarly e�ective in each. Even more satis-fying, we showed that what is required to achieve thesebene�ts involves simplemethodological changes, ratherthan development of new formalisms or new variantsof existing formalisms.We outlined how restricting the scope of nonmono-tonic reasoning provides acceptable, commonsensical,solutions to the problems in question. These includethe lottery paradox, the problem of anonymous excep-tions to defaults, the problems arising when almost ev-erything is atypical in some respect, and the tendencyto conjecture typicality by rejecting the existence ofatypicality.For the formalisms in question, we showed that theconclusions sanctioned by our strengthened, scope-limited, approach are generally in accord with (somesubset of) the preferred models of the original the-ory. This is comforting, since it means that we havestrengthened the theories, rather than simply subvert-ing them. We also showed that appropriate notions ofconsistency are preserved.Our framework not only avoids paradox, but alsoadapts naturally to goal-directed reasoning. Assump-tions are sanctioned only about objects of interest;this appears to be much more natural than currentmaximal-consistent-set approaches. This focussing of-fers promise for the development of practical nonmono-tonic reasoning systems.The most obvious outstanding question concerns thenature of the scope theory. Ideally, it should be pos-sible to determine scope from the current context, at-tention, and goals of the agent, although we have notyet worked on this. Among other things, we imaginethat the individuals mentioned in a query or goal state-ment, or attended to as the result of recent discourseor experience will be scoped. We suspect, too, thatwork such as [Halpern and Rabin, 1987], [Halpern andMcAllester, 1989], [Halpern and Moses, 1984], [Drap-kin et al., 1987], and [Nutter, 1983] will be relevant.In particular the notion of an awareness set seems tohave a similar spirit. We imagine \scope" to be slightlydi�erent, however|more like \of concern" or \relevantto making a decision". In this respect, it is encourag-ing that the approach seems robust enough to toleratefairly gross determinations of scope.In this paper, we have skirted some of the di�cultissues of equality and domain closure that face theories
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