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Abstract

Challenging among numerous resource limited re-
alistic scenarios in commonsense reasoning are
situations involving tight deadlines. An agent un-
der severe time-pressure may spend substantial
amount of the available time in reasoning toward
and about a plan of action. In a realistic setting,
the same agent must also measure up to two other
crucial resource limitations as well, namely space
and computation bounds. We describe here these
concerns and offer some solutions as part of our
ongoing work in fully deadline-coupled planning.

1 Introduction

Formal commonsense reasoning deals with numerous dif-
ficult tasks. One broadening area is that of realism, i.e.,
trying to get formalisms to face up to more and more
realistic scenarios and data. Realism can involve large
quantities of data, rapid presentation of data, noisy data,
and missing data, to name a few possibilities which have
been given at least some study in the literature already.
Another realistic scenario is that of severe time-pressure
in the form of tight deadlines, where any effort of the
agent is judged above all on the basis of its ability to

meet the deadline.

In this paper we describe our recent and ongoing work
in deadline-coupled reasoning. Such reasoning is of ne-
cessity real-time, in the sense that the agent must take
account of the actual passage of time in the external
world as it reasons. The paradigmatic and illustrative
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example on which we have focused is the Nell & Dudley
problem, in which Dudley must find and enact a plan
to save Nell who is tied to the railroad tracks as a train
approaches; thus Dudley is an actor-planner. Clearly
Dudley must take account of the fact that his very rea-
soning is costing precious time; thus this topic is one of

resource-limited reasoning.

The underlying mechanism we have chosen for this
work is that of Elgot-Drapkin’s step-logics, which are
briefly described in section 2. We then describe some
modifications that are needed for a more fully resource-
limited treatment of our problem, including concerns of
space-limitations (memory limitations) that must con-
strain the agent’s reasoning abilities. This is the topic

of section 3.

In section 4 we sketch our design for a logic-based
time-situated planning mechanism in terms of step-
logics, which we have implemented in several phases,

with emphasis on the limited resource reasoning aspects.

2 Step-Logics: A mechanism for
reasoning situated in time

Step-logics [?, ?, ?] were introduced to model a common-
sense agent’s ongoing process of reasoning in a changing
world. A step is defined as a fundamental unit of infer-
ence time. Beliefs are parameterized by the time taken
for their inference, and these time parameters can them-
selves play a role in the specification of the inference
rules and axioms. The most obvious way time param-

eters can enter is via the expression Now(i), indicat-



mg tie time 15 now 2. uUDServations are immputs Irom
the external world, and may arise at any step i. When
an observation appears, it is considered a belief in the
same time-step. Each step of reasoning advances i by
1. At each new step i, the only information available
to the agent upon which to base his further reasoning
is a snap-shot of his deduction process completed up to
and including step i — 1. The agent’s world knowledge is
in the form of a database of beliefs. These contain do-
main specific axioms. A number of inference rules con-
stitute the inference engine. Among them are rules such
as Modus Ponens and rules to incorporate new obser-
vations into the knowledge base as well as rules specific
to deadline-coupled planning such as checking the fea-
sibility of a partial plan or refining a partial plan. To
illustrate reasoning with step-logics, here is an instance
of the application of Modus Ponens in step 10 following
Dudley’s observation that Nell has blue eyes. In each
step we have underlined new beliefs, i.e., ones that were

not present in the previous step.

The MP rule:

i:i...,a,a— 3
i+1:...,0

10: Now(10); color_of _eyes(nell, blue);
color_of _eyes(X,blue) — loves(dudley, X);

loves(dudley, X) — wants_to_marry(dudley, X);

11: Now(11);color_of _eyes(nell, blue);
color_of _eyes(X, blue) — loves(dudley, X);
loves(dudley, X) — wants_to_marry(dudley, X);
loves(dudley,nell); . ..

12: Now(12); color_of _eyes(nell, blue);
color_of _eyes(X, blue) — loves(dudley, X);
loves(dudley, X) — wants_to_marry(dudley, X);

loves(dudley, nell); wants_to_marry(dudley, nell);

By step 11, Dudley can only realize that he loves Nell,
he must wait until step 12 to conclude that he wants to

marry her.

We have applied the step-logic mechanism to tackle

the fully deadline-coupled reasoning problem in [?, ?]

~.1he 1olowing leatures O this Iramework relate
and contrast it to conventional commonsense reasoning

systems:?

Thinking takes time: Reasoning actions occur con-
currently with other physical actions of the agent and
with the ticking of a clock. The agent can not only keep
track of the approaching deadline as he enacts his plan,
but can treat other facets of planning (including plan for-
mulation and its simultaneous or subsequent execution
and feasibility analysis) as deadline-coupled. Related to
this feature of step-logics is the fact that there is no
longer a one final theorem set. Rather, theorems (be-
liefs) are proven (believed) at certain times and some-
times no longer believed at later times. Provability is
time-relative and best thought of in terms of the agent’s
ongoing lifetime of changing views of the world. This

leads to the issue of contradictions below.

Handling contradictions: An agent reasoning with
step-logics is not omniscient, i.e. , his conclusions are not
the logical closure of his knowledge at any instant, but
rather only those consequences that he has been actu-
ally able to draw. Also, since commonsense agents have a
multitude of defeasible beliefs, they often encounter con-
tradictions as more knowledge is obtained and default
assumptions have to be withdrawn. While a contradic-
tion completely throws an omniscient agent off track (the
swamping problem), the step-logic reasoner is not so af-
fected. The agent only has a finite set of conclusions
from his past computation, hence contradictions may be

detected and resolved in the course of further reasoning.

Nonmonotonicity: Step-logics are inherently non-
monotonic, in that further reasoning always leads to re-
traction of some prior beliefs. The most obvious one is
Now(i), which is believed at step i but not at ¢ + 1.
The nonmonotonic behavior enables the frame-default
reasoning that the commonsense agent must be capable

of [?].

'This version has been implemented in prolog. Step-logic
was also used for multi-agent coordination without commu-
nication using focal points [?].

2This description is necessarily very brief; for details see
the various papers by Elgot-Drapkin et al.



.1 Snorttcomings

The space problem: As time advances, more knowl-
edge is gathered as a result of observations from the
agent’s environment and as a result of the deduction
processes within. The knowledge base which is continu-
ously expanding could potentially become so formidable
that it would be completely unrealistic to assume that
the agent could possibly apply all the inferences to this
complete knowledge base. Usually, most of this informa-
tion is not directly relevant either to the development
of the agent’s current thread of reasoning. Step-logics
and our treatment of deadline-coupled planning in the
past have disregarded the space problem in preference to
dealing adequately with time-related issues. The space
issue deserves serious attention where the original num-
ber of beliefs of the agent is large, and where very many
new beliefs are added to the agent’s knowledge base over

time.

Unrealistic parallelism: A step is defined as the time
required by the agent to perform one inference or one
primitive physical action in the world. Actions can be
carried out in parallel if the sensors and effectors per-
mit. For example, an agent can walk and eat simultane-
ously. Step-logics planners treat ‘think’ actions within
the agent in the same spirit as physical actions and rec-
ognize that they sap precious time resources. The orig-
inal step-logic inference system assumes that during a
given step ¢ the agent can apply all available inference
rules in parallel, to the beliefs at step i — 1. There are
two problems with this. One is the unrealistic amount
of parallelism that potentially allows the agent to draw
so many inferences in one time step that the meaning of
what constitutes a step begins to blur. Secondly, it is un-
reasonable to expect that all inference rules would have
the same time granularity. For example, it is unlikely
that a simple application of Modus Ponens will take just
as long to fire as an inference rule to refine a plan or check
for plan feasibility, especially as plans become very large.
While the representation is uniformly declarative, some
rules have more procedural flavor than others, and can
be imagined to take more time steps. Just as there is a

limit on the physical capabilities of the agent as to how

many pnysical actlons can be done in parallel 11 the same
time step, there must be a limit to the parallel capacity

of the inference engine as well.

A claim towards fully deadline-coupled reasoning
would be a tall one if the model depicts an agent with an
infinite attention span and infinite think capacity. In this
paper we propose an extension of the original step-logic
formalism to take into consideration space and compu-
tation constraints. We revisit the fully deadline-coupled

planning problem in the light of this new framework.

3 Scarce resources: Limiting time,
space and computation

3.1 A limited span of attention

We propose a solution to the space problem partially
based on [?] as follows. The agent’s current focus of
attention is limited to a small fixed number of beliefs
forming the STM (short term memory), while the com-
plete belief set is archived away in a bigger associative
store, namely, the LTM (long term memory). In addi-
tion, we use a QTM which is a technical device to hold
the conclusions that result in each step since further in-
ferencing with these must be stalled until the next time
step. The size of the STM is a fixed number K?3.

In the most simplistic model, the STM could be rep-
resented as a queue, in which case the inference/retrieval
algorithm reduces to a simple depth first or breadth
first strategy depending upon whether new observations
and deductions are added to the head or tail of the
queue respectively. It seems that choosing the STM el-
ements without focus consideration may lead the rea-
soning astray quite easily, and also lead to often incom-
plete threads of reasoning due to thrashing. We propose
to maintain a predicate called Focus(...) which keeps
track of the current line of reasoning. This is dynam-
ically changed by the agent’s inference mechanism and
is responsible for steering the reasoning back to a par-

ticular thread even when a large number of seemingly

3What is a realistic K for a commonsense reasoner? There
is psychological basis that suggests that human short-term
memory holds seven-plus-or-minus-two ‘chunks’ of data at
one time [?].



Irrelevant 1mierences are drawil. Among tne agent s 1n-
ference rules is a set of focus changing (FC) rules, which
when fired alter the focus. Those K beliefs from the as-
sociative LTM which are most* relevant to the current
focus are highlighted to form the STM.

In short, the framework can be described as follows.
The QT'M; ;44 is an intermediate store of formulae that
are theorems derived through the application of inference
rules to the formulae in ST M; (the STM at step i). They
are candidates for the STM at step ¢ + 1, although only
K among them will be selected. Thus the results of the
inference rules, can be imagined to fall into QT M;/; 4,
and are available for selection to form the STM at the
next step®. The focus and Now which are crucial to

time-situated reasoning are always accesible to the agent.
FRAMEWORK:

i: STM;{...}, Now(i), Focus(i,...), LT M;{...}

14+ 1:STM;11{...}, Now(i + 1), Focus(i + 1, ...), LT M;41{...}

QT M;;1q holds 3 if 3 is an i-theorem. Tt includes rel-
evant formulae which are retrieved from the LTM using
the retrieval rule. Step ¢ concludes by selecting K formu-
lae from QT M; ;4 which are relevant to Focus; to form
STM;y1. LTM;4q is LT M; appended with QT M; ;1.

The main problem in limiting the space of reasoning
is to decide what should be in the focus. In our plan-
ning framework, we have developed a mechanism that
is at work to limit the focus to a single feasible plan at
a given time step. A list of actions, conditions and re-
sults from the plan that need further processing (we call
it the active list), form a list of keywords in the focus.
We describe some details of this mechanism in section
4. Heuristic rules are proposed to maximize the prob-
ability of finding a solution within the deadline. This
would correspond to a sort of best first strategy or a
beam search of width K in the general framework. Al-
though these heuristic rules are independent of the in-

stance of the problem in question, they are likely to be

“There is then a ranking among the relevant formulae and
the K at the top of the list are picked. In our implementa-
tion, we select the K formulae at random from the candidate
formulae.

®This has the feature that all thinking does not pass
through the STM unless it is relevant to the focus.

airrerent depending upon the category or tne problem be-
ing solved. A deadline-coupled actor-planner is likely to
maintain a much narrower focus than a long-range ‘arm-
chair’ planner. Later in the paper, we outline some of
the specific heuristic strategies employed for the tightly

time-constrained planner.

3.2 A limited think capacity

Next, we address the bounded computation resource
problem. An intelligent agent can be expected to have a
sizable reservoir of inference rules acquired during its life-
time. Firing of an inference rule corresponds to a ‘think’
action. Without a bound on its inferencing power, the
agent could fire all the inference rules applicable (termed
in conventional production systems as the conflict set)
simultaneously during a time step. We limit the infer-
ence capacity of the engine to I. Each inference rule j
is assigned a drain factor d;. This is a measure of the
drain incurred by the inference engine while firing an in-
stance of this rule. For instance, Modus Ponens and the
more elaborate inference rule for plan refinement, would
be given different drain factors to reflect this difference

in granularity ©.

Our limited-capacity inference engine fires only a sub-
set of the applicable rules in each time step. Among the
various alternatives, it is possible to pick the inference
rules either completely nondeterministically up to the
engine capacity I, or one could again apply some heuris-
tics to improve the agent’s chances. Several parameters,
such as agent attitudes, the uncertainty of the environ-

ment, or the urgency to act could dictate this choice.

Thus, in effect, during each step, K beliefs are high-
lighted from the knowledge base (LTM) to constitute the
STM. From among the rules applicable to these K be-
liefs, a subset of rules is chosen such that sum of the

drain factors does not exceed the engine’s inference ca-

SHow to calibrate the inference rules for the assignment
of these drain factors is a separate and interesting issue, but
we will not address it presently. Also, how thinking actions
compare with physical actions is a technical issue that could
be resolved by trying to calibrate the system to check on the
relative speed of its inference cycle with that of its sensors
and motors. We skip this implementation sensitive issue for
the present.



pacity 1.
QTM. Finally, the contents of the QTM are copied to
the LTM.

1ne results or tne mierencing are put i the

4 Dudley, Nell and the rushing train

A fully deadline-coupled planning mechanism that uses
step-logics was developed in [?, ?]. We report here on a
more realistic time, space and computation constrained
Dudley. Some of Dudley’s beliefs are directly relevant
to the synthesis and execution of his plan to save Nell,
others are inconsequential, such as the color of Nell’s
eyes. We also show how Dudley chooses between two
possible alternatives: One is to run to Nell and untie the
ropes, the other is to telephone the driver of the train
and request him to stop the train. The telephone is at
the neighbor’s house and Dudley must run there to make

the call. For the purpose of this sketchy illustration, we

regard most actions to be primitive.

Our research draws ideas for the skeleton of its real-
time planning rules from much existing research in real-
time reasoning and planning [?, 7, 7, ? 7 7 7 7
?,?, 7,2, 7. In our formalism, plans are beliefs con-
sisting of triplets, each in turn consisting of an action,
its corresponding conditions and results. The actions
and other beliefs have time interval arguments, some of
which are bound, others constrained by deadlines. A
context is maintained for each plan representing the ex-
pected state of the world if the plan is carried out to
completion. It consists of the set of relevant observa-
tions along with the actions, effects and extended effects
of the plan. For example, in the context of the partial
plan to untie Nell, she will be not tied, and in the con-
text of the plan to call the driver of the train the train
will have stopped midway on the tracks. A projection
over time is made in the context of each plan to aid in
planning. What is not already true in the projection is
planned for by searching for axiom(s) to achieve the de-
sired subgoal. The system has the flexibility to adapt its
reasoning to changes in its knowledge base (as a result of
new observations or ongoing deductions) in a nonmono-

tonic manner. For more details on the planning aspects

and on the temporal reasoning for context maintenance

anda projection, we rerer 1o ., <, «|. fnere we describe an
outline of a limited resource reasoning aspects of a mech-
anism that we have developed for the deadline-coupled
planning problem. We recognize that the general prob-
lem of effectively keeping reasoning directed by a focus
is extremely difficult for an automated reasoner. We at-
tempt to develop a formalism for planning that restricts
the focus of the agent to a single plan in a given time step
so that reasoning is restricted to computing the context,

projection in this context, the working estimate of time,

and feasibility analysis of the plan currently in focus.

4.1 Some simplified sample axioms

We present a small number of sample axioms here, neces-
sarily simplified and made more specific for the example.
Relevant to moving:
o Run(Ty :T5,Y, Ly : L)
— At(TZ‘ Y, Lz) 7T2 = T] + (Lz — L])/’UY7
e condition(Run(T : T»,Y, Ly : Ly), At(Ty,Y, Ly))

o result(Run(Ty : T2,Y, Ly : L), At(T>,Y, Lo))
Relevant to untying and releasing:
o Pull(T : T+ 1,Y, X, L) = Out_of_danger(T +
1,X,L)
e condition(Pull(T : T+1,Y, X, L), -Tied(T, X, L))
o result(Pull(T: T+ 1,Y,X,L),
Out_of danger(T + 1,X, L))
Relevant to telephones and warning:
e Stop_train(T:T + 2,driver) —
Out_of danger(T + 2,nell, railroadtrack)

e condition(Stop_train(T:T+ 2, driver),
Knows_about(T, nell, driver))

e Warn(S : T,X,Y,7Z) - Knows_about(T,Z,Y)

e condition(Warn(S:T, X,Y, 7),
In_contact(S:T, X,Y))

e result(Dial(S:T, X,Y), In_contact(T, X,Y))

e condition((Dial(S:T, dudley, driver),
at(S:T, dudley, neighbor_house))

"oy is Y's speed while running.



d.4 rieuristic strategies 1or deadline-couplea

planning

4.2.1 Focus and keywords

As a general approach to limiting space, we proposed
that beliefs be organized in the LTM by association with
some topics or keywords. When one or more of these
topics are in the focus, the related beliefs become candi-
dates for retrieval into the STM, as a result of a retrieval
rule. Formulae in the STM are not automatically inher-
ited from one step to the next. Only when they are still
relevant to the current focus do they become candidates
and must compete with other relevant formulae to fit

into the limited size STM.

The focus holds the keywords of current interest. It
has similarities with the RTM proposed in [?]. We imag-
ine that in a more general framework the focus would
contain keywords arranged in a partial order accord-

8 Beliefs related to high priority top-

ing to priorities.
ics are given preference for being brought into the STM.
As mentioned before, for our actor-planner Dudley we
restrict the focus to equal priority keywords related to
a single plan at a given time step. Non-primitive ac-
tions that appear in the triplets of a given plan, that
still need to be refined are appropriate keywords for
goal-directed retrieval. Also, the results that appear in
these triplets serve as keywords to deduce the effects of
the plan. These are kept in the focus as the formula
plan_in_focus(p, PKW L) where p is the name of the

partial plan and PKW L is the list of keywords for p.

Observations are put into the current focus at
least for a few time steps, since it is possible that
they may be important, and may trigger some new

threads of reasoning®. Current observations are

8The main question is how to choose the “keywords” that
are in the focus at a given time, and how to assign priorities to
them. Our ideas presented here are aimed at a commonsense
agent engaged in deadline-coupled planning.

9How to in fact select some crucial observations from all
the stray input to the sensors remain unaddressed, but it is
not among the problems we will solve at present. A tutor or
a human hint to the automated agent that some observations
are worthy of more consideration. In our example, Dudley
may first start to think about running to Nell to rescue her,
when he suddenly sees a telephone. This brings ‘calling’, and
subsequently the related axiom of calling the driver to stop

Kept I the IoCus as the I1ormula oos_in_jocus(UD L)
where OBL is the list of observations that serve
as keywords.  Together, the focus is a predicate
Focus(i, plan_in_focus(p, PKW L), obs_in_focus(OBL))

at step 1.

When there are multiple options in the STM for
achieving a goal, more than one partial plan is spawned.
All plans for achieving a certain goal may be given equal
priority at first, thus continuing to develop them in a
time shared manner and bringing them into focus se-
quentially. However, in a deadline situation, it may be
advisable to commit to a plan (to put it in focus and
the others in a background queue for backtracking) and

continue with it unless it seems infeasible.

4.2.2 How long will it take?

A WET (working estimate of time) is calculated by
firing an estimation rule. This is an estimate of the to-
tal time remaining to achieve the goal. It can be seen
to have three components: 1. execution time 2. plan-
ning time 3. decision time. Execution time estimate
is an estimate (for each plan) of how long the actions
contained in the partial plan will take to execute. The
planning is hierarchical, and as it proceeds, as actions
at higher abstraction levels are broken into more primi-
tive actions, better estimates of execution time become
available. This component increases initially and then
may fluctuate depending upon how planning interleaves
with execution. Planning time estimate (for each plan)
is the time required to refine the plan to the level of
primitive actions (the depth of the reasoning). Decision
time estimate is the component that accounts for all the
other deliberations made by the reasoner. This include
checking for feasibility of plans, choosing between alter-
natives, committing to an alternative when deemed es-
sential, making the difficult decision of whether to act

Now or deliberate further etc. An extended paper will

show how Dudley faces some of these challenges.

the train into focus. This spawns the generation of a second
plan.
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reasoning

At each step, the agent reflects on its long term memory
reservoir to pick out formulae that are relevant to its
current focus of reasoning using a retrieval rule. The
LTM is an associative store and hence this retrieval is

fast.10

Focus directed retrieval rule (FDRR):
it LTM{...[3,..},

Focus(i, plan_in_focus(p, PKW L), obs_in_focus(OBL)), ..

QT M., 8, -}

if 3 is relevant to either p or a keyword in PKWL or OBL.

In our work on planning, the Focus includes keywords
related to a feasible plan. A (partial) plan is feasible if
the sum of Now and the plan’s working estimate of time
is still within the deadline. A list of feasible partial plans
is maintained. From among these a subset of plans is se-
lected to work on and is called the interleaving list (IL).
Dudley works on each plan in the interleaving list for a
period number of steps, then goes on to the next plan
in the IL in round robin fashion. The interleaving rule
(ILR) serves this purpose by periodically selecting the
next plan in the IL to put into the focus. This is one
of the focus changing (FC) rules in Dudley’s inference
engine''. This rule time-shares between plans and al-
ways fires. A separate rule controls the contents of IL.
Interleaving Rule (ILR):

i NO’U)(i), IL([pjl s "'7pjn])1

i+ 1: Focus(i + 1, plan_in_focus(p;j, , ...
if i mod period = 0

When there are two or more plans in the IL, and when
it is time to choose between them, a rule fires to narrow
the focus to only one plan. We stipulate that the difficult
problem of ‘when to decide to choose’ depends on mental
states and attitudes of agents [?]. A more ‘cautious’ type

of agent will skeptically continue to process two alterna-

'0The retrieval rule is a weak parallel of the inheritance rule
in Elgot-Drapkin’s step logics, in the sense that formulae in
the STM at the previous step reappear in the STM at the
current step provided they are still relevant.

"Probably, other scheduling procedures that were devel-
oped by operating Systems researchers can be used here,but
it is beyond the scope of our paper. We only demonstrate
how such procedures can be used in time.

)1 )1 IL([ij, ---,pj"])

11ves, pernaps riskKing oversnooting tne deadline, but a
more ‘dashing’ type of agent will take the risk to pursue
just one plan. We have developed a heuristic rule under
the following commonsense observation: An agent can
continue to work on several plans provided there is am-
ple time ahead to try and pursue them one after another
in the interest of fault tolerance. For example, even af-
ter calling the driver to stop the train, Dudley may want
to run to the railroad track and attempt the rescue Nell
nevertheless, if there is enough residual time. An agent
may do so as a guard against possible failure of his own
or other agents’ plans, or perhaps as an extra precaution
when the plans are not recognized to be mutually exclu-
sive. We look then at the sum of the WET’s of all the
plans in the IL as a measure of the overhead planning
time. When the sum of the WET’s and Now exceeds the
deadline, he drops a plan from the IL. We currently have
the simple heuristic of dropping the plan with the high-
est WET, but recognize that this may very well be the
most refined plan as well'2. Additional bookkeeping is
necessary to ensure that two rules do not alter the IL or
the focus simultaneously. We skip these implementation

details in this description.

21f one can find a way to include good estimation of the
planning time (and probably decision time) into the WET it
seems that more refined plans will have less planning time
than other plans. Maybe, the three parts of the WET should
not be combined and the decision whether to knock out a plan
from the IL should be made using some sort of multi attribute
decision rule (i.e., based on executing time, planning time and
decision time). Again, we can’t get into it in this paper.



heduce 1L rule {(hlbllv):

i: Now(i), IL(L), wet_ordering([pj,; ---]); ---
i+1:IL(L—p;,)

if Zzg , WETy; + Now > Deadline.

An agent may be forced into a decision if two or more
plans are ripe for action and the actions are mutually
exclusive. The agent must evaluate the relative merits
of the plans before making the decision, if acting on one
will commit the agent to one plan. Although we do allow
planning and acting to be interleaved, we allow the agent
to act on a plan if it is the only one in IL. This is to avoid
the complex interactions between plans as the result of
the changed state of the world following the execution of
one plan. We continue to examine this issue in ongoing

work.

4.2.4 Capacity of the inference engine

As mentioned earlier, we suggested a limited capacity
inference engine that would fire a cumulative set of in-
ference rules to not exceed its inference capacity in each
time step. In the simplistic examples that we present,
there is a very limited number of rules firing at each
step. Furthermore, if the plan length is within a rea-
sonable bound, drain factors of the rules are also quite
small and as a first approximation we postulate them to
each take roughly the same time and fire in parallel in a
single step whenever applicable. It should be noted that
the meta rules for resource limited reasoning which were
described above fire alongside the other object level in-
ferencing at each step as part of a uniform framework. If
we limit the capacity of the engine, the meta rules that
are fired will limit the number of planning rules that are

fired in each step.

4.2.5 Some illustrations from two plans

Dudley begins to formulate a plan save to get
Nell Out_of-danger.
Focus(j, plan_in_focus(save, [Out_of -danger(...)]), ...),

Initially, the focus consists of

and the interleaving list is I L([save]). Here, save is the
name of the partial plan and is used to retrieve formulae
related to the plan such as its WET, its context set, pro-

jection etc. The list of keywords for this plan contains

vur-oj-_aanger. 1t 1S used TO retrieve axioms I1rom tne
LTM whose right hand side matches the keyword. Thus,
the plan save bifurcates into save; and saves based on

the following axioms which are retrieved from the LTM:

Pull(T:T+1,Y,X,L) = Out_of _danger(T + 1, X, L)
Stop_train(T:T + 2, driver) —
Out_of _danger(T + 2,nell,r)

Plan 1: Pull her away from the tracks
-Tied(t1,n,r)
Pull(ty : ta,d,n,r) )
Out_of _danger(t2e> Deadline, n,r)
{t2 < Deadline,t1 =ty — 1})

Ppl(savel,

Plan 2: Stop the train
Knows_about(r1,n,dr)

Ppl(saves, Stop_train(ri : T2,dr) )

Out_of _danger(roe> Deadline, n,r)

{12 < Deadline, 71 = 72 — 2})

The interleaving list is expanded to contain both
save; and saves and Dudley continues to work on both
feasible plans in a time-shared fashion. The focus thus
contains save; for an interleaving period during which
axioms for untying Nell and running to her are progres-
sively retrieved from the LTM. Other facts of no rele-
vance to the plan such as color_of _eyes(...) or that are
relevant to the other plan such as the axioms about di-
aling to get a connection are left alone in the LTM. Af-
ter the period expires, saves is brought into focus and
worked on in a similar fashion. It is not until much later
that Dudley realizes that the sum of the WET’s of both
plans and Now is going to overshoot the deadline, and
he must restrict the IL using the RILR rule. We show a

snapshot of the two plans when this happens in Figure 1.

Dudley gives up the plan with the higher WET, which
in this case happens to be the one to run to Nell, and
executes the plan to go to the neighbor’s house to call the
driver to stop the train instead. The run to the railroad
tracks is longer than the run to the neighbor’s house.
The sum of the WET’s exceeding the Deadline, Dudley
starts to run in the direction of the neighbor’s house and
removes save; from the IL, still retaining it in the list

of feasible plans to be available in case of unanticipated



At(ls, d, home) Atl(tla 1 t4,a,rT) —ledl(ty, n,r)
Ppl(save, Run(ts : t7,d, home : r) Release(ts : ta,d,m,T) Pull(t1 : t2,d,n,r) )
At(tre> ta,d,T) —Tied(tso> t1,n,1) Out_of _danger(t2e> Deadline, n,r)
At(7o,d, nh) At(te : 77,d,nh) In_contact(ts : T4,d,dr)
Ppl(saves, Run(ro : 75,d,nh : 1) Dial(7s : 77,d,dr) Warn(rs : 1a,d,dr,n) )
At(rge> 77,d, nh) In_contact(rre~ Ta,d,dr) Knows_about(tse~ 71, n,dr)

Figure 1: Pursuing two alternatives within space limitations. Dudley develops two alternative plans in a time-shared
fashion until there comes a time when sum of their WET’s is no longer within the deadline. The figure shows a
snapshot of the two plans at such a time step. Dudley exercises a choice through the rule RILR which reduces the
interleaving list to the plan to call the driver of the train. Abbreviations used are: n=nell, d=dudley, r=railroad

track, nh=neighbor’s house, and dr=driver of the train.

run-time failure.
5 Conclusions and future work

We have presented here a formalism for commonsense
reasoning that attempts to address concerns of limited
time, space, and computation. This is part of our con-
tinued work on fully deadline coupled planning. We
have developed heuristics for the deadline-coupled plan-
ner that will allow it to function within tight resource
limitations. We see two future directions for work. One
that we are already pursuing is to improve these heuris-
tics to scale up to more and more realistic deadline situa-
tions. The other may be to develop similar heuristics for
other commonsense reasoning problems such as theorem

proving or hypothetical reasoning.
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