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Abstract

Concern with the real-time nature of effective reasoning led us to develop a memory-based model of reasoning.
Later efforts convinced us that a formal treatment of this approach would be fruitful. The current paper surveys the
evolution of this work and discusses potential future research endeavors.

1 Motivation

Traditional theoretical treatments of reasoning do not, in our view, address reasoning per se at all. Rather they seek
to characterize the end results of reasoning. We have four complaints with this. First, it is not clear that reasoning
has clearly identifiable end results, but rather goes on and on as part of the active history of an individual reasoner.
Second, reasoning is a process or activity, and this is simply ignored in traditional studies. Third, as a consequence,
crucial issues of temporal and spatial resources are not taken into account. Finally, if we are going to understand
realizable intelligent systems, we must look at what they actually do, i.e., we must accept at least a certain amount of
cognitive plausibility (whether human or computer).

The paradigm for such a reasoning agent would seem to be that suggested by Nilsson [17], namely, a computer
individual with a lifetime of its own. What is of interest is not its ‘‘ultimate’’ set of conclusions, but rather its changing
set of conclusions over time. Indeed, there will be, in general, no ultimate or limiting set of conclusions.

The notion of time enters the reasoning process in two ways. Not only does reasoning take time, but it often deals
with time as an object of reasoning. The latter has of course been extensively studied, in so-called temporal and tense
logics. But there, once again, it is the end results and not the process of drawing conclusions that is studied. We seek
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to do both, in one model of reasoning. This pointedly includes the case of reasoning going on in time (of course, as it
must) while the system is focused on (reasoning about) that very passage of time as it reasons. This, we will argue, is
no mere curiosity, but rather a central feature of intelligent thought.

Similarly, space enters in two ways. On the one hand there is spatial reasoning, again well-studied. On the other
hand there is the fact that reasoning takes up space, in the form of memory. Again we are interested in modeling both.
Moreover, we want both forms of temporal reasoning and both forms of spatial reasoning to go on together in the
same system.

To this end we initiated a project some years ago, toward the development of an automatic reasoner. This work is
summarized in Section 2. Later we came to realize that in it there lurked certain features that suggested formalization,
and so we embarked on the development of a logic of sorts. The logic retains much of the traditional approach and yet
also breaks loose from that in several key respects; in particular, the new formalization -- which we call step-logic
-- does not focus on end results. This will be explained in Section 3. So far, we have concentrated on time rather
than space (memory) in this formalization. Section 4 suggests future directions including the incorporation of space
concerns.

To illustrate what we called the end-result character of traditional approaches to formalizing commonsense
reasoning, note that the traditional approaches suffer from the problem of logical omniscience: if an agent has � 1,
����� , ��� in its belief set, and if � follows from � 1, ����� , ��� according to the agent’s rules of inference, then the agent
also believes � (i.e., � is also in the belief set). As a specific example, if a typical omniscient agent believes � , and
also believes ���
	 , then the agent believes 	 . As an illustration, refer to Figure 1. The reasoner begins with a set
of axioms, and the deductive mechanism generates theorems along the way, e.g., � , later ���
	 , still later 	 . Such
mechanisms have usually been studied in terms of the set of all theorems deducible therein, what we call the ‘‘final
tray of conclusions’’ into which individually proven theorems are represented as dropping, thereby ignoring their time
and means of deduction. One asks, for instance, whether a wff � is a theorem (i.e., is in the final tray), not whether �
is a theorem proven in � steps.
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Figure 1: Final-tray logical studies

A particularly vexing aspect of this type of reasoning is what we call the ‘‘swamping problem’’---namely that
from a contradiction all wffs are concluded. For this reason most formal studies of reasoning deliberately avoid
contradictions; those that do not (e.g., Doyle [2]), provide a separate device for noting contradictions and revising
beliefs while the ‘‘main’’ reasoning engine sits quiescent. In general, however, this will not do, since the knowledge
needed to resolve conflicts will depend on the same wealth of world knowledge used in any other reasoning. Thus
reasoning about birds involves inference rules applied to beliefs about birds, whether used to resolve a conflict or
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simply to produce non-conflictingconclusions. We contend, then, that one and the same on-going process of reasoning
should be responsible both for keeping itself apprised of contradictions and their resolution, and for other forms of
reasoning.

We seek potentially inconsistent, but nevertheless useful, logics where a real-time self-referential feature allows
a direct contradiction to be spotted and corrective action taken, as part of the same system of reasoning. We will
suggest some specific inference mechanisms for real-time default reasoning, notably a form of introspection relevant
to default reasoning. This facilitates the study of fallible agents reasoning over time. A fallible agent may derive or
encounter an inconsistency, identify it as such, and then proceed to remedy it. Contradictions then need not be bad;
indeed, they can be good, in that they allow sources of error to be isolated (see [18]).

The agent should be able to reason about its own ongoing reasoning efforts, and in particular, reason whether it
has or has not yet reached a given conclusion. One of our main focuses here is the problem of an agent’s determining
that in fact it does not (currently) know something. This negative introspection will be a key feature of the deduction,
and subsequent resolution, of contradictions in our later examples of default reasoning in Section 3.2.4. It turns out
that negative introspection presents certain temporal constraints that will strongly influence the formal development.

The literature contains a number of approaches to limited (non-omniscient) reasoning, apparently with similar
motivation to our own. However, with very little exception, the idealization of a ‘‘final’’ state of reasoning is
maintained, and the limitation amounts to a reduced set of consequences rather than an ever-changing set of tentative
conclusions. Thus Konolige [12] studies agents with fairly arbitrary rules of inference, but assumes logical closure for
the agents with respect to those rules, ignoring the effort involved in performing the deductions. Similarly, Levesque
[13] and Fagin and Halpern [8] provide formal treatments of limited reasoning, so that, for instance, a contradiction
may go unnoticed; but the conclusions that are drawn are done so instantaneously, i.e., the steps of reasoning involved
are not explicit. Fagin and Halpern in particular postulate a notion of awareness, so that if � and ��� 	 are known,
still 	 will not be concluded unless the agent is aware of 	 ; just how it is that 	 fails to be in the awareness set
in unclear. Goodwin [11] comes a little closer to meeting our desiderata but still maintains a largely final-tray-like
perspective.

This next section describes the automatic reasoner.

2 A Pragmatic Approach

2.1 Background

Most of the A.I. systems built today are designed to solve one problem only. That is, the system is turned on, labors
away for some period of time, then spits out the (hopefully, correct) answer. It is then turned off, or works on another
problem with no knowledge of its past. In contrast, consider a system with a ‘‘life-time of its own’’; one whose
behavior significantly depends on its continued dealings with a variety of issues.

In the current section, we imagine a robot (i.e., some kind of reasoning agent) situated on a desert island (i.e., some
kind of robust world) left to its own devices. It has been endowed with a data base of information that it can use in
order to get along in this world.

It is clear that an autonomous robot will have to deal with a world about which it will have only partial knowledge.
Conclusions will frequently be drawn without full justification. As a consequence, some facts will have to be retracted
in the face of further information. An underlying premise is that a real-world reasoner is limited, at least in terms of the
scope and accuracy of the information to which it has access. We must back off a bit from the more traditional topic of
idealized reasoning agents that are infallible and omniscient. Additionally, if we limit the computing resources of the
robot (much as people are limited), then some of the difficulties of formal representation of commonsense reasoning
become more tractable. That is, greater limitations serve to constrain solutions to the point that answers may be more
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easily seen.

A centerpiece, and bugbear, of formal research in commonsense reasoning has been that of (global and derivational)
consistency tests. Even when, as in the case of circumscription (see [14]), direct testing of consistency is avoided by
clever syntactic manipulations, there is still implicit reference to global properties of the reasoning system (i.e., its set
of axioms). Time is then taken to assess logical consequences of these properties before a commonsense conclusion is
drawn. Thus a strong flavor of idealized reasoning has persisted.

Suppose we would like to have a reasoning system use a rule such as � � 	 to conclude 	 , given � , and later, in
the face of new evidence, be able to retract its belief in 	 . A somewhat standard (idealized) way of dealing with this is
to use a rule such as, ‘‘If � , and it is consistent to believe 	 , then conclude 	 ’’. This is called a default rule, and is
the source of the aforementioned consistency tests. The point of the ‘‘it is consistent to conclude 	 ’’ is to see whether
there already is evidence to retract 	 , i.e., to prevent the conclusion 	 in the first place. Instead of holding up the
system’s conclusion until such a test can be made, our approach allows the system to jump directly to the conclusion
	 , and then decide whether it was rash.

In the robot’s world, it seems, nearly all rules are actually defaults, since we can rarely be sure of anything. It
is then tempting to use a ‘‘brute force’’ method of encoding these defaults: simply encode the rule as ‘‘If � , then
conclude 	 ’’, with no ‘‘unless it is not consistent to do so’’ condition. One would then proceed as normal in the
inference process until a direct contradiction is somehow brought to the reasoner’s attention (a process which will be
explained shortly). At this point something would have to be done to resolve the inconsistency. It is important to note
that a contradiction should not be something that will incapacitate our system. Rather, it is something that is to be
expected, recognized (but only when relevant to the current focus of attention), and resolved by the system as part of
its normal operation. In particular this allows the use of a rule such as ���
	 , even though it may be recognized as
not strictly true. (Though this is not a trivial point, we will leave further discussion for a future paper. See [10] for a
related idea.)

We can now think of our robot as a real-world, resource-limited reasoner acting, albeit somewhat slowly, over
time. It uses defaults to allow itself a short-cut to quick deductions, correcting fallacy when it is recognized.

2.2 Details of the Model

Our robot is essentially a memory model that is controlled by an inference cycle mechanism. The model’s components
hold data in various forms so that as time evolves the inference mechanism is able to simulate reasoning. The model
has been implemented, and the examples later in this section are from actual computer trials.

2.2.1 Architecture

The memory model contains five key elements: STM, LTM, ITM, QTM, and RTM. The first three of these are
standard parts of cognitively-based models of memory. See Figure 2

STM is meant to represent the reasoner’s current focus of attention. Its chief purpose is to allow access to a very
large database (LTM), yet not suffer an exponential explosion of inferences. STM is a small set of beliefs that are
currently ‘‘active’’. These beliefs are represented as logical formulae and are used to help establish STM’s next state,
a process which will be described in the next section. STM is structured as a FIFO queue. Since STM’s size is limited1

, as new facts are brought into STM, old facts must be discarded. That is, the older, discarded facts are no longer in
focus.

1In our implementation, STM’s size is fixed, yet easily changed for experimental purposes. An interesting sidelight is that an STM size of eight
is the smallest that has led to effective task-oriented behavior over several domains, and that larger sizes have offered no advantage. This is in
surprising accord with psychological data which measure human short-term memory to hold seven plus-or-minus two ‘‘chunks’’ of data at one time
[15].
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Figure 2: architecture of the memory model

It is convenient to conceive of STM as a theorem prover to which LTM supplies axioms. LTM may then be
thought of as a data base of information to which the robot has access. LTM is implemented as a series of tuples of
the form:

���
1 � ����� � � � �
	��

where the
��

and 	 represent logical formulae. The idea behind LTM is that beliefs are held as a series of associations.
Thinking about certain triggers (i.e., the

��
’s) causes possibly many past associations (i.e., the 	 ’s) to be brought into

focus.

ITM is of unbounded size and holds all information which is discarded from STM in chronological order, i.e., in
order of entry. Thus, ITM is implemented similarly to a stack, in that the most recently entered facts are the most
easily accessed, although they are never removed.

QTM is a technical device that controls the flow of information into STM.

RTM is the repository of default resolution and relevance. RTM is implemented as a list of facts that have most
recently been in STM. Facts are coded with a time decay variable so that they can decay out of RTM as they are no
longer relevant, i.e., not found in STM for a specified number of inference cycles.

2.2.2 Inference

An inference cycle can be thought of as the process of updating the system’s current focus of attention. Given some
state of STM, four different mechanisms work simultaneously to produce a new state. These four mechanisms are
direct observation, modus ponens (MP), semantic retrieval from LTM, and episodic retrieval from ITM.

To model this simultaneity, our implementation uses a temporary waiting queue (QTM) which holds the next
cycle’s STM facts until all four mechanisms have finished working on the old STM facts. Once they have finished,
elements of QTM are placed into STM one at a time, disallowing repetition of facts in STM. Throughout this process,
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older items in STM are moved into ITM as needed to maintain STM’s size. Note that if QTM is very large, other
means will be required to reasonably select elements to go into STM2.

Currently, direct observation is modeled by allowing outsiders to simply assert a fact to the system. This allows
us the pretense of an autonomous system noting events in a dynamic environment.

MP is applied in the following form: from ��� and ( ��� � 	 � ), 	 � is inferred. That is, 	 � is brought into QTM
if ��� and ( ��� � 	 � ) are already contained in STM. Consequently, at the end of such a cycle, 	 � is a candidate for
STM.

Facts from LTM are brought into STM by association. When facts in STM unify with the first � elements of
some

� �
1 � ����� � � � � 	 � , in LTM, then 	 will be brought into QTM (and subsequently into STM), with its variables

properly bound.

Information retrieved from ITM into STM can take several forms. For example, since ITM is a chronological
listing of all past STM facts, its structure allows for the retrieval of goal statements that are not yet satisfied, but that
have already been pushed out of STM. This allows the system to work through a goal-subgoal process.

2.2.3 General Features

Before illustrating the memory model with an example, it is worthwhile making brief mention of several of its features.

First, in most of our work we have limited the size of STM to eight elements. That is, eight formulae can be held
in STM at any one time. We have had a fair amount of success solving problems with an STM of that size. However,
adjustments can easily be made to STM’s size and, indeed, our examples will use a size of four.

Second, LTM can hold inconsistent data without the usual disastrous consequences of customary inference
systems. That is, as long as a direct contradiction does not occur in STM, no inconsistency is even detected.

Third, the system is capable of meta-inference or ‘‘introspection’’ very simply by searching its list of STM
elements. For example, it can determine whether a given formula and its negation are both currently in STM. This
activity occurs via inference steps no different in principle from any of its other inferences. In effect, the system may
look at snapshots of itself as it runs, rather than extrapolating to some final state.

Fourth, the utility of RTM is to allow for such things as prohibiting faulty default conclusions. That is, since STM
is so small, it is likely that information that would typically block a default conclusion from being drawn has recently
left STM, but it still remains in RTM. Being in RTM is sufficient to prohibit a faulty default, as we consider RTM’s
entries as relevant enough to have a bearing on reasoning, yet not central enough to be the catalyst of further inference.

Finally, information stored in ITM and in RTM is at times accessible to STM. Thus, information from the past
can be brought back into focus when appropriate. This allows the system to use such information in working through
goal-subgoal behavior as well as using past information as a default when the frame problem arises.

2.2.4 An Example

As an example of this mechanism in action, consider the following state of affairs. STM contains the fact that Tweety
is a bird. LTM contains two pieces of information: the presence of bird(x) in STM is to trigger the fact that birds fly;
the presence of flies(x) in STM is to trigger the fact that flying things have wings. ITM is initially empty. To simplify

2In part this is handled by RTM.
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the example, the size of STM is fixed at a maximum size of four. A star, � , indicates a newly placed item in STM.

� ���
: �� ���
: � ���
	 (

���������
)� ���

:
� � ���
	 ( � ) � � ���
	 ( � ) ����� � �� ( � ) �� ��� � �� ( � ) � ��� � 
� ( � ) � � � ���  	 ( � ) �

The fact that Tweety is a bird will trigger the rule that birds fly, resulting in:

� ��� : � ���
	 ( ��������� )
� � ���
	 ( � ) ����� � �� ( � )

An application of MP would then leave:

� ���
: � ���
	 (

���������
)

� ���
	 ( � ) ����� � �� ( � )
� ��� � 
� ( ���������

)

Again, a new association will be triggered from LTM, resulting in:

� ���
: � ���
	 (

���������
)

� ���
	 ( � ) ����� � �� ( � )
��� � 
� ( ���������

)
� ��� � 
� ( � ) � � � ���  	 ( � )

This new fact would then trigger MP again (and have the side-effect of pushing � ���
	 (
����� ���

) into ITM).

� ��� : � ���
	 ( ��������� )� ��� : � ���
	 ( � ) ����� � �� ( � )
��� � 
� ( ��������� )
��� � 
� ( � ) � � � ���  	 ( � )

� � � ���  	 ( ��������� )

2.3 Real-time Non-monotonicity

It does not take an especially large effort to produce a rudimentary form of non-monotonic reasoning using our
architecture. As an illustration we present the following example. This time we start the system in the following state,
where the second entry in LTM is different from before:

� ��� : �� ���
: � ���
	 (

���������
)� ���

:
� � ���
	 ( � ) � � ���
	 ( � ) ����� � �� ( � ) ��"!#�$� � � ��% ( � ) � !#�$� � � ��% ( � ) �'&(��� � 
� ( � ) �

As before, the fact that Tweety is a bird will trigger the rule that birds fly, resulting in:

� ��� : � ���
	 ( ��������� )
� � ���
	 ( � ) ����� � �� ( � )
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An application of MP would then result in:

� ���
: � ���
	 (

���������
)

� ���
	 ( � ) ����� � �� ( � )
� ��� � 
� ( ���������

)

Now suppose the system discovers (through direct observation, or some other means) that Tweety is an ostrich.
We would then have:

� ���
: � ���
	 (

���������
)

� ���
	 ( � ) ����� � �� ( � )
��� � 
� ( ���������

)
� !#� � � � ��% (

����� ���
)

This new fact would then trigger the rule from LTM that ostriches do not fly (and have the side-effect of pushing
� ���
	 (

����� ���
) into ITM).

� ��� : � ���
	 ( ��������� )� ��� : � ���
	 ( � ) ����� � �� ( � )
��� � 
� ( ��������� )!#� � � � ��% ( ����� ��� )

� !#� � � � ��% ( � ) ��&(��� � �� ( � )

Again MP is applied, resulting in:

� ��� : � ���
	 ( ��������� )
� ���
	 ( � ) ����� � �� ( � )� ��� : ��� � �� ( ��������� )!#� � � � ��% (

����� ���
)!#� � � � ��% ( � ) ��&(��� � �� ( � )

� &(��� � 
� ( ���������
)

At this point STM contains both the belief that Tweety does not fly, as well as the belief that Tweety does fly. Is
this a problem? We think not. We would like to be able to say that the fact that Tweety flies was concluded by default;
through the use of a rule of typicality. Now given the additional information that, in fact, Tweety is an ostrich, we
would like the system to be able to retract the belief that Tweety flies, and instead conclude that Tweety, in fact, does
not fly.

Our approach then is first to let an inconsistency arise, and then once both � and & � are together in STM, we want
to be able to decide which (if either) of the two should be kept as a belief. Since STM is small, we will always be able
to determine quickly and easily whether such a direct contradiction exists.

Several methods of conflict resolution are available to us, each requiring little more than providing an extra term
to facts in STM which indicates the justification for bringing that fact into focus. For example, something that is
brought into STM as a result of direct observation can be tagged with the term ‘‘OBS’’, while a fact deduced through
modus ponens can be tagged with ‘‘MP’’, etc. These tags then allow the system to favor, say, an observed fact over a
deduced fact, and a more recent observation over an earlier one.

Notice also that all information about Tweety may soon leave STM, but will remain in RTM for some number of
inference cycles (and thus still remain relevant). If at a later time (not too late, as decay out of RTM may eventually

8



occur), Tweety is in focus again, RTM’s record of Tweety’s inability to fly will block the statement ��� � 
� ( ���������
)

from reappearing in STM. Thus the default rule is no longer applicable. That is, once a contradiction arises in STM
and we have resolved the contradiction in favor of one of the contradictory facts, we can simply remove the other fact
from STM.3 Furthermore, we can just as easily remove this fact from RTM so that it no longer bears any relevance to
the reasoning from that point on.

Any number of conflict resolution heuristics of this sort can be implemented rather easily. This is not to say that
resolution of such contradictions is trivial; on the contrary, it is in general very hard, but at the very least we have a
model in which to test different approaches.

With the above model of commonsense reasoning in place it is natural to try to formalize the behavior and
properties exhibited by such a reasoner. We discuss this theory in the following section.

3 A Theoretical Approach

3.1 Background

We have argued that we do not want to characterize the end results of reasoning; rather we seek to understand
reasoning as an on-going process. This requires that the formalism be capable of dealing with time as an object of
reasoning. This can be done in ordinary logic, if the representation is in the meta-theory, through the use of a time
argument to a predicate representing the agent’s proof process. However, in order for the agent to reason about the
passage of time that occurs as it reasons, time arguments must be put into the agent’s own language. But now since
time goes on as the agent reasons, and since this phenomenon is part of what is to be reasoned about, the agent will
need to take note of facts that come and go, e.g., ‘‘It is now 3pm and I am just starting this task ����� Now it is no longer
3pm, but rather it is 3:15pm, and I still have not finished the task I began at 3pm.’’ This immediately puts us in a
non-traditional setting, for we lose monotonicity: as the history evolves, conclusions may be lost. Because of this,
the formalism cannot in general retain or inherit all conclusions from one step to the next. The formalism must be
augmented with a notion of ‘‘now’’, which appropriately changes as deductions are performed. It turns out that this is
not an easy task.

We propose step-logic then as a model of reasoning that focuses on the on-going process of deduction. As a simple
example, refer to Figure 3. The reasoner starts out with an empty set of beliefs at time 0. Certain ‘‘conclusions’’ or
‘‘observations’’ may arise at discrete time steps. At some time, � , it may have belief � , concluded based on earlier
beliefs, or as an observation arising at step � . At some later time,

�
, it comes up with � �
	 . Later still, the agent

might deduce 	 . Of course, much the same might be said of any deductive logic. However in step-logic these time
parameters can figure in the on-going reasoning itself. Note that we are focusing on the on-going reasoning process
and not on the end results of reasoning.

The memory model (Section 2) of course proceeds in a step-like fashion, and indeed it was what motivated
the effort toward the theoretical approach in this section. The memory model even records the times at which its
conclusions are drawn, in further step-like fashion. However, that model does not serve well as a theoretically concise
set of principles for understanding broad issues of reasoning behavior at an abstract level. For that purpose we need
something more like a step-logic.

3In our implementation we actually retain the fact that has been determined to be incorrect, but we tag this fact in such a way so that its incorrect
nature is evident. This is done so that ITM can maintain a complete chronological listing of STM facts. We feel that this will be important in the
future as we may attempt to implement a learning device that scans ITM, attempting to identify patterns of reasoning.
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Figure 3: Step-like logical studies

3.2 Details of Step-logic

3.2.1 The Basics

A step-logic is characterized by a language, observations, and inference rules. At each step � all immediate
consequences of the rules of inference applied to the previous step are drawn (and therefore are among the wffs at
step � ). However, for real-time effectiveness and cognitive plausibility, at each step we want only a finite number of
conclusions to be drawn.4

In order for a reasoner to be able to deal appropriately with the commonsense world, three three major mechanisms
are necessary: introspection, awareness of time, and retraction. Since the agent must be able to reason about its own
processes, a belief, or knowledge, predicate is needed. We employ a predicate symbol, � , for this purpose: � ( � � ‘ � ’ ) is
intended to mean that the agent knows wff � at time � .5 We drop the quotes in � ( � � ‘ � ’ ) in the remainder of the paper.

The agent needs information as to how the � in � ( � � � ) relates to the on-going time as deductions are performed.
This requires the agent to have information as to what time it is now. We achieve this through the use of the predicate
expression � !
� ( � ), which is intended to mean the time currently is � . Therefore, this is a belief which must change as
deductions are performed.

Default reasoning is an integral part of a commonsense reasoner’s thought processes. By default reasoning we
mean the process of believing a particular fact when there is no evidence to suspect the contrary; however, later, in the
face of new evidence, the former belief may be retracted. We allow default reasoning through the use of a retraction
mechanism. Retraction is facilitated by focusing on the dual: inheritance. We do not assume that all deductions at
time � are inherited (retained) at time � + 1. Thus by carefully restricting inheritance we achieve a rudimentary kind of
retraction. The most obvious case is that of � !
�

( � ). If at a given step the agent knows the time to be � , by having the
belief � !
�

( � ), then that belief is not inherited to the next time-step.

We have developed two distinct types of formalisms, that occur in pairs: the meta-theory
� � � about an agent,

and the agent-theory
� � � itself. � is an index serving to distinguish different versions of step-logics. It is the latter,� � � , that is to be step-like; the former,

� � � , is simply our assurance that we have been honest in describing what we
mean by a particular agent’s reasoning. The two theories together form a step-logic pair. In [5] we proposed eight
such step-logic pairs, arranged in increasing sophistication, with respect to the three mechanisms above (introspection,
awareness of time, and retraction), � � �

0 � � � 0 � , ����� , � � �
7 � � � 7 � .

� �
0 has none of the three mechanisms, and� �

7 has all.

4 Indeed it should be not just finite, but small. Our current idealization does not go this far; we intend, however, to eventually make broad use of
a ‘‘retraction’’ mechanism to keep things to a reasonable size. Specifically, we anticipate the introduction of a notion of relevance, along the lines
we pursued in our memory model.

5We are not distinguishing here between belief and knowledge. See [9] for a discussion of belief vs. knowledge.

10



The meta-theories all are consistent, first-order theories, and therefore complete with respect to standard first-order
semantics. However, their associated agent-theories are another matter. These we do not even want in general to be
consistent, for they are (largely) intended as formal counterparts of the reasoning of fallible agents.

3.2.2 Definitions

In this section we present several definitions, most of which are analogous to standard definitions from first-order
logic. Consequently certain results follow trivially from their first-order counterparts.

Intuitively, we view an agent as an inference mechanism that may be given external inputs or observations.
Inferred wffs are called beliefs; these may include certain observations.

Let � be a first-order language, and let � be the set of wffs of � .

Definition .1 An observation-function is a function � 	 �
: N ��� ( � ), where � ( � ) is the powerset of � , and

where for each ��� N , the set � 	 �
( � ) is finite. If ����� 	 �

( � ), then � is called an � -observation.

Definition .2 A history is a finite tuple of pairs of finite subsets of � . 	 is the set of histories.

Definition .3 An inference-function is a function
� ��
 : 	 ��� (  ), where for each %���	 ,

� ��
 ( % ) is finite.

Intuitively, a history is a conceivable temporal sequence of belief-set/observation-set pairs. The history is a finite
tuple; it represents the temporal sequence up to a certain point in time. The inference-function extends the temporal
sequence of belief sets by one more step beyond the history. In the example in Figure 4 we see how these ideas are
used to generate an actual history based on an inference-function and an observation-function. Definitions .4 and .5
formalize this in terms of a step-logic

� � � .

Let

������� (
�
) =

����� �����
( � ) �! #" �%$'&

( � ) ( if
�

= 1��� �����
( )%* $+$ )-, ) ( if

�
= 3

� otherwise��.0/214365�798 0 : �<;�=
; .>/21 0 = � ;�@?BADC (

;�; .>/21
0
8E���F� (1) G 8IHJHJHJ8 ; .>/21LK2M 1

8E���F� (
=

) G�G ) =.0/21 KBM
1 N ���F� (

=
) N � � ( ) ) O ( P � )(� ( ) ) 8 � ( � ) � � ( � ) Q ( .0/21 K2M 1 N ���F� (

=
))) ( H

The history / of the first five steps then would be:/ =
;�;

� 8 ��� �����
( � ) �! R" �-$+&

( � ) (SG 8; ��� �����
( � ) �T R" �-$'&

( � ) ( 8 � G 8; ��� �����
( � ) �T R" �-$'&

( � ) ( 8 ��� �U���
( )-* $'$ )%, ) ( G 8; ��� �����

( � ) �T R" �-$'&
( � ) 8 � �����

( )%* $+$ )-, ) 8  R" �-$+&
( )-* $'$ )%, ) ( 8 � G 8; ��� �����

( � ) �T R" �-$'&
( � ) 8 � �����

( )%* $+$ )-, ) 8  R" �-$+&
( )-* $'$ )%, ) ( 8 � G�G

Figure 4: Example of � 	 �
and

� ��

Definition .4 An

� � � -theory over a language � is a triple,
� � � � 	 � � � ��
 � , where � is a first-order language,� 	 �

is an observation-function, and
� ��
 is an inference-function. We use the notation,

� � � ( � 	 � � � ��
 ), for such
a theory (the language � is implicit in the definitions of � 	 �

and
� ��
 ). If we wish to consider a fixed

� ��
 but
varied � 	 �

, we write
� � � ( V � � ��
 ).
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Let
� � � ( � 	 � � � ��
 ) be an

� � � -theory over � .

Definition .5 Let the set of 0-theorems,denoted
� %�� 0, be empty. For � � 0, let the set of i-theorems, denoted

� %��  , be� ��
 (
� � � %�� 0 � � 	 �

(1) � � ��� %�� 1 � � 	 �
(2) � � ����� � � � %�� �� 1 � � 	 �

( � ) � � ). We write
� � � ( � 	 � � � ��
 )

� 
� to mean � is an � -theorem of

� � � ( � 	 � � � ��
 ).6

Definition .6 Given a theory
� � � ( � 	 � � � ��
 ), a corresponding

� � � -theory, written
� � � ( � 	 � � � ��
 ), is a

first-order theory having binary predicate symbol � ,7 numerals, and names for the wffs in � , such that

� � � ( � 	 � � � ��
 )
� � ( � � � ) iff

� � � ( � 	 � � � ��
 )
�  � .

Thus in
� � � ( � 	 � � � ��
 ), � ( � � � ) is intended to express that � is an � -theorem of

� � � ( � 	 � � � ��
 ).8

3.2.3
� �

7

� �
7 is the most ambitious step-logic: it has all three mechanisms which we claim are necessary for a commonsense

reasoner. We use the notation
� �

7 for any of a family of step-logics whose � 	 �
and

� ��
 involve the predicates
� !
�

and � and contain a retraction mechanism. Choosing � 	 �
and

� ��
 therefore fixes the theory within the
family.

� �
7 is not intended in general to be consistent. If

� �
7 is supplied only with logically valid wffs that do not

syntactically contain the predicate Now, then indeed
� �

7 will remain consistent over time: there will be no step �
at which the conclusion set is inconsistent, for its rules of inference are sound (see [6]). However, virtually all the
interesting applications of

� �
7 involve providing the agent with some non-logical and potentially false axioms, thus

opening the way to derivation of contradictions. This behavior is what we are interested in studying, in a way that
avoids the swamping problem. The controlled growth of deductions in step-logic provides a convenient tool for this,
as we will see.

The language of
� �

7 is first-order, having unary predicate symbol, � !
� , binary predicate symbol, � , and ternary
predicate symbol, � ! � � ��� , for time, introspection, and contradiction, respectively. We write � !
� ( � ) to mean the time
is now � ; � ( � � � ) means that � is known 9 at step � ; and � ! � � ��� ( � � � � 	 ) means that � and 	 are in direct contradiction
(one is the negation of the other) and both are � -theorems.

The formulae that the agent has at step � (the � -theorems) are precisely all those that can be deduced from step �
	 1
using the applicable rules of inference. As previously stated, the agent is to have only a finite number of theorems
(conclusions, beliefs, or simply wffs) at any given step. We write:

� : ����� � �
� + 1 : ����� � 	

to mean that � is an � -theorem, and 	 is an � + 1-theorem. There is no implicit assumption that � (or any other wff
other than 	 ) is present (or not present) at step � + 1. The ellipsis indicates that there might be other wffs present. Wffs
are not assumed to be inherited or retained in passing from one step to the next, unless explicitly stated in an inference
rule. In Figure 5 below, we illustrate one possible inference function, denoted

� ��
�� , involving a rule for special
types of inheritance; see Rule 7.

6Note the non-standard use of the turnstile here.
7We see that the predicate letter  has two roles: in �
� K and in �
� K . The context will make the role clear.
8In [5, 4] we used  ( ����� ) for  (����� ).
9known, believed, or concluded. As already stated, we are not distinguishing between these terms. See [9, 18, 19] for a discussion of these.

12



For time, we envision a clock which is ticking as the agent is reasoning. At each step in its reasoning, the agent
looks at this clock to obtain the time.10 The wff � !
�

( � ) is an � -theorem. � !
�
( � ) corresponds intuitively to the

statement ‘‘The time is now i.’’

Introspection involves the predicate � , and (in
� ��
 � ) a new rule of inference; see Rule 5 in Figure 5 below. This

rule allows the agent to negatively introspect, i.e., to reason at step � + 1 that it did not know 	 at step � .11 To keep
things cognitively plausible, and also to keep the number of conclusions at any given step finite, we allow the agent
to negatively introspect only on those wffs of which it is aware. We say the agent is aware of a wff � at step � if �
appears as a closed sub-formula at step � .12 Therefore, & � ( � � � ) is to be deduced at step � + 1 if � is not an � -theorem,
but does appear as a closed sub-formula at step � . See [8] for another treatment of awareness.

Retractions are used to facilitate removal of certain conflicting data. Currently we handle contradictions by simply
not inheriting the formulae directly involved.13 In

� �
7( V � � ��
 � ), a conclusion in a given step, � , is inherited to

step � + 1 if it is not contradicted at step � and it is not the predicate � !
� (
�
), for some

�
; see Rule 7 in Figure 5 below.

� �
7( V � � ��
 � ) was formulated with applications such as the Brother Problem (see Section 3.2.4) in mind. This

led us to the rules of inference listed in Figure 5. Rule 3 states, for instance, that if � and ��� 	 are � -theorems, then
	 will be an � + 1-theorem. Rule 3 makes no claim about whether or not � and/or � � 	 are � + 1-theorems.

3.2.4 An Example: The Brother Problem

In this section we show how
� �

7( V � � ��
 � ) can be formulated to provide a real-time solution to Moore’s Brother
Problem (see [16]). One reasons, ‘‘Since I don’t know I have a brother, I must not.’’ This problem can be broken
down into two: the first requires that the reasoner be able to decide he doesn’t know he has a brother; the second that,
on that basis, he, in fact, does not have a brother (from modus ponens and the assumption that ‘‘If I had a brother,
I’d know it.’’) The first of these seems to lend itself readily to step-logic, in that the negative reflection problem
(determining when something is not known) reduces to a simple look-up.

We present synopses of computer-generated results for three different scenarios where the agent determines
whether or not a brother exists. Let 	 be a 0-argument predicate letter representing the proposition that a brother
exists. Let

�
be a 0-argument predicate letter (other than 	 ) that represents a proposition that implies that a brother

exists.14 In each case, at some step � the agent has the axiom
� � 	 , and also the following autoepistemic axiom

which represents the belief that not knowing 	 ‘‘now’’ implies & 	 .

Axiom 1 ( � � )[( � !
�
( � ) � & � ( � 	 1 �
	 )) ��& 	 ]

The following behaviors are illustrated:

� If 	 is among the wffs of which the agent is aware at step � , but not one that is believed at step � , then the
agent will come to know this fact ( & � ( � �
	 ), that it was not believed at step � ) at step � + 1. As a consequence
of this, other information may be deduced. In this case, the agent concludes & 	 from the autoepistemic axiom
(Axiom 1). Clearly the � !
�

predicate plays a critical role.

� The agent must refrain from such negative introspection when in fact 	 is already known.

10Richard Weyhrauch analyzed this idea in a rather different way in his talk at the Sardinia Workshop on Meta-Architectures and Reflection,
1986; see [20].

11For a discussion of why the agent can’t reason at step � about its beliefs at that same step, see [7].
12A sub-formula of a wff is any consecutive portion of the wff that itself is a wff. Note that there are only finitely many such sub-formulae at any

given step.
13In future work we hope to have a mechanism for tracing the antecedents and consequents of a formula � when � is suspect, a la Doyle and

deKleer (see [3, 1]), though in the context of a real-time reasoner.
14P might be something like ‘‘My parents have two sons,’’ together with appropriate axioms.

13



The inference rules given here correspond to an inference-function, ?BADC�� . For any given history, ?BADC�� returns the set of all
immediate consequences of Rules 1--7 applied to the last step in that history. Note that Rule 5 is the only default rule.

Rule 1 :

�
: HIHJH�

+ 1 : HJHJHI8 A�� * (
�

+ 1)
Corresponds to looking at clock

Rule 2 :

�
: HIHJH�

+ 1 : HJHJHJ8 � If � Q ���F� (
�

+ 1)---Obs. become beliefs

Rule 3 :

�
: HJHJHJ8 � 8 ��� ��

+ 1 : HJHJHJ8 � Modus ponens

Rule 4 :

�
: HJHJHI8�� 1 � 8JHIHJHJ8�� K � 8 (	R� )[( � 1 ��
 HJHIH 
 � K � ) �� � ]�

+ 1 : HJHJHJ8 � �
Another version of modus ponens

Rule 5 :

�
: HIHJH�

+ 1 : HJHJHJ8���� (
� 8 � )

Negative introspection �

Rule 6 :

�
: HJHIHJ8 � 8�� ��

+ 1 : HJHIHJ8����
= ) � � (

� 8 � 8�� � )
Presence of (direct) contradiction

Rule 7 :

�
: HJHJHI8 ��

+ 1 : HJHJHJ8 � Inheritance �

� where � is not a theorem at step � , but is a closed sub-formula at step � .
� where nothing of the form ��������� � ( �"! 1 ��� ��� ) nor �����#��� � (�$! 1 ��� � � ) is an � -theorem, and where � is not of the form %&��' (� ). That

is, contradictions and time are not inherited. The intuitive reason time is not inherited is that time changes at each step. The intuitive reason
contradicting wffs � and � are not inherited is that not both can be true, and so the agent should, for that reason, be unwilling to simply assume
either to be the case without further justification. This does not mean, however, that neither will appear at the next step, for either or both may appear
for other reasons, as will be seen. Note also that the wff �����#��� � ( ����� �)(�� ) will be inherited, since it is not itself either time or a contradiction, and
(intuitively) it expresses a fact (that there was a contradiction at step � ) that remains true.

Figure 5: Rules of inference corresponding to
� ��
 �
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� A conflict may occur if something is coming to be known while negative introspection is simultaneously leading
to its negation. The third illustration shows this being resolved in an intuitive manner (though not one that will
generalize as much as we would like; this is an area we are currently exploring).

Simple negative introspection succeeds In this example the agent is not able to deduce the proposition 	 , that
he has a brother, and hence is able to deduce & 	 , that he does not have a brother. See Figure 6. For ease of reading we
underline in each step those wffs which are new (i.e., which appear through other than inheritance). For the purposes
of illustration, let � be arbitrary and let

� 	 � � 1 (
�
) =

��� � � 	 � (� � )[( � !
�
( � ) � & � ( � 	 1 �
	 )) ��& 	 ] � if

�
= �

� otherwise

Since 	 is not an � -observation (and thus is not an � -theorem), the agent uses Rule 5, the negative introspection rule,
to conclude & � ( � � 	 ) at step � + 1. At step � + 2 the agent concludes & 	 from the autoepistemic knowledge stated
above (Axiom 1) and the use of the alternate version of modus ponens, Rule 4.

�
: A�� * (

�
) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �<� ]

�
+ 1 : A�� * (

�
+ 1) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8���� (

� 8 � ) 8���� (
� 8��6� ) 8

��� (
� 8�� )

�
+ 2 : A�� * (

�
+ 2) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8���� (

� 8 � ) 8���� (
� 8��6� ) 8

��� (
� 8�� ) 8��6� 8���� (

�
+ 1 8 � ) 8���� (

�
+ 1 8)�6� ) 8���� (

�
+ 1 8�� )

Figure 6: Negative introspection succeeds

Simple negative introspection fails (appropriately) In this example, let

� 	 � � 2 (
�
) =

��� � � 	 � (� � )[( � !
�
( � ) � & � ( � 	 1 �
	 )) ��& 	 ] � 	 � if

�
= �

� otherwise

Thus the agent has 	 at step � , and is blocked (appropriately for this example) from deducing at step � + 1 the wffs
& � ( � � 	 ) and & 	 . See Figure 7.

�
: A�� * (

�
) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �<� ] 8 �

�
+ 1 : A�� * (

�
+ 1) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8 � 8���� (

� 8)�6� ) 8���� (
� 8�� )

Figure 7: Negative introspection fails appropriately

Note that a traditional final-tray-like approach could produce quite similar behavior to that seen in Figures 6 and 7
if it is endowed with a suitable introspection device, although it would not have the real-time step-like character we
are trying to achieve.
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Introspection contradicts other deduction In this example, let

� 	 � � 3 (
�
) =

��� � � 	 � (� � )[( � !
� ( � ) � & � ( � 	 1 �
	 )) ��& 	 ] � � � if
�

= �
� otherwise

In Figure 8 we see then that the agent does not have 	 at step � , but is able to deduce 	 at step � + 1 from
� � 	

and
�

at step � . Since the agent is aware (in our sense) of 	 at step � , and yet does not have 	 as a conclusion at � ,
it will deduce & � ( � � 	 ) at step � + 1. Thus both 	 and & � ( � �
	 ) are concluded at step � + 1. At step � + 2 Axiom 1
(the autoepistemic axiom), together with � !
� ( � + 1) and & � ( � � 	 ) and Rule 4, will produce & 	 . A conflict results,
which is noted at step � + 3. This then inhibits inheritance of both 	 and & 	 at step � + 4. Although neither 	 nor & 	
is inherited to step � + 4, 	 is re-deduced at step � + 4 via modus ponens from step � + 3. Thus 	 ‘‘wins out’’ over
& 	 due to its existing justification in other wffs, while & 	 ’s justification is ‘‘too old’’: & � ( � + 2 � 	 ), rather than
& � ( � � 	 ), would be needed. We see then that the conflict resolves due to the special nature of the time-bound ‘‘now’’
feature of introspection.

�
: A�� * (

�
) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �<� ] 8��

�
+ 1 : A�� * (

�
+ 1) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8�� 8 � 8���� (

� 8 � ) 8���� (
� 8)�6� )

�
+ 2 : A�� * (

�
+ 2) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8�� 8 � 8���� (

� 8 � ) 8���� (
� 8)�6� ) 8

�6� 8���� (
�

+ 1 8��<� )
�

+ 3 : A�� * (
�

+ 3) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8�� 8 � 8���� (
� 8 � ) 8���� (

� 8)�6� ) 8
�6� 8���� (

�
+ 1 8��<� ) 8����

= ) � � (
�

+ 2 8 � 8��6� )
�

+ 4 : A�� * (
�

+ 4) 8�� � � 8 (	R� )[( A�� * ( � ) 
 ��� ( ��� 1 8 � )) � �6� ] 8�� 8���� (
� 8 � ) 8���� (

� 8)�6� )
��� (

�
+ 1 8)�6� ) 8����

= ) � � (
�

+ 2 8 � 8��<� ) 8 � 8����
= ) � � (

�
+ 3 8 � 8��<� )

Figure 8: Introspection conflicts with other deduction and resolves

A traditional final-tray-like approach would encounter difficulties with this third example, for at step � + 2 there is
a contradiction. This means that the final tray for a tray-like model of a reasoning agent would simply be filled with
all wffs in the language---and no basis for a resolution is possible within such a logic.

4 Future Work

We have presented a brief overview of a model of memory that is motivated by a psychological approach to reasoning.
Combining that model with the idea that reasoning occurs in time has led us to build a computational model of
reasoning; one that isn’t bound to a final state, conclusion, or goal. It turns out that the foundational theory that we
have developed to study this model has the nice property of being grounded in first-order logic without suffering the
unpleasantries typically associated with contradiction.

This, however, is only the beginning of our work. We have identified at least three major categories of research
that is yet to be undertaken. First there is a need to extend and refine the memory model’s implementation. Similarly,
step-logic can be extended to further conjoin it to the memory model. Finally, we have identified problems in reasoning
research that the memory model and step-logic seem well-suited to handle. Below is a short list of endeavors that fall
into one or more of these categories. The list is certainly not exhaustive of related research, nor do we expect that the
items on it are exclusive of one another. We do, however, feel that it illustrates the breadth of ideas that are relevant
to this work.
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Parallel retrieval. If LTM is really intended to represent long term memory, then it makes sense to retrieve
associations concurrently. There is certainly no benefit to be had from serial retrieval, and it may, in fact, impose
orderings on STM that are undesirable. We seek a model of concurrent retrieval that may (or may not) require a
different implementation representation of LTM, but doesn’t infringe on the general model.

Restricting STM. We need a robust mechanism that will restrict the size of STM. LTM is likely to be very, very
large. Lots of associations can be expected at each inference cycle. Yet it seems that context ought to be able to
prevent some of these associations from actually entering STM. After all, it isn’t necessary, nor would it be desirable,
to recall each time the concept of bird is encountered that male birds are generally more colorful than females . But,
if the task is to identify a particular bird, this fact is indeed relevant. We hope to extend the power of RTM to handle
this task.

Formalize LTM in step-logic. To better understand the memory model, it is necessary to make precise more of its
components. Step-logic is the formalism we would like to use to do this. There is currently no notion of association or
retrieval in step-logic, though there doesn’t seem to be anything that would prohibit this addition to the theory.

Make LTM dynamic. The utility of LTM is severely limited unless it can be updated with both additions and
deletions. This ability is part of any psychological model of intelligence and will add a necessary flexibility to the
memory model. Our hope is that a dynamic LTM is one way to model learning in the memory model. (It’s too early
to make any claim about sufficiency.) An interesting addendum to this would be to formalize the dynamic LTM in
step-logic.

Plan generation in step-logic. The Nell and Dudley problem is paradigmatic. In it, time is explicitly part of the
problem solving process. Although time is explicit in step-logic, it has not yet been used in a real-time problem solving
setting.
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