Fully Deadline-Coupled Planning: One Step at a
Time*

Madhura Nirkhe, Sarit Kraus, Donald Perlis
Department of Computer Science
and
Institute for Advanced Computer Studies
University of Maryland,College Park, MD 20742

Abstract

In planning situations involving tight deadlines a commonsense reasoner may spend sub-
stantial amount of the available time in reasoning toward and about the (partial) plan. This
reasoning involves, but is not limited to, partial plan formulation, making decisions about
available and conceivable alternatives, plan sequencing, and also plan failure and revision.
The key observation is that the time taken in reasoning about a plan brings the deadline
closer. The reasoner should therefore take account of the passage of time during that same
reasoning, and this accounting must continuously affect every decision under time-pressure.
Step-logics were introduced as a mechanism for reasoning situated in time. We employ
them here to create a step-logic planner that lets a time-situated reasoner keep track of
an approaching deadline as she/he makes (and enacts) her/his plan, thereby treating all
facets of planning (including plan-formation and its simultaneous or subsequent execution)
as deadline-coupled.

1 Introduction

Meta-planning is the usual proposal for reasoning about the reasoning process. But that takes
time too! Action occurs in the mere form of thinking or reasoning. In [?], it is argued that
traditionally, actions in Al are viewed as separate from the planning process which leads to those
actions. Even when the two are intertwined, as in real-time, dynamic or reactive planning, the
planning effort is treated as a different kind of beast, not an action itself. Just as it is essential to
understand certain features of actions in order to make an intelligent choice of actions in a plan,
it is neccesary to reflect upon features of planning to make intelligent decisions in going about
planning. When the reasoning is not in but about deadline situations the time for meta-planning
does not enter the computation. In some commonly encountered situations the time taken by
meta-planning may be very short. But what of highly novel settings in which one cannot a
priori assign expected utilities to various conceivable options or refinements? Then the planner
is forced to decide on utilities and other factors in real time. In these cases it seems unlikely
that such meta-planning will always have a modest time cost. Clearly, the emphasis then is not
on searching for a theoretically optimal plan, but one which is speculated to work within the
deadline. The reasoner must have the flexibility to interleave planning and execution, not only
because there may not be enough time to wait until a complete plan is formulated, but because
future planning actions may depend upon the outcomes of earlier executions.

*This is an extended version of our paper [?]. This research was supported in part by NSF grant IRI-8907122,
and in part by U.S. Army Research Office grant DAAL03-88-K0087. Our thanks to Michael Miller, James Hendler
and Chitta Baral for their helpful comments.

We employ the mechanism of step-logics [?, 7, ?, ?] toward solving this problem. In contrast
to other formalisms for commonsense reasoning, step-logics give the reasoner the ability to
recognize that her reasoning takes time. What is of special interest to us is not an “ultimate”
plan computed in a static world, but a plan which evolves in time in a changing world [?]. Every
activity of the reasoner is carried out in fundamental time units called steps. The reasoner’s
thought activity is treated in the same manner as her other activities in the outside world. The
two are allowed to take place concurrently with each other and with other changes in the world,
in particular, with the ticking of a clock. The reasoner has a (largely) declarative inference
engine, with some procedural rules!.

In what follows,we present an illustrative example; sketch the structure of our program and
show a few important steps of the output.

1.1 An Illustration

To elaborate on the fully deadline-coupled planning problem, we present an illustrative domain,
which we call the Nell & Dudley Scenario®: Nell is tied to the railroad tracks as a train ap-
proaches. Dudley must formulate a plan to save her and carry it out before the train reaches her.
If we suppose Dudley has never rescued anyone before, then he cannot rely on having any very
useful assessment in advance, as to what is worth trying. He must deliberate (plan) in order to
decide this, yet as he does so the train draws nearer to Nell. We want to prevent Dudley from
spending so much time seeking a theoretically optimal plan to save Nell, that in the meantime
the train has run Nell down. Moreover, we want Dudley to do this without much help in the
form of expected utilities or other prior computation. Thus he must assess and adjust (meta-
plan) his on-going deliberations vis-a-vis the passage of time. His total effort (plan, meta-plan
and action) must stay within the deadline. He must, in short, reason in time about his own
reasoning in time.

Our approach has many concerns in common with existing research in planning and tempo-
ral reasoning®. However, a fully deadline-coupled planner has an important qualification that

!The time taken for executing such procedures, however, is itself accounted for and declaratively represented,
and the results of such procedures are also in declarative form. An example is the WET procedure discussed
later.

2This problem was first mentioned in the context of time-dependent reasoning by McDermott [?], and more
recently discussed in [?].

3 [2,7,7, 7, ?7]. However, these works do not account for the time taken for meta-planning. Indeed, this is
stated in [?] (page 402): “Here we will not worry about the cost of meta-reasoning itself; in practice, we have
been able to reduce it to an insignificant level”.

Dean [?] proposed a computational approach to reasoning about events and their effects occurring over time.
Dean, Firby and Miller [?] subsequently designed FORBIN, a planning architecture that supports hierarchical
planning involving reasoning about deadlines, travel time, and resources. Dean and Boddy [?] formulated an
algorithmic approach to the solution of time-dependent planning problems by introducing “anytime algorithms”
which capture the notion that utility is a monotonic function of deliberation time. Here also, the time for
computation is not accounted for : “The time required for deliberation scheduling will not be factored into
the overall time allowed for deliberation. For the techniques we are concerned with, we will demonstrate that
deliberation scheduling is simple, and, hence, if the number of predicted events is relatively small, the time
required for deliberation can be considered negligible,” [?] (page 50). [?] demonstrated deliberation scheduling
for a time-dependent planning problem involving tour and path planning for a mobile robot.

[?] formulated a world model based on temporal logic which allows the problem solver to gather constraints
on the ordering of actions without having to commit to it when a conflict is detected. [?] discusses how a planner
can reason about the difficulty of its tasks, and depending on available time, produce reasonable if not optimal
solutions. [?] and [?] use a first-order temporal logic model to describe complex synchronization properties of
parallel multiagent domains. [?] explore the relation between agent design and environmental factors. They use
plans to constrain the reasoning. In [?] a computational approach to temporal reasoning is presented in which a
problem solver is forced to make predictions and projections about the future and plan in the face of uncertainty

these efforts fail to meet: in addition to determining the current time, estimating the expected
execution time of partially completed plans and being able to discard alternatives that are
deadline-infeasible, it must also have a built-in way of accounting for all the time spent as a
deadline approaches. This means not only accounting for the time of various segments (pro-
cedures in the more usual approaches), but also the time for this very accounting for time!
Step-logics are used here as a way to do this without the vicious circle of “meta-meta-meta...”
hierarchies.

2 Using Step-Logics

Step-logics were introduced as a general-purpose tool to represent reasoning situated in time®.
An essential feature of step-logics is that inferences are parametrized by the time taken for
their inference, and these time parameters can themselves play a role in the specification of
the inference rules and axioms. The most obvious way time parameters can enter is via the
predicate expression Now(z), indicating the time is now i. Each step of reasoning advances i
by 1. Step-logics offer a natural representation of the evolving process of reasoning. A step
is a fundamental unit roughly characterized by the time it takes the reasoner (Dudley, for the
purpose of this paper) to draw one inference in the on-going chain of reasoning; it is also the
time it takes to perform a primitive action. Observations are inputs from the external world,
and may arise at any step i. When an observation appears, it is considered a belief (or fact) in
the same time-step.

At each new step ¢, the only information available to Dudley upon which to base his further
reasoning is a snap-shot of his deduction process completed up to and including step 7 — 1.
During step i, Dudley applies all available inference rules in parallel, but only to beliefs at
step © — 1; new beliefs thus generated at step ¢ through applications of inference rules are not
available for use in further inference until step 2 + 1. At any given step then, Dudley’s beliefs
(observations plus inferred beliefs) are not the logical closure of his observations, but rather only
the (finite) subset he has deduced so far. Actually, this is not strictly correct, since beliefs are
not necessarily inherited from one step to the next. The most obvious one is Now(i), which is
believed at step i but not at i + 1°.

A commonsense reasoner typically has to reason with incomplete information. Thus, default
conclusions may have to be made which may later be contradicted on the basis of more infor-
mation. In step-logics, there is in general® time ahead to initiate repairs to one’s reasoning, and
hence contradictions are not necessarily bad; indeed, they can be seen as very useful clues that
something needs to be attended to’.

and incomplete knowledge; time-maps are described here. [?] examine the complexity of temporal reasoning
problems involving events whose order is not completely known. We refer the reader to [?] for a general survey
of related work on planning.

47,7, 7, 7.

5Thus step-logics are inherently nonmonotonic, in that further reasoning always leads to retraction of some
prior beliefs.

5In deadline situations of course there is only limited time ahead, and so the reasoning becomes more delicate.
Part of our work has focused on this issue.

7 [2, 7). While we do not at present have a completely satisfactory method for resolving all contradictions, we
do have techniques for temporarily disarming them.

3 Workings of a Step-Logic Planner

We have created a representational language for some variations of the illustrative Nell & Dudley
deadline problem.? A few sample axioms and inference rules can be found in the Appendices.
At all times Dudley retains his belief about the hard deadline which he must meet. The partial
plan is a temporally ordered list of triplets. Each triplet consists of an action, preceded and
followed, respectively, by a list of conditions and results. The conditions are not necessarily
preconditions, they may need to be true over all or some of the duration of the action. A triplet
is written within square brackets [...] and an ordered list of triplets is enclosed within curly
brackets {...}. An action may be complex or primitive (atomic). A primitive action takes one
time step to perform. Primitive actions are deleted from the plan once they have been acted
upon. A null plan indicates a solved goal.

As Dudley develops a partial plan to save Nell, he continuously refines his estimate of the
time to carry the plan to completion, making sure it will not overshoot the deadline. This we
call the working estimate of time (WET for short).® The WET is Dudley’s calculation of how
long his partial plan (formed as of the previous step) will take to execute. This he adds to the
current time and compares the result to the deadline to make sure the plan is not hopeless. As
long as it is not, he declares it Feasible, and continues refining and /or putting it into execution.
Dudley updates the WET when an action with a known difference between its start and finish
times is made part of the plan. Currently, Dudley does not have a procedure to estimate the
duration of tasks with unspecified time intervals. We are incorporating such a procedure, and
the time taken to execute it is also our concern.

A projection is typically made in the context of a plan. The context of a plan at step i
consists of all Facts at the step along with the actions in the plan and their results. The context
of a null plan is made of Facts alone. If there are one or more plans at step ¢, a projection is
made in the context of each plan, including the null plan. The projection rule is in accordance
with the default of persistence. It projects'® each formula « in the context set at step 4 to the
maximum interval over which it can persist, up to the point when it clashes with a formula £
in the context set involving the same predicate, which is in contradiction!! with «. If there is
no such S the projection ranges up to oo.

Our approach can be best described by a term which we call parallel projection. That is,
the entire known state of the world at one moment is used to determine the (expected) state at
the next moment. Since step-logics are built around the idea of specifying what is known (e.g.,
proven) so far, all predicates can be simultaneously reconsidered at each new time step.

Planning decisions involve future course of actions, and these must be based on what is
foreseeable’® in the current projection in the context of each current partial plan. When a
condition C4 is not foreseeable, Dudley attempts to find an axiom of the form Ay,..., Ay — Cy
and uses it to refine the plan, thus making the condition foreseeable.

8This version has been implemented in PROLOG.

9The WET is one of our concessions to procedural methods: we do not require Dudley to figure out how to
do arithmetic but rather allow that he already knows. But we do require him to note the passage of time during
the execution of the procedure.

0Projections (and persistences) have been studied by numerous authors; see e.g., [?] , [?], [?], [?],[?], [?] and
[7]. Our treatment is along the lines of time-maps of [?], [?].

1A formula X(S : F,...) is in direct contradiction with =X (S : F,...). A formula X(S : F,U,...) is in
uniqueness contradiction with X (S : F,V,...)if X(S: F,U,...) - =X (S : F,V,...) whenever U # V. A set of
formulas Z du-contradicts a formula §, written as (Z ~» —d), if there is a formula o € Z which is in direct or
uniqueness contradiction with 4.

2 A condition C4 is said to be foreseeable if C4 € Facts or (Ca € Proj and Facts 4+ ~Ca).

Dudley may start to act on a primitive action in the partially developed plan, not waiting
for the plan to reach completion. At the same time he continues planning [?], [?]. His predicted
projections and observations are compared; conflicts resolved in favor of the latter. While
acting, projections can suffice to render the condition for a primitive action foreseeable, when
the condition is not directly observed, provided the projections do not contradict any facts or
new observations.

3.1 Some Illustrative Steps

To illustrate our efforts in a bit more detail, we present below some portions of the output from
our PROLOG program that implements the ideas we have been discussing. For more technical
details see [?]. Here Nell is a distance of 35 ‘paces’ from Dudley when he first realizes (step 0)
that the train will reach her in 50 time units. He begins to form a plan, seen below in step 1 as
Ppl (partial plan), and refines the plan in subsequent steps. Deadline is 50 in this example, d
is Dudley, n is Nell, A denotes home and r the railtrack. The subscript obs indicates that the wif
it is attached to is the result of an observation. Subscripted ¢’s indicate times (step numbers).
Proj stands for projection; save, that appears as argument to Ppl, Proj and Feasible in step
1, is a label naming the plan he is forming. X (S : 7,...) denotes that the predicate X holds
over the interval S : T. A point interval T : T is written simply as T'. The “e—” as it appears
in X(S:Te> R,...) denotes that X is intended to hold beyond S : T up to R (by default). Its
use in a result of an action indicates that the result must be preserved for use in a later segment
of the plan. The difference between “:” and “e»” will make itself clear in the next section. The
number at the right bottom corner of a triplet denotes its place in the plan sequence.

0: Facts({At(0,d, h)ops, Tied(0,n,7)0ps}), Deadline(50), Goal(out-of danger(50,n,r))

1: Facts({At(0,d, h),Tied(0,n,r)}), Deadline(50), Unsolved(Goal(out_of -danger(50,n,r))),
Ppl(save, 1, {out_of danger(50,n,r)}), Proj(save, 1, {At(1 : co,d, h),Tied(1 : co,n,r)}),

WET(save,0), Feasible(save, 0)
—Tied(t1,n,T)
Pull(ty : ta,d,n,r) ,
1

Out_of _danger(tae~ 50,n,7)

g

Facts({At(0,d, h),Tied(0,n,r)}), Ppl(save, 2, {

{t2 <50,t1 = t2 — 1}), WET(save,0), ...
At(ts : ta,d,r) —Tied(t1,n,T)
: Ppl(save, 3, Release(ts : ta,d,n,r) Pull(ty : to,d,n,r) ,
—Tied(tso> t1,n,7) |, Out_of danger(t2e+ 50,n,7) |,

{t2 < 50,8ty =ty — 1,83 =t4 — 3,t4 < t1})

Proj(save, 3, {At(1 : 00, d, h),Tied(1 : 0o, n,r),Out_of danger(ta + 1 : co,n,r), }),
WET(save, 1), ...

w

=~

At(tﬁ, d, L) At(tg, d, T)
Ppl(save, 4, { Run(te : t7,d, L : 1)] [Release(ts : tg,d,n,r)] } ,ta <50, =ty — 1,
At(tre t3,d, 1) L —Tied(tse> t1,n,7) |,
t3 =ty — 3,t4 <ty te < tr,t7 < 13})
Proj(save,4,{..., Tied(1:ty — 1,n,r),~Tied(ts + 1 : co,n,r), ...}), WET (save,4), ...

To understand the step-like reasoning here, consider the workings of Step 4. Looking at the
belief set at the end of Step 3, Dudley reasons that since he is not projected to be at the railroad
track by t3 (he is projected to be at h and h # r). He finds an axiom which tells him that

Run is a possible action to be at another place. However, he still does not know the location
L from which he must Run and hence, this is still unbound. This will be bound to A in step
5, when he will attempt to make the condition for the Run foreseeable, by first looking up the
projection. Notice also his projection in the context of the plan save at the end of step 4; he
no longer believes that Nell will be T'2ed until infinity, he has trimmed down that range to now
extend only up to t4 — 1, at which time he is projected to have Released her.

Dudley’s plan formulation and simultaneous execution continues, until at step 46 he has
saved Nell, 4 steps before the deadline Ddl = 50.

3.2 The Knots May Be Too Tight, a Knife May Be Needed

In this research, we incrementally consider more complex scenarios, so that by abstracting from
them we can identify more critical issues and enhance the framework with additional time-
situated planning capability. Suppose that Dudley thinks that a knife may be required to cut
the difficult knots around Nell, and that he should plan for that contingency. He knows of
a knife in the house, he projects it to be there when he needs to use it. Requiring a knife
corresponds to a compound condition for the action Cut_ropes(S : F,...), namely, At(S :
F,d,r) NHave(S : F,d,knife). We introduce an inference rule (Appendix B, Rule 11) whereby
Dudley can subsequently formulate two plans, one in which he plans to satisfy Have(...) before
At(...) and the other in which this order is reversed. Both conditions, must, however, hold up
to the time they are needed for the Cut_ropes action. This is where the “e—” comes in use.
We introduce another inference rule (Appendix B, Rule 12) that enables Dudley to notice that
when the result of an action is expected to be preserved up to the time when it is to be used, a
plan in which it must be undone in order to satisfy the condition for a subsequent action, is in
fact inefficient, and can be frozen in favor of another plan.

This rule, though domain independent, does not claim to handle every situation involving
conjunctive goals. It can be thought of as one heuristic aid used by commonsense reasoners in
limited time to help in plan selection. In the second plan, picking up the knife requires Dudley to
be at home (the same location as the knife), and this violates his attempt to achieve At(t11,d,)
and preserve it until the time ¢4 when he will finish untying Nell. This rule fires and he chooses
to proceed with the first plan in favor of the second. We demonstrate below a few key steps in
this reasoning.

3: Facts({A¢(0,d, h), At(0, knife, h), Tied(0,n,r)}), Deadline(50),
Unsolved(Goal (out_-of _danger(50,n,1))),
[At(ts : tg,d,r) A Have(ts : ty,d, knife)
Ppl(save, 3, Cut_ropes(ts : t4,d,n,r) AU
—Tied(tye~ t1,n,71) L

{.. t3=1t1—3,...})
Proj(save, 3, {At(1 : c0,d, h), At(1 : 00, knife, h), Tied(1:ts —1,n,7), ...})...

[At(ta, d, Ll) A At(ta, km'fe, Ll) At(ts, d, Lz)
4: Ppl(savel, 4, Pick_up(ts : t7,d, knife) Run(ts : tg,d, Lo : 1) ,
Have(tro t4,d, knife) L At(tge t4,d,r))

{ o te=tr—1,...})

Run(t10 : tll,d, L4 : T‘)
At(tn.—) t4,d, 7‘)
{...,t12 =t13—1,...})

Pick_up(tis : t13,d, knife)
Have(ti39 ta,d, knife)

At(ty0,d, Ly)]
1

At(t12,d, L3) A At(te, knife, Ls)
Ppl(save2, 4, ,
2

Proj(savel, 4, {At(1 : co,d, h), At(1 : 00, knife, h),Tied(1:ts — 1,n,7), ...})
Proj(save2,4, {At(1 : co,d, h), At(1 : 00, knife, h),Tied(1:ts — 1,n,7), ...})...

At(t6, d, h) A At(t(;, km'fe, h) At(tg, d, h)
5: Ppl(savel, 5, Pick up(ts : t7,d, knife) Run(ts : tg,d,h : 1) ,
Have(t7e> t4,d, knife) | At(tge tq,d,T))
{.te=tr—1,...})
At(tlo, d, h) At(tlz, d, h) A At(te, k‘nife, h)
Ppl(save2, 5, Run(tio : t11,d,h : 1) Pick_up(tis : t13,d, knife))

At(tu.—) t4,d, ’I‘)
{...,t12 =113 —1,...})
6: Freeze(save2,5), ...

Have(ti30 tg,d, knife))

4 Conclusions and Future Work

This is the summary of an intermediate phase of a long-term project of which the even-
tual goal is to model a flexible reasoner with a large database of knowledge ranging over a
variety of domains. OQur efforts thus far are evidence that a logic-based real-time planner
is feasible. Step-logics allow us to treat reasoning and action in an analogous framework,
and thus provides a built-in platform for real-time reasoning. More is underway, especially
regarding competing plans and interacting subplans. One of the crucial issues we are at-
tempting to address is how to decide on the basis of the current partial plan(s) and their
working estimate(s) of time, “whether to act now or deliberate further”. In the future we
also wish to extend our implementation in various ways, some of the immediate concerns
are: to tackle issues involving the frame problem [?] and ramifications and qualifications [?,
?], to strengthen the working estimates of time for unfinished plans, to find explicit representa-
tions for extended actions, and to handle failure and error recovery, perhaps also to incorporate
perceptual reasoning!® and a limited capability for qualitative reasoning.

A SAMPLE AXIOMS!*

Relevant to moving:
o Run(Ty : T»,Y, Ly : La) — At(T2,Y, La) 1o = T1 + (L2 — L1) Joy!'®
e condition(Run(Ty : T»,Y, Ly : Ls), At(T1,Y, Ly))
o result(Run(Ty : Ty,Y, Ly : Ly), At(T»,Y, Ly))
Relevant to untying and releasing:
e Pull(T:T+1,X,L) — Outof -danger(T +1,X,L)
e condition(Pull(T : T 4+ 1,X,L),-Tied(T,X, L))
o result(Pull(T : T +1,X,L), Out_of _danger(T + 1, X, L))

13This ties to spatial reasoning, and to aspects of a plan that involve getting more information; for instance
Dudley may have to move in order to see whether Nell is tied. This in turn relates to existing work ([?], [?]) on
ignorance and perception.

4These constitute a large part of the current set of axioms and inference rules. [?] gives a more comprehensive
initial set.

5y is Y's speed while running.

o Pickup(T:T+1,Y,X)— Have(T +1,Y, X)
e result(Pickup(T : T+ 1,Y,X),Have(T : T+ 1,Y, X))

e condition(Pick_up(T : T +1,Y, X),
AT :T+1,X,L)AAKT : T +1,Y, L))

SAMPLE INFERENCE RULES*

1. Agent looks at the clock

...
i+1:... Facts(i+1,{...,Now(i +1)})

2. Modus Ponens(MP)

i:...,Facts(i,{...,0,...,(a = B3)})
i+1:...,Facts(i,{...,0})

3. Inheritance(INH)

i:...,Facts(i,{...,a})
i+1:...,Facts(i+1,{...,a})

4. Observations become instant beliefs

Ti...
i+1:Facts(...,a);a € OBS(i +1)

5. Forms the first partial plan

i: Goal(G)
i+1:Ppl(p,i+1,{G}),Feasible(p,i)

6. Finds a triplet for the goal
i: Ppl(p,i,{G}),result(4, R4),condition(4,C4),A > G

Ca
)
7. Computes the WET

A
CA1 CAk
i:Ppl(p,i,{ l Ai(st: f1,...)] [Ar(sk: fry---)]})

i+1:Pp1(p,i+1,{

GAR4
RAl RAk

i+1: WET(p,i,>5_ (f; — 55)

the summation is limited to those j values for which (f; —s;) is known

8. Keeps track of feasibility

i:Ppl(p,i,{...}), Deadline(Ddl), WET(p,i — 1,n)
i + 1 : Feasible(p,)

if n +1¢ < Ddl.

9. Projection(PROJ)
i:...,Facts(i,{...,X(S: F,...)}), Context_Set(i,p, CS)
i+1:...,Proj(i +1,null,{...,X(S:R,...),...})

if (S : R) is the maximum interval such that
-AT){S<T <RA(CS~ =X(T,...))} 1

10. Refine a non-primitive action

Ca |
i: Ppl(p,1i, A | 3),Q1N. . AQr— A
Ry |
{ Co, Cau }
i+1:Ppl(p,i+1,<...| Q1 |...| Q Y
_RQl Rq,

provided every condition in C'4 is foreseeable

11. Spawn the generation of two plans on encountering a compound condition!”

C'A(R:S,..)NC"4(V : W,...)
i: Ppl(p,1, A o), Al O AT 5 CY
Ry p
Ppl(pl,z'+1,{... Al A })
! . n .

i+l :CA(P.QHS) L, L CU(T: U W) 1o
Ppl(p2,i+1,< ... A" A ceep)

| CU(T: U W) i CY(P:Qe S) | i1

12. Freeze a plan when it is found to be inefficient

Ca,(V:W,..)
Aj Ag, e)
s ||

i+ 1: Freeze(p,i)

i: Ppl(p,1i,

if P:S and V : W overlap, and Ry4; and Cjy, are in direct or uniqueness contradiction

References

[Allen and Koomen, 1983] Allen, J. and Koomen, J. 1983. Planning using a temporal world model. In
Proceedings of the 8th Int’l Joint Conference on Artificial Intelligence, pages 741-747.

[Boddy and Dean, 1989] Boddy, M. and Dean, T. 1989. Solving time-dependent planning problems. In
Proceedings of IJCAI-89, pages 979-984, Detroit, Michigan.

[Charniak and McDermott, 1985] Charniak, E. and McDermott, D. 1985. Introduction to artificial in-
telligence. Addison-Wesley, Reading, Mass.

[Cohen and Levesque, 1990] Cohen, P. and Levesque, H. 1990. Intention is choice with commitment.
Artificial Intelligence, 42:213-261.

[Davis, 1988] Davis, D. E. 1988. Inferring ignorance from the locality of visual perception. In Proceedings,
AAAI-88, St. Paul, Minnesota.

8for a definition of ~» see footnote 12
'"This rule can be easily generalized to more than two conjuncts in a condition.

[Dean and Boddy, 1988a] Dean, T. and Boddy, M. 1988. Reasoning about partially ordered events.
Artificial Intelligence, 36(3):375-399.

[Dean and Boddy, 1988b] Dean, T. and Boddy, M. 1988. An analysis of time-dependent planning. In
Proceedings, AAAI-88, pages 49-54, St. Paul, Minnesota.

[Dean and McDermott, 1987] Dean, T. and McDermott, D. 1987. Temporal data base management.
Artificial Intelligence, 32(1):1-55.

[Dean et al., 1988] Dean, T., Firby, R. J., and Miller, D. 1988. Hierarchical planning involving deadlines,
travel time and resources. Computational Intelligence, 4:381-389.

[Dean, 1984] Dean, T. 1984. Planning and temporal reasoning under uncertainty. In IEEE Workshop
on Principles of Knowledge Based Systems, Denver, Colorado.

[Dean, 1987] Dean, T. 1987. Intractability and time-dependent planning. In Reasoning about Actions
and Plans, pages 245-266. Morgan-Kaufmann, Los Altos, CA.

[Drapkin and Perlis, 1986a] Drapkin, J. and Perlis, D. 1986. A preliminary excursion into step-logics. In
Proceedings SIGART International Symposium on Methodologies for Intelligent Systems, pages 262—
269. ACM. Knoxville, Tennessee.

[Drapkin and Perlis, 1986b] Drapkin, J. and Perlis, D. 1986. Step-logics: An alternative approach to
limited reasoning. In Proceedings of the FEuropean Conf. on Artificial Intelligence, pages 160-163.
Brighton, England.

[Elgot-Drapkin and Perlis, 1990] Elgot-Drapkin, J. and Perlis, D. 1990. Reasoning situated in time I:
Basic concepts. Journal of Exzperimental and Theoretical Artificial Intelligence, 2(1):75-98.

[Elgot-Drapkin, 1988 Elgot-Drapkin, J. 1988. Step-logic: Reasoning Situated in Time. PhD thesis,
Department of Computer Science, University of Maryland, College Park, Maryland.

[Georgeff and Lansky, 1988] Georgeff, M. and Lansky, A. 1988. Reactive reasoning and planning. In
Proceedings AAAI-88, pages 677—682.

[Ginsberg and Smith, 1987a] Ginsberg, M. L. and Smith, D. E. 1987. Reasoning about action I: A
possible worlds approach. In Brown, F. M., editor, Proceedings of the 1987 Workshop on The Frame
Problem, pages 233-258, Lawrence, KS. Morgan Kaufmann.

[Ginsberg and Smith, 1987b] Ginsberg, M. L. and Smith, D. E. 1987. Reasoning about action II: The
qualification problem. In Brown, F. M., editor, Proceedings of the 1987 Workshop on The Frame
Problem, pages 259-287, Lawrence, KS. Morgan Kaufmann.

[Haas, 1985] Haas, A. 1985. Possible events, actual events, and robots. Computational Intelligence, 1.

[Haugh, 1987] Haugh, B. A. 1987. Simple causal minimizations for temporal persistence and projection.
In Proceedings of the sixth national conference on artificial intelligence, pages 218—-223.

[Hendler et al., 1990] Hendler, J., Tate, A., and Drummond, M. 1990. Systems and techniques: AI
planning. AI Magazine, 11(2):61-77.

[Horvitz et al., 1989] Horvitz, E., Cooper, G., and Heckerman, D. 1989. Reflection and action under scare
resources: Theoretical principles and empirical study. In Proceedings of IJCAI-89, pages 1121-1127,
Detroit, Michigan.

[Horvitz, 1988] Horvitz, E. J. 1988. Reasoning under varying and uncertain resource constraints. In
Proceeding, AAAI-88, pages 111-116, St. Paul, Minnesota.

[Kanazawa and Dean, 1989] Kanazawa, K. and Dean, T. 1989. A model for projection and action. In
Proceedings of IJCAI-89, pages 985-990.

[Kautz, 1986] Kautz, H. 1986. The logic of persistence. In Proceedings, AAAI-86, pages 401-405.

[Kraus and Perlis, 1989] Kraus, S. and Perlis, D. 1989. Assessing others’ knowledge and ignorance. In
Proc. of the 4th International Symposium on Methodologies for Intelligent Systems, pages 220-225,
Charlotte, North Carolina.

[Kraus et al., 1990] Kraus, S., Nirkhe, M., and Perlis, P. 1990. Deadline-coupled real-time planning. In
Proceedings of 1990 DARPA workshop on Innovative Approaches to Planning, Scheduling and Control,
pages 100-108, San Diego, CA.

[Lansky, 1986] Lansky, A. 1986. A representation of parallel activity based on events, structure, and
causality. In Reasoning about Actions and Plans, pages 123-159. Morgan-Kaufmann, Los Altos, CA.

[Lansky, 1988] Lansky, A. 1988. Localized event-based reasoning for multiagent domains. Computational
Intelligence, 4:319-340.

[McDermott, 1978] McDermott, D. 1978. Planning and acting. Cognitive Science, 2:71-109.

[McDermott, 1982] McDermott, D. 1982. A temporal logic for reasoning about processes and plans.
Cognitive Science, 6.

[McDermott, 1987] McDermott, D. 1987. Nonmonotonic logic and temporal projection. Artificial Intel-
ligence, 33:379-412.

[Morgenstern, 1991] Morgenstern, L. 1991. Knowledge and the frame problem. In The Frame Problem
in Artificial Intelligence. JAI Press.

[Nilsson, 1983] Nilsson, N. 1983. Artificial intelligence prepares for 2001. AT Magazine, 4(4):7-14.

[Perlis et al., 1990] Perlis, D., Elgot-Drapkin, J., and Miller, M. 1990. Stop the world! — I want to think!
Submitted to International J. of Intelligent Systems.

[Pollack and Ringuette, 1990] Pollack, M. E. and Ringuette, M. 1990. Introducing the tileworld: Exper-
imentally evaluating agent architectures. In Proceedings, AAAI-90, pages 183-189.

[Russell and Wefald, 1989] Russell, S. and Wefald, E. 1989. Principles of metareasoning. In Proceedings of
the First International Conference on Principles of Knowledge Representation and Reasoning. Morgan-
Kaufman.

[Wilensky, 1983] Wilensky, R. 1983. Planning and understanding. Addison Wesley, Reading, Mass.

