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Abstract
The kind of resource limitation that is most evident in
commonsense reasoners is the passage of time while the
reasoner reasons. There is not necessarily any fixed and
final set of consequences with which such a reasoning
agent ends up. In formalizing commonsense reasoners,
then, one must be able to take into account that time
is passing as the reasoner is reasoning. The reasoner
can then make use of such information in subsequent
deductions. Step-logic is such a formalism. It was
developed in [Elgot-Drapkin, 1988] to model the on-
going process of deduction. Conclusions are drawn
step-by-step. There is no ‘‘final’’ state of reasoning;
the emphasis is on intermediate conclusions. In this
paper we use step-logic to model the Three-wise-men
Problem. Although others have formalized this problem,
they have ignored the time aspect that is inherent in the
problem: a correct assessment of the situation is made
by recognizing that the reasoning process takes time
and determining that the other wise men would have
concluded such and such by now. This is an important
aspect of the problem that needs to be addressed.

Background
Commonsense reasoners have limited reasoning capa-
bilities because they must deal with a world about which
they have incomplete knowledge. Traditional logics are
not suitable for modeling beliefs of commonsense rea-
soners because they suffer from the problem of logical
omniscience: if an agent has �1; : : : ; �n in its belief
set, and if �, a wff of the agent’s language, is logically
entailed by �1; : : : ; �n, then the agent will also believe�.

The literature contains a number of approaches to
limited reasoning. However, the oversimplification of
a ‘‘final’’ state of reasoning is maintained; the limita-
tion amounts to a reduced set of consequences, but all
consequences are deduced instantaneously. In contrast,�Our thanks to Don Perlis, Kevin Gary, and Laurie Ihrig
for helpful comments.

we are interested in the ever-changing set of (tenta-
tive) conclusions as the reasoning progresses. Konolige
[Konolige, 1984] studies agents with fairly arbitrary
rules of inference, but ignores the effort involved in ac-
tually performing the deductions. Similarly, Levesque
[Levesque, 1984] and Fagin and Halpern [Fagin and
Halpern, 1988] provide formal treatments of limited
reasoning, but again the conclusions are drawn instan-
taneously, without making the intermediate steps of
reasoning explicit. Lakemeyer [Lakemeyer, 1986] ex-
tends Levesque’s and Fagin and Halpern’s approaches
to include quantifiers, but again does not address the
issue with which we are concerned. Vardi [Vardi, 1986]
deals with limitations on omniscience, again without
taking into account the intermediate steps of deduction.
Although these approaches all model limited reasoning,
the process is still in terms of the standard mold of
static reasoning. We do indeed have a restricted view
of what counts as a theorem, but the logic still focuses
on the final state of reasoning. The effort involved
in actually performing the deductions is not taken into
consideration.

We contend that the kind of resource limitation that
is most evident in commonsense reasoners is the pas-
sage of time while the reasoner reasons. There is not
necessarily any fixed and final set of consequences with
which such a reasoning agent ends up. In a sense,
this is a problem of modeling time. See [Allen, 1984,
McDermott, 1982]. Yet these treatments deal with rea-
soning about time, as opposed to reasoning in time.
Reasoning in time refers to the fact that, as the reasoner
reasons, time passes, and this passage of time itself must
be recognized by the reasoner. Step-logic is proposed
as an alternative to the approaches to limited reasoning
just discussed, where it is not the final set of conclusions
in which one is interested, but rather the ever-changing
set of conclusions drawn along the way. That is, step-
logic is designed to model reasoning that focuses on the
on-going process of deduction; there is no final state of
reasoning.

There are many examples of situations in which



the effort or time spent making deductions is crucial.
Consider Little Nell who has been tied to the railroad
tracks. A train is quickly approaching. Dudley must
save her. (See [Haas, 1985, McDermott, 1982].) It
is not appropriate for Dudley to spend hours figuring
out a plan to save Nell; she will no longer need saving
by then. Thus if we are to model Dudley’s reasoning,
we must have a mechanism that takes into account the
passage of time as the agent is reasoning.

The Three-wise-men Problem is another example
in which the effort involved in making deductions is
critical. In this paper we show how step-logic is a
useful model for the reasoning involved in this problem.
In other formalizations of the Three-wise-men Problem
this aspect has been ignored. (See [Konolige, 1984,
Kraus and Lehmann, 1988, Konolige, 1990].)

Step-logic
In [Drapkin and Perlis, 1986, Elgot-Drapkin, 1988]
we defined a family of eight step-logics---SL0, SL1,: : : , SL7---arranged in increasing sophistication, each
designed to model the reasoning of a reasoning agent.
Each differs in the capabilities that the agent has. In
an SL0 step-logic, for instance, the reasoner has no
knowledge of the passage of time as it is reasoning,
it cannot introspect on its beliefs, and it is unable to
retract former beliefs. (SL0 is not very useful for
modeling commonsense reasoners.) In an SL7 step-
logic, by contrast, the agent is capable of all three
of these aspects that are so critical to commonsense
reasoning. Most commonsense reasoners seem to need
the full capabilities of an SL7 step-logic.

A step-logic is characterized by a language, observa-
tions, and inference rules. We emphasize that step-logic
is deterministic in that at each step i all possible con-
clusions from one application of the rules of inference
applied to the previous steps are drawn (and therefore
are among the wffs at step i). However, for real-time
effectiveness and cognitive plausibility, at each step we
want only a finite number of conclusions to be drawn.

Intuitively, we view an agent as an inference mecha-
nism that may be given external inputs or observations.
Inferred wffs are called beliefs; these may include cer-
tain observations.

Let L be a first-order or propositional language, and
let W be the set of wffs of L.

Definition 1 An observation-function is a functionOBS : N ! P(W), where P(W) is the power set
of W, and where for each i 2 N , the set OBS(i) is
finite.

Definition 2 A history is a finite tuple of pairs of finite
subsets of W. H is the set of histories.

Definition 3 An inference-function is a function INF :H ! P(W), where for each h 2 H, INF (h) is finite.

Intuitively, a history is a conceivable temporal se-
quence of belief-set/observation-set pairs. The history
is a finite tuple; it represents the temporal sequence up to
a certain point in time. The inference-function extends
the temporal sequence of belief sets by one more step
beyond the history.

Definition 4 An SLn-theory over a language L is a
triple, < L; OBS; INF >, where L is a first-order
or propositional language, OBS is an observation-
function, and INF is an inference-function. We use
the notation, SLn(OBS; INF ), for such a theory (the
language L is implicit in the definitions of OBS andINF ).

For more background on step-logic, see [Elgot-
Drapkin, 1988, Elgot-Drapkin and Perlis, 1990].

The Problem
We present a variation of this classic problem which
was first introduced to the AI literature by McCarthy in
[McCarthy, 1978]. This version best illustrates the type
of reasoning that is so characteristic of commonsense
reasoners.

A king wishes to know whether his three advisors
are as wise as they claim to be. Three chairs are lined
up, all facing the same direction, with one behind the
other. The wise men are instructed to sit down. The
wise man in the back (wise man #3) can see the backs
of the other two men. The man in the middle (wise
man #2) can only see the one wise man in front of him
(wise man #1); and the wise man in front (wise man
#1) can see neither wise man #3 nor wise man #2. The
king informs the wise men that he has three cards, all
of which are either black or white, at least one of which
is white. He places one card, face up, behind each of
the three wise men. Each wise man must determine the
color of his own card and announce what it is as soon
as he knows. The first to correctly announce the color
of his own card will be aptly rewarded. All know that
this will happen. The room is silent; then, after several
minutes, wise man #1 says ‘‘My card is white!’’.

We assume in this puzzle that the wise men do not
lie, that they all have the same reasoning capabilities,
and that they can all think at the same speed. We then
can postulate that the following reasoning took place.
Each wise man knows there is at least one white card. If
the cards of wise man #2 and wise man #1 were black,
then wise man #3 would have been able to announce
immediately that his card was white. They all realize
this (they are all truly wise). Since wise man #3 kept
silent, either wise man #2’s card is white, or wise man
#1’s is. At this point wise man #2 would be able to
determine, if wise man #1’s were black, that his card
was white. They all realize this. Since wise man #2
also remains silent, wise man #1 knows his card must
be white.



It is clear that it is important to be able to reason in
the following manner:

If such and such were true at that time, then so and
so would have realized it by this time.

So, for instance, if wise man #2 is able to determine that
wise man #3 would have already been able to figure out
that wise man #3’s card is white, and wise man #2 has
heard nothing, then wise man #2 knows that wise man
#3 does not know the color of his card. Step-logic is
particularly well-suited to this type of deduction since it
focuses on the actual individual deductive steps. Others
have studied this problem (e.g. see [Konolige, 1984,
Kraus and Lehmann, 1988, Konolige, 1990]) from the
perspective of a final state of reasoning, and thus are
not able to address this temporal aspect of the problem:
assessing what others have been able to conclude so
far. Elgot-Drapkin [Elgot-Drapkin, 1991] provides a
solution based on step-logic to a version of this problem
in which there are only two men.

Formulation
The step-logic used to model the Three-wise-men prob-
lem is defined in Figures 1 and 2. The problem is
modeled from wise man #1’s point of view. The
observation-function contains all the axioms that wise
man #1 needs to solve the problem, and the inference-
function provides the allowable rules of inference.

We use an SL5 theory. An SL5 theory gives the
reasoner knowledge of its own beliefs as well as knowl-
edge of the passage of time.1 The language of SL5
is first-order, having binary predicate symbols Kj andU , and function symbol s. Kj(i; ‘�’ ) expresses the fact
that ‘‘� is known2 by agent j at step i’’. Note that
this gives the agent the expressive power to introspect
on his own beliefs as well as the beliefs of others.U (i; ‘x’ ) expresses the fact that an utterance of x is
made at step i.3 s(i) is the successor function (wheresk(0) is used as an abbreviation for s(s(� � � (s| {z }k (0)) � � �))
). Wi and Bi express the facts that i’s card is white, andi’s card is black, respectively.

In the particular version of step-logic that is used, the
formulas that the agent has at step i (the i-theorems) are
precisely all those that can be deduced from step i � 1
using one application of the applicable rules of infer-
ence. As previously stated, the agent is to have only

1For more details on SLn theories, see [Drapkin and
Perlis, 1986, Elgot-Drapkin, 1988].

2known, believed, or concluded. The distinctions between
these (see [Gettier, 1963, Perlis, 1986, Perlis, 1988]) are not
addressed here.

3For simplicity, in the remainder of the paper we drop the
quotes around the second argument of predicates U and Kj.

a finite number of theorems (conclusions, beliefs, or
simply wffs) at any given step. We write:i : : : : ; �i + 1 : : : : ; �
to mean that � is an i-theorem, and � is an i + 1-
theorem. There is no implicit assumption that � is
present at step i + 1. That is, wffs are not assumed to
be inherited or retained in passing from one step to the
next, unless explicitly stated in an inference rule. Rule 8
in Figure 2, however, does provide an unrestricted form
of inheritance.4

We note several points about the axioms which wise
man #1 requires. (Refer to Figure 1.) Wise man #1
knows the following:

1. Wise man #2 knows (at every step) that wise man #3
uses the rule of modus ponens.

2. Wise man #2 uses the rules of modus ponens and
modus tolens.

3. Wise man #2 knows (at every step) that if both my
card and his card are black, then wise man #3 would
know this fact at step 1.

4. Wise man #2 knows (at every step) that if it’s not the
case that both my card and his are black, then if mine
is black, then his is white.5

5. Wise man #2 knows (at every step) that if there’s no
utterance of W3 at a given step, then wise man #3
did not know W3 at the previous step. (Wise man #2
knows (at every step) that there will be an utterance
of W3 the step after wise man #3 has proven that his
card is white.)

6. If I don’t know about a given utterance, then it has
not been made at the previous step.

7. If there’s no utterance of W3 at a given step, then
wise man #2 will know this at the next step.6

8. If my card is black, then wise man #2 knows this (at
every step).

4Although many commonsense reasoning problems re-
quire former conclusions to be withdrawn (based on new
evidence), this particular formulation of the Three-wise-men
Problem does not require any conclusions to be retracted. We
can thus use an unrestricted form of inheritance.

5In other words, if wise man #2 knows that at least one
of our cards is white, then my card being black would mean
that his is white. Indeed, this axiom gives wise man #2 quite
a bit of information, perhaps too much. (He should be able to
deduce some of this himself.) This is discussed in more detail
in [Elgot-Drapkin, 1988, Elgot-Drapkin, 1992].

6Interestingly, it is not necessary for wise man #1 to know
there was no utterance; wise man #1 only needs to know that
wise man #2 will know there was no utterance.



OBSW3 is defined as follows.

OBSW3 (i) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(8j)K2(j; (8i)(8x)(8y)[K3 (i; x! y) !
(K3(i; x) ! K3(s(i); y))])

(8j)K2(j;K3(s(0); (B1 ^B2) ! W3))
(8j)K2(j; (B1 ^B2) ! K3(s(0); B1 ^B2))
(8j)K2(j;:(B1 ^B2) ! (B1 ! W2))
(8j)K2(j; (8i)[:U (s(i); W3) ! :K3(i;W3)])
(8i)(8x)[:K1(s(i); U (i; x)) ! :U (i; x)]
(8i)[:U (i; W3) ! K2(s(i);:U (i;W3))]
(8i)(8x)(8y)[K2 (i; x! y) ! (K2(i; x) ! K2(s(i); y))]
(8i)(8x)(8x0 )(8y)(8y0 )

[(K2(i;:(x ^ x0) ! (y ^ y0)) ^K2(i;:(x ^ x0))) !K2(s(i); y ^ y0)]
(8j)(8k)(8z)(8z0 )(8w)

[(K2(j; (8i)(8x)(8y)[K3 (i; x! y) !
(K3(i; x) ! K3(s(i); y))])^K2(j; K3(k; (z ^ z0) ! w))) !K2(s(j); K3(k; z ^ z0) ! K3(s(k); w))]

(8j)(8k)
[(K2(j; (8i)[:U (s(i); W3) ! :K3(i;W3)])^K2(j;:U (s(k);W3))) ! K2(s(j);:K3(k;W3)]

(8i)(8x)(8y)[(K2 (i; x! y) ^K2(i;:y)) ! K2(s(i); :x)]
(8i)(8x)(8x0 )(8y)

[(K2(i; (x^x0) ! y)^K2(i;:y)) ! K2(s(i); :(x^x0))]
(8i)[B1 ! K2(i;B1)]
(:B1 ! W1)
(8i)[:U (s(i); W2) ! :K2(i;W2)]

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>; if i = 1

; otherwise

Figure 1: OBSW3 for the Three-wise-men Problem

9. If there is no utterance of W2 at a given step, then
wise man #2 doesn’t know at the previous step that
his card is white. (There would be an utterance of W2
the step after wise man #2 knows his card is white.)

Note the following concerning the inference rules:

1. Rule 6 is a rule of introspection. Wise man #1 can
introspect on what utterances have been made.7

2. The rule for extended modus ponens allows an arbi-
trary number of variables.

3. Rule 7 is a rule of instantiation. If wise man #1
knows that wise man #2 knows � at each step then,
in particular, wise man #1 will know at step i + 1 that
wise man #2 knew � at step i.

4. The rule of inheritance is quite general: everything is
inherited from one step to the next.8

7We limit the number of wffs on which the agent can
introspect in order to keep the set of beliefs at any given step
finite.

8For other commonsense reasoning problems, a far more
restrictive version of inheritance is necessary.

Solution
The solution to the problem is given in Figure 3. The
step number is listed on the left. The reason (inference
rule used) for each deduction is listed on the right. To
allow for ease of reading, only the wffs in which we
are interested are shown at each step. In addition, none
of the inherited wffs are shown. This means that a
rule appears to be operating on a step other than the
previous one; the wffs involved have, in fact, actually
been inherited to the appropriate step.

In step 1 all the initial axioms (OBSW3 (1)) have been
inferred through the use of Rule 1.9 Nothing of interest
is inferred in steps 2 through 4. In step 5, wise man
#1 is able to negatively introspect and determine that
no utterance of W3 was made at step 3. Note the time
delay: wise man #1 is able to prove at step 5 that he
did not know at step 4 of an utterance made at step 3.10

The remaining wffs shown in step 5 were all inferred
through the use of Rule 7, the rule of instantiation. Wise

9To save space we have not repeated them in the figure.
See Figure 1 for the individual axioms.

10For a detailed description of this phenomenon, see [Elgot-
Drapkin, 1988].



The inference rules given here correspond to an inference-function, INFW3 . For any given history, INFW3

returns the set of all immediate consequences of Rules 1--8 applied to the last step in that history.

Rule 1 :
i : : : :i + 1 : : : : ; � if � 2 OBS(i + 1)

Rule 2 :
i : : : : ; �; (�! �)i + 1 : : : : ; � Modus ponens

Rule 3 :
i : : : : ; P1a; : : : ; Pna; (8x)[(P1x ^ : : : ^ Pnx) ! Qx]i + 1 : : : : ;Qa Extended modus ponens

Rule 4 :
i : : : : ;:�; (�! �)i + 1 : : : : ;:� Modus tolens

Rule 5 :
i : : : : ;:Qa; (8x)(Px! Qx)i + 1 : : : : ;:Pa Extended modus tolens

Rule 6 :
i : : : :i + 1 : : : : ;:K1(si(0); U (si�1(0);Wj)) if U (si�1(0);Wj ) 62 `i ,j = 2; 3, i > 1

Rule 7 :
i : : : : ; (8j)K2(j; �)i + 1 : : : : ;K2(si(0); �)

Instantiation

Rule 8 :
i : : : : ; �i + 1 : : : : ; � Inheritance

Figure 2: INFW3 for the Three-wise-men Problem

man #1 needs to know that wise man #2 knows these
particular facts at step 4. The reasoning continues from
step to step. Note that at step 11, wise man #1 has
been able to deduce that wise man #2 knows that if wise
man #1’s card is black, then his is white. From this
step on, we essentially have the Two-wise-men problem.
(See [Elgot-Drapkin, 1991].) In step 17 wise man #1 is
finally able to deduce that his card is white.

We see that step-logic is a useful vehicle for formu-
lating and solving a problem of this kind in which the
time that something occurs is important. Wise man #1
does indeed determine ‘‘if wise man #2 or wise man #3
knew the color of his card, he would have announced it
by now.’’ Wise man #1 then reasons backwards from
here to determine that his card must not be black, and
hence must be white.

Several points of contrast can be drawn between this
version and the two-wise-men version.

1. In the two-wise-men version, wise man #1 needs only
to know about a single rule of inference used by wise
man #2. In this version wise man #1 needs to know
several rules used by wise man #2: modus ponens,
extended modus ponens, and modus tolens. Because
wise man #1 reasons within first-order logic, these

three rules required the use of six axioms.

2. In the two-wise-men version, it is sufficient for wise
man #1 to know that wise man #2 has certain beliefs
at step 1. In the three-wise-men version, this is not
sufficient---wise man #1 must know that wise man
#2 always holds these beliefs.

3. What wise man #2 needs to know about wise man
#3 is analogous to what wise man #1 needs to know
about wise man #2 in the two-wise-men version. So,
for instance, wise man #2 must know that wise man
#3 uses the rule of modus ponens (and this is the only
rule of wise man #3’s about which wise man #2 must
know). Also wise man #2 needs only to know that
wise man #3 has certain beliefs at step 1.

Many formulations of the Three-wise-men problem
have involved the use of common knowledge or com-
mon belief (see [Konolige, 1984] and [Kraus and
Lehmann, 1988] in particular). For instance, a pos-
sible axiom might be C(W1 _W2 _W3): it is common
knowledge that at least one card is white. Adding
the common knowledge concept here introduces un-
necessary complications due, to a large degree, to the
fact that the problem is modeled from wise man #1’s



0: ;
1: (a)--(p) All wffs in OBSW3 (1) (R1)
2: (no new deductions of interest)
3: (no new deductions of interest)
4: (no new deductions of interest)
5: (a) :K1(s4(0); U (s3(0);W3)) (R6)

(b) K2(s4(0); (8i)(8x)(8y)
[K3(i; x! y) ! (K3(i; x) ! K3(s(i); y))])

(R7,1a)

(c) K2(s4(0);K3(s(0); (B1 ^B2) ! W3)) (R7,1b)
(d) K2(s4(0); (8i)[:U (s(i); W3) ! :K3(i;W3)]) (R7,1e)

6: (a) :U (s3(0);W3) (R3,5a,1f)
(b) K2(s5(0);K3(s(0); B1 ^B2) ! K3(s2(0);W3)) (R3,5b,5c,1j)

7: (a) K2(s4(0);:U (s3(0);W3)) (R3,6a,1g)
(b) K2(s6(0); (B1 ^B2) ! K3(s(0); B1 ^B2)) (R7,1c)

8: (a) K2(s5(0);:K3(s2(0);W3)) (R3,7a,5d,1k)
(b) K2(s7(0);:(B1 ^B2) ! (B1 ! W2)) (R7,1d)

9: K2(s6(0);:K3(s(0); B1 ^B2)) (R3,8a,6b,1l)
10: K2(s7(0);:(B1 ^B2)) (R3,9,7b,1m)
11: K2(s8(0);B1 ! W2) (R3,10,8b,1i)
12: (a) (K2(s8(0); B1) ! K2(s9(0);W2)) (R3,11,1h)

(b) :K1(s11(0); U (s10(0);W2)) (R6)
13: :U (s10(0);W2) (R3,12b,1f)
14: :K2(s9(0);W2) (R3,13,1p)
15: :K2(s8(0); B1) (R4,14,12a)
16: :B1 (R5,15,1n)
17: W1 (R2,16,1o)

Figure 3: Solution to the Three-wise-men Problem

point of view, rather than using a meta-language that
describes the reasoning of all three (as [Konolige, 1984,
Kraus and Lehmann, 1988] have both done). This is
more in the spirit of step-logics, where the idea is to
allow the reasoner itself enough power (with no outside
‘‘oracle’’ intervention) to solve the problem. Thus we
model the agent directly, rather than using a meta-theory
as a model.

Conclusions
We have shown that step-logic is a powerful formalism
for modeling the on-going process of deduction. There
is no final state of reasoning; it is the intermediate steps
in the reasoning process that are of importance. We
have given a solution using step-logic to the Three-
wise-men problem. Although others have formalized
this problem, they have ignored the time aspect that
we feel is so critical. In order to correctly assess
the situation, one must be able to recognize that the
reasoning process itself takes time to complete. Before
wise man #1 can deduce that his card is white, he must
know that wise men #2 and #3 would have deduced by
now the color of their cards.
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