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Abstract

We take a tour of various themes in default reasoning, examining new ideas as well as those of
Brachman, Delgrande, Poole, and Schlechta. An underlying issue is that of stating that a potential
default principle is not appropriate. We see this arise most dramatically as a problem in an attempt to
formalize what are often loosely called “prototypes”, although it also arises in other formal approaches
to default reasoning. Some formalisms in the literature provide solutions but not without costs. We
propose a formalism that appears to avoid these costs; it can be seen as a step toward a population-
based set-theoretic modification of these approaches, that may ultimately provide a closer tie to recent
work on statistical (quantitative) foundations of (qualitative) defaults([1]). Our analysis in particular
indicates the need to resolve a conflation between use and mention in many default formalisms. Our
treatment proposes such a resolution, and also explores the use of sets toward a more population-based

notion of default.
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1 Introduction

Default principles (which we will usually refer to simply as defaults) are generally expressed as typicality
statements of the form “typically X’s are Y’s”, where X and Y are general classes of objects. Much
effort in artificial intelligence has been directed toward the development of logic-based approaches for
interpreting, representing, and reasoning with and about typicality statements. A variety of formalisms
have been proposed including, but not limited to, Delgrande’s conditional logic[4], [5] McDermott and
Doyle’s NML[21], Reiter’s Default Logic (DL)[36], McCarthy’s circumscription[17], Poole’s hypothetical
reasoning framework[32], and Schlechta’s treatment of defaults as generalized quantifiers[37].} Each of
these formalisms treats typicality statements—which henceforth we denote X WPy without intending any
bias toward a particular formalism—somewhat differently in its interpretation of typicality, in technique,

and in its success in modeling the whole of default reasoning.

In this paper we take a tour of various themes in default reasoning. The tour traces an odyssey
that we have taken, beginning with a representational difficulty that arose in our attempt to formalize
what are loosely called “prototypes,” and which to avoid terminological confusion we will define below
as indwwidual-inference-stand-ins. This leads to related difficulties in more traditional default formalisms.
An underlying issue is that of stating that a potential default principle is not appropriate. While we see
this arise most dramatically in our attempt to formalize individual-inference-stand-ins—which may differ
conceptually from the more standard “typicality-based” default treatments—the problem does surface in

these other approaches as well.

We first noticed the need for denials of defaults in exploring the issue of “range defaults” [23]. In that
and other papers [24, 25] we have continued to investigate denials. Several other researchers (Delgrande

[4, 5], Poole [32], Schlechta [37]) have independently studied default denials.

In section 3 we present our treatment of reasoning based on individual-inference-stand-ins, and then
show in section 4 that this treatment is subject to substantial difficulties, specifically regarding the
representation of the denial of defaults (i.e., asserting that a given default principle does not hold). We
then point out similar difficulties in the more traditional default formalisms, which Delgrande, Poole, and
Schlechta have also noted and addressed. In section 5 we discuss and evaluate the Delgrande, Poole, and
Schlechta proposals. In section 6 we analyze the problem in more detail and suggest that it arises when a
formalism promotes the conflation of two distinct components of default reasoning: the inferential use of
a default principle and its descriptive mention. We then present our own solution, which is to separate
use from mention. We show that the application of our solution to traditional formalisms requires only

the addition of a single first-order predicate (in a quotational language), thereby achieving both use and

1See [9] for a good review of several of the logic-based formalisms mentioned as well as other non-logic-based formalisms.



mention capacities, in contradistinction to other approaches that undertake massive revision of traditional

NMR in order to formulate denials.

2 Terminology

Despite their differences most, if not all, of the standard default formalisms share the common view that a
typicality statement is a rule of thumb that can be applied (in a way highly dependent on the formalism)
to objects represented in the reasoner’s ontology. Thus we use the X WPy notation in a (hopefully)

neutral manner, which can be regarded as applying equally to default logic, circumscription, and so on.

In order to achieve clarity in our discussion, we offer some additional terminological guidelines related
to what appears to be in common informal usage, as well perhaps in Cognitive Psychology. There are
many terms that are used for similar and not always clearly-delimited notions: archetype, prototype,
generic element, default concept, exemplar, typical element, etc. At the risk of adding to the confusion,
we will provide yet additional terms, but with (we hope) clear definitions. Some of these terms will be used
in a later section in an (ultimately abortive but revealing) attempt toward a new default formalization
based on these terms, that will in turn lead to a much improved formal variant on traditional default

approaches.

A stand-in ST for a class C is a conceptual entity (in a reasoning agent G) that “comes-to-mind” in
G’s thinking when class C is mentioned. This does not require G to believe that most members (or indeed
any members) of C are much like ST at all. As an example, suppose G invariably thinks of a vivid blue
bird whenever birds are mentioned, even though there is not a preponderance of vivid blue birds and
even if G knows this. G may wisely refrain from drawing conclusions about birds based on characteristics

of his stand-in SI, even while continuing to have thoughts of SI when birds are mentioned.

Even when a stand-in is regarded as very like most members of C, it may fail to be used to draw
conclusions about individuals, and for good reason. For instance, in deciding grades in a certain course,
a teacher may from past experience have excellent reason to believe that at least 85% of the students will
receive the grade of B. Yet he is not likely to use this belief to form and employ a default principle to the
effect that any particular student will receive a B; rather, he examines each student’s record to see what
grade has been earned. In fact, if the teacher were to use such a default, it may well lead to a version of
the Lottery Paradox [15, 20, 10, 35], since he may also have a strong belief that at least, say, 5% of the
students will receive an A: then the default could lead him to guess that each individual student gets a

B, which conflicts with the belief about some students receiving A’s.

Thus the decision to make inferences about individuals from information about what most members

of a class are like, is not the same thing as having strong beliefs about what most members are like.



In some situations, at least, outcomes (e.g., grades) are of a kind that calls for finding out more about
individuals rather than basing decisions on initial, very limited information. Thus reasoning about possible
defaults and their appropriateness or inappropriateness becomes very important. If forced to guess what
a student’s grade will be, the teacher might well guess B, but yet will refrain from treating this as the

actual grade.?

Such stand-ins would appear to figure quite a bit in human thought. Further examples are “the girl
next door” (as a stand-in for the class of girls) and “the friendly neighborhood cop” (as a stand-in for
the class of police officers). These may be fictitious entities altogether, or largely or fully based on real

persons. And G need make no assumptions about girls and police based on such stand-ins.

We thus distinguish a special kind of stand-in SI that G takes to be very like a preponderance of the
members of C; and from which G is disposed to draw conclusions about a given member M of C, namely
that M shares with SI any properties of interest, unless there is reason to refrain from this. We will
call such an SI an individual-inference-stand-in.® As an example, G may in fact believe a preponderance
of birds are blue, and may also comfortably draw the (defeasible) conclusion that a particular bird of

interest 1s blue from this.

Even if G employs an individual-inference-stand-in for C, there may or may not exist an actual
member of C that is similar to a preponderance of the members of C in all respects of interest. An

individual-inference-stand-in is a conceptual entity in G’s thinking.

To gather the above into a definition: An individual-inference-stand-in of a class C is a conceptual
entity TISI that is associated by a reasoning agent G with members of the class, reflecting a tendency
on G’s part to recall and reason with IISI when class C or a member thereof is under consideration.
In particular, G may treat such a member as similar to IISI when little detail about that member is

available.

The above terminological distinction between stand-ins in general and individual-inference-stand-ins
allows us to make a further distinction that will inform the rest of our paper: G may observe that his
stand-in ST is in fact not typical of class C; in so observing, G is not using SI to draw conclusions about
any particular individual member of C, but rather is mentioning a fact about how C and SI are related.
Similarly, G may observe (mention to himself) that his stand-in SI is typical of C and furthermore
appropriate for use as an individual-inference-stand-in and may then proceed to actually use this to

conclude of member M of C that it has property P in common with SI.

2This may well be thought of as having one’s default and eating it too, a delicate default meta-reasoning that surely is
part of commonsense. One aspect of this is a principal focus of this paper: how to represent the belief that a given default
is inappropriate for use despite perhaps correctly reflecting what most of a class is like.

3This may bear an interesting relationship to the notion(s) that exemplars and prototypes correspond to in Cognitive
Psychology [8, 38, 22]; but we do not wish to take sides among the various competing theories there, hence we have adopted
our own neutral term.



The distinction we wish to emphasize is that G can both use and mention individual-inference-stand-
ins, and that these are not the same activities. This is most evident when G mentions that a stand-in
is not typical, and this is where default denials will enter. However, even mentioning that a stand-in s
typical is not the same thing as using it to draw a default conclusion about a particular member of C,
nor even the same thing as believing one should so use it. This rather obvious distinction will play a
central role in what follows. The one (mention) is a statistical assertion relating the entire class C to a
stand-in, and the other is a disposition to reason to a conclusion about an individual member of C. This

will be treated in detail in section 6.

3 Formalizing Individual-Inference-Stand-Ins

We now try to formalize individual-inference-stand-ins, which will turn out to be a very different way to
view typicality (and hence defaults) from the usual formal treatments. In fact, it will ultimately be seen

not to work, but for reasons that will then bear significantly on all default formalisms.

For each general class of interest, C, we designate a special fictitious* element of C' as its individual-
inference-stand-in: iisi(C'). It seems natural to consider that this fictitious object’s having certain prop-
erties is what “encodes” the defaults about the concept that it represents. So for example for a given
agent G, 7isi(Tree) may have the property “has leaves” (which might be thought of as amounting to
G’s default that “typically trees have leaves”): Tree P Has_Leaves. G’s reliance on the properties of
iisi(Tree) to (defeasibly) decide about the status of a particular real tree (e.g., that it too has leaves)

amounts to G’s predisposition to use that default.

Here we extend a first-order language to include representations of these mental notions in the form
of constant symbols called #isi-constants. For each formula ® with one free variable we write iisig to
denote the individual-inference-stand-in for the class of ®-objects. As reified “objects of thought” iisi-
constants have properties and are subject to manipulation in the reasoning process. That they are not
“real” objects forces us to treat them somewhat judiciously and not altogether like actual objects, but

they are objects to reason about nonetheless.

Enriching a formal reasoner’s ontology to accommodate mental notions or concepts in general is not
a new idea, nor is it new to AT ([33],[34] and [16] are examples). Indeed, Brachman[3] discusses the very
idea of reifying prototypical mental notions to represent defaults in frame-like inheritance networks, yet
no one seems to have carried this out in a logic-based approach to see what, if any, advantages and/or

shortcomings might arise. One of Brachman’s objections to the treatment of typicality in frame-like

*There is an extensive and controversial literature on non-existent objects. See [14] for a good review. We will not be
concerned with these issues here.



approaches is that the interpretation of the typicality concepts themselves is open to confusion and debate.
There 1s no such confusion in the formalism we present here; a #si-constant is, indeed, a “prototypical
individual that somehow typifies the kind” ([3] p. 89). We will find that fictitious individuals encounter a
severe problem, even inconsistencies, when exposed to the rigors of formalism (Section 4). In the process,
however, we will learn a valuable lesson that will be applied to standard default formalisms in later

sections.

3.1 A formal approach
3.1.1 wusi-constants

The #2s2-constant formalism is based on a standard first-order theory T with language £. We will describe
an extension T of T for reasoning with iisi-constants. By way of notational convention, let ¥, ®, and
various subscripted ®;’s stand for formulae of £ containing one free variable. We extend £ to include one
new constant symbol #isig for each such ® in £. We will call this extended language £¥***. The symbol

a will be used to stand for a closed term in L£##5¢,

As alluded to above, the intended interpretation of the constant iisig is the reasoner’s notion of
the typical-®-object; for example, #isipiq(x) denotes the typical-bird-object. (Note: From here on, for
convenience, we drop the ‘(z)’ from the izsi-constant notation, and will write, for instance, isipirq instead
of iisiBird(x).) Defaults are encoded as expressions of the form ®(iisig ), which can be read “the typical-
W-object has property ®” or “the typical-¥-object is a ®.” For instance, the default that “the typical
bird flies” (or “typically birds fly”) is written Flies(iisipirq ).

Sometimes, when discussing the iisi-constant approach to defaults, we will revert to the neutral
4 YL @ notation instead of ‘@(iisig )’ —notice the transpositioning of ‘@’ and ‘¥’—because it is closer
to the traditional way of depicting and reading defaults. Thus in the wsi-constant approach W is not a
new logical connective. Note that although in ¥ YL & there is an apparent free variable,® the intended
reading is “typically ¥’s are ®’s” with no free variable. Thus Bird(z) top Flies(z) should be regarded
as a closed sentence. Moreover Bird(tweety) wp Flies(tweety) is ill-formed; there is no substitution
of terms permitted for the apparent free variable in twp expressions. It may be less confusing to write

Bird YL Flies for the default principle.

In addition to the axioms of the original theory T, the extended theory T?*! contains one proper

axiom schema:

D(iisig) Schema A

5Because U and ® have one free variable each.



which just assures that @ applies to (iisig); e.g., that the typical bird is a bird (i.e., Bird(iisipirq)), the

typical singing bird sings and is a bird (i.e., Sings(iisisingsaBird ) ABird(iisigingsaBird )), and so on.
In addition to T’s inference rules, T contains one default inference rule:

P(iisiy ), ¥(a), Unknown(—®(a))
P(a)

Rule D

which sanctions the judicious use of the encoded default appearing as the leftmost component to the
antecedent of the rule. The intuition behind the rule is this: if a is a ¥-object then assume it to be
as much like the typical-¥-object as possible. Thus if the typical-¥-object has property ® then so too

should a, unless known to the contrary.

The condition Unknown(—~®(a)) attached to rule D represents a criterion that tests for the appro-
priate application of the default ®(iisig), thereby giving the formalism its nonmonotonic flavor. For
our purposes we need not choose a particular implementation of Unknown, though several possibilities
come to mind, including fix-point consistency checking in the style of Reiter’s Default Logic (DL) and
McDermott and Doyle’s NML (both undecidable), circumscription (semi-decidable), and the negative

introspection facility of step-logics (decidable)[6], [7].°

3.1.2 Some pleasant features

One nice feature of the usi-constant approach to default reasoning is that, like circumscription, it requires
no special logical connective (e.g., Delgrande’s ‘=’ connective [4], [5]) which is semantically distinguished
from first-order material implication in order to write defaults. Nor are we committed to a modal operator

that loosely corresponds to our Unknown (e.g., the ‘M’ operator of McDermott and Doyle[21]).

Delgrande helps point out another nice feature of the uis: formalism by distinguishing the ability to
reason with defaults from the ability to reason about defaults. Reasoning with a default is simply using it
to come to a conclusion about an individual instance of the default rule. Thus we infer that Tweety flies
because she is a bird, birds typically fly, and we don’t know otherwise. Default formalisms are geared

toward this kind of reasoning and hence have a fair amount of success with it.

Reasoning about defaults, by contrast, allows a reasoner to infer a new default, perhaps from some
starting set of defaults.” This, as Delgrande observes, is in general beyond the reach of DL and NML. For
example to infer that “typically birds have wings” from “typically birds fly” and “typically flying things
have wings”® is impossible in DL. DL’s defaults are themselves inference rules, not part of the logical

language, so to infer a new default would require a mechanism within the logic that adds new inference

6Tn NML and circumscription, rule D would be written as an axiom schema rather than an inference rule.
"We will see even other abilities to be subsumed under reasoning about defaulis later.
80r even to infer that “typically birds have wings” from “typically birds fly” and “all flying things have wings”.



rules to the theory. DL has no such mechanism; nor does any other well-known logic.

The isi-constant theory presented here is able to model both reasoning with end about defaults (as
can one of Delgrande’s formalisms [5] and circumscription). To see this notice that the @ in rule D is not
confined to the original language £, but rather can be any closed term in £%*¢ and in particular may
itself be an iisi constant (i.e., a constant symbol of the form iisig,). In the case where a is in £, rule
D operates, in spirit, much like a default rule in DL whereby a “real” domain object can be attributed
a property by default. So, for example, Flies(tweety) follows from Flies(iisipira), Bird(tweety), and
Unknown(—Flies(tweety)). In the case where a is of the form iisip,, defaults can be combined to
create new defaults. For example Winged(iisipira) follows from Flies(iisipira), Winged(iisipes ), and
Unknown(—=Winged(iisipira)).” More generally, the following results characterize, in part, the way de-

faults are inferred in T*5*.

Theorem 3.1 (Transitivity) For all monadic predicate expressions @1, @5, and P3

Dy (iisia, ), Ps(iisia, ), Unknown(—®3(iisip, ) Friisi P3(iisisp,)

(Note: The justification for the term “transitivity” becomes evident when the theorem is written using

the % notation as in: P, g D,, Py g B3, Unknown(—(®q twp D3)) Fpisi Oy we D3.)

Proof: Using the default rule D where ® is ®3, ¥ is @5, and a is ¢isig, the result follows immediately.

O

Theorem 3.2 (Compositionality) For all monadic predicate expressions ®;, ®3, and ®3:

(a) ®aliisig,), Ve{Pa(z) — ®3(2)} Frisi P3(iisia,)
Or, in ¢ notation, @ wy Dy, Va{Ps(z) — P3(z)} Frpisi Py wp Py
(b) Ya{®1(z) — Pa(2)}, P3(iisiz,), Unknown(—P3(iisip,)) Friisi P3(iisip,)

Or, in ez ¢ notation, Yz {®1(z) — Pa(2)}, P2 Wy B3, Unknown(—(®, ez ¢ D3)) Fpiisi Oy Wy D5
Proof:

(a) Follows immediately using substitution and modus ponens.

(b) ®4(iisip, ) is an axiom by schema A. ®4(iisig, ) then follows from part (a) above. Thus by the

theorem 3.1, ®3(iisis, ). O

9In our more suggestive notation, (Bird tup Winged) follows from (Bird twp Flies), (Flies tvp Winged), and

Unknown(—(Bird tup Winged)).



3.1.3 Some observations about the iisi-constant theory

Much like basic circumscription, the bare theory presented here cannot adjudicate between prioritized,
competing, or interacting defaults. Some additional machinery would be required to give intuitive results
when an ordering relation (be it subset-superset, chronological, etc.) exists between interacting defaults,

but we see no principled reason to suspect that this cannot be done.

On the other hand, one feature (among others) that distinguishes the present theory from circum-
scription (when the predicate Ab is used to write defaults)!? is the subtle difference in the way the two
formalisms treat transitivity. In the izsi approach, defaults combine to reflect truly transitive reasoning:
from “typically P’s are Q’s” and “typically Q’s are R’s” conclude “typically P’s are R’s”. On the other
hand, circumscription’s Ab-default representation produces something like “typical P’s which are typical

Q’s are R’s” from the same initial defaults. More formally, consider the Ab-style defaults below:

Ve{P(z) A —Abi(z) — Q(z)} (3.1)
Vae{Q(z) A ~Aby(z) — R(z)} (3.2)
Ve{P(z) A—Aby(z) A —Abs(z) — R(2)} (3.3)
Vae{P(x) A ~Abs(z) — R(z)} (3.4)

Defaults (3.1) and (3.2) state roughly that “typically P’s are Q’s” and “typically Q’s are R’s”, respectively.
Default (3.3) follows from (3.1) and (3.2), but (3.4) does not (where Abz is an Ab-normality predicate
intended to relate P and R). The difference between the two is that (3.3) reflects a more “cautious”
sort of default composition than (3.4); cautious because it notes that defaults (3.1) and (3.2) are being
composed by conjoining the Ab-normality predicates which appear in their antecedents. Default (3.4) is
more akin to the typ-style transitivity discussed above. We will not specifically argue the pros and cons

of (3.3) vs. (3.4); in a later section we further discuss abnormality predicates in circumscription.

We have now laid out the basic izsi-constant theory. In the next section we continue with an analysis of
the theory, focusing on an apparently new kind of default, leading to a major and instructive shortcoming

of the #si-constant approach.

10We remind the reader of the standard use of Ab for abnormal [18]. In standard practice Ab predicates are indexed
either by subscripts or by aspect constants. We use the former technique here for now, switching to aspect constants later
when convenient.
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4 Ranges and the Need for Denials: A Problem

The typical person has two eyes, two arms, and a mouth; is not an infant, and is not the President of the

United States. Thus fisiperson 18 partially characterized by
Has Two_Eyes(iisiperson) N ... A —President_of the US(iisiperson)

But problems can arise. Continuing with the above example, the typical person is singularly gendered—is
male or female''—yet has no specified gender. There are too many male and too many female people
to exclude either maleness or femaleness as a likely possibility of the typical person. Thus both of the
defaults “typically people are male” and “typically people are female” are too restrictive and hence
are inappropriate; i.e., “people are not typically male; and also not typically female” is also a piece of
commonsense knowledge.'? Indeed, the knowledge that people commonly come in either gender is such an
everyday fact that we should view with suspicion any formalism that does not provide for its expression.
In the gender default for people there is a range (i.e., the disjunction “male or female”) which serves as

a possible default conclusion, and this range cannot be restricted further.

4.1 Range defaults

Perhaps the most general form of what we call range defaults'® is partly obscured in the example above
by the fact that the class Person is normally thought of as being exhausted by the two subclasses Male
and Female (i.e., Male — —Female). Consider a second example: typical wood has a color. Tt is either
tan like pine or (dark) brown like walnut, though it’s hard to pin it down any more than this. There is just
too much tan and too much brown wood to exclude either from the range of a default about wood color.
But clearly this does not exhaust the possibilities for wood; there is black, pink, red, green, and even

purple wood, though none are prevalent enough to warrant recognition in the range of the wood-color

default.!4

In general, any number of non-exhaustive subclasses of class C can participate as disjuncts in the

range of a default about C, which also asserts that any restriction of the disjunctive range is denied.

I Note that this is a default, not a universal fact. There are rare hermaphroditic or neuter persons who are neither
(singularly) male nor (singularly) female.

12Note that this knowledge is used every day, and perhaps even more explicitly so in this era of political correctness.
People often correct one another in particular over inappropriate use of the “masculine mystique” default: “typically people
are male.”

13This terminology was introduced in [23], although irreducible disjunctive defaults is more descriptive. For brevity we
retain our original usage. To forestall a possible confusion we note that the well-known GCWA of Minker[26] also deals
with default reasoning in the presence of disjunctive information. However, the ways disjunctions occur, and the kinds of
inferences drawn, are quite different in GCWA and in range defaults.

14 Notice that if we did include all wood colors, we would no longer have a default at all. In general, if the disjuncts in
the range of a default about ¥ exhaust the category ¥, then we no longer have a default.

11



In other words, a range default is an accepted default of the form “X’s are typically Y’s” where Y is
a disjunction and for every shorter disjunction Z formed from the (disjunctive) components of Y, the

(sub-)default “X’s are typically Z’s” is denied.

How can range defaults be formally represented? Let I be any non-empty finite set of (at least

two) indices used to specify the digjuncts in a range and let \/,_.; ®; be the range of a default about ¥:

i€l
“typically things that satisfy ¥ also satisfy VieI ®,;”. Using our WP hotation we denote the associated

range default by'®

typ
L AC A AVEF 3 (%)

By (%) we intend two things. Firstly, that the plain disjunctive default principle

v/ @ (4.1)
i€l
obtains and secondly that the range cannot be restricted any further. That is, for every non-empty proper

subset J of I the potential default principle

v/ @ (4.2)
i€

is denied:1®
ied

4.1.1 Range defaults and us:-constants

Though useful in some respects, it turns out that the izsi-constant formalism is too weak represent range
defaults. The intuitive reason is that the associated isi-constant would need to have the disjunctive
range property as well as fail to satisfy each and every disjunct. This produces a contradiction. The

following theorem makes this formal.

Theorem 4.1 Let R be a range default expressed in terms of a #si-constant, then R is inconsistent.

Proof: Straightforward. We illustrate the proof for the case of the gender range default. Here
sentence (4.1) becomes

Person(z) Wy Male(z) V Female(x) (4.4)

15We find the following iconic representation visually useful, although we will expand it immediately into the conjunction
of statements (4.1) and (4.3) below.

16 This notion of denial is reminiscent of, but distinct from, Pollock’s [31] notion of an undercutting defeater. Undercutting
qualifies the appropriate use of a default. Denial outright eliminates it as a default.

12



and (4.3) yields
—(Person(z) e Male(z)) and —(Person(z) we Female(z)) (4.5)

where {male} and {female} are the two non-empty proper subsets of I = {male, female}. Using an

itsi-constant, sentence (4.4) becomes
M ale(iisiperson) V Female(iisiperson ) (4.6)
which states that the typical person is either male or female, and (4.5) is
— M ale(iisiperson) and —Female(iisiperson ) (4.7)

which contradicts (4.6). O

This then captures in the zzsi-constant formalism the oddity present in asserting that the typical person
is singularly gendered, yet is not male and is not female. Theorem 4.1 states that in the izsi-constant
formalism the oddity is present, and results in an inconsistency, regardless of the number of disjuncts in

the range of the default.

To see further the cause of the contradiction notice that there is a strong intuitive pull toward two
different readings of each of the statements in (4.7). Consider ~M ale(iisiperson ). One reading denies the
masculine mystique, which we might denote by —[Male(7isiperson )], and the other denies the maleness
of the typical person, suggestively indicated by [-Male]((éisiperson), itself a new mystique: the non-

masculine mystique. However, formally these two readings are indistinguishable in any standard logic.

So the #isi-constant formalism has encountered a seemingly insurmountable difficulty: the inability
to express range defaults. This suggests that fictitious #si-entities may not be good choices for a for-
mal treatment of default reasoning despite any psychological evidence that people use similar mental
representations[8]. As previously mentioned, formal treatments of fictitious entities are tricky. The above
is one more illustration of this. Informal commonsense reasoning allows the use of fictitious entities,
and people have no trouble understanding that the associated contradictions of the sort shown above
are not serious, because the entity is being used to represent a population trend. But the formal use of
fictitious entities in an attempt to capture the distinction between the trend statements “people tend to
be non-male” and “it is not the case that people tend to be male” ends up obliterating the distinction.
The importance of an underlying trend statement will surface again, in a different way, below. Soon we
will see that other formalisms found in the literature encounter related difficulties, albeit somewhat less

severe, and we will develop a uniform simple treatment for these.
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4.1.2 Why bother?

A natural question to ask is why bother with range defaults, or more precisely, with default denials at
all? Why not just represent the default (x) by sentence 4.1 and ignore marking the sentence (4.2) as
inappropriate? After all, a sentence like (4.1) will give the right result for any instance of a W-object.
Knowing that a particular unpainted chair is made of wood and that typically wood is tan or brown
should lead one to conclude (unless she knows to the contrary) that the chair is tan or brown. A reasoner
need not go on to deny the individual defaults “typically wood is tan” and “typically wood is brown” in

reaching that conclusion.

The answer i1s that default denials play a role in reasoning that is not accomplished solely with
“ordinary” defaults. For instance there are cases in commonsense reasoning where it is not only important
to reach the correct default conclusion, but also to have meta-knowledge about one’s own defaults which
itself can be reasoned with and about. This role is shown using a third illustration of a range default, that
cardinals typically are red or russet (rust-colored).!” Albino cardinals are exceptional. So it is indeed
a commonsense disjunctive default. Moreover it is a range default since we do not accept (if we know
much about cardinals!) that cardinals typically are red, nor that cardinals typically are russet. There
are proportionately too many red and too many russet cardinals for either to be useful defaults in most

domains.

Now, suppose you look out into the back yard of your house and notice that many red and no russet
cardinals have gathered to eat. The plain digjunctive default that cardinals typically are red or russet
does not prompt the conclusion that the collection of birds in your back yard is in any way unusual. But
the event seems odd indeed, and you may have excellent reason to suspect so. Namely that it is not the
case that cardinals typically are red. With no real knowledge about cardinal feeding or social behavior,
it is appropriate to wonder at the oddity, and speculate that perhaps only red cardinals leave the nest
to feed, or that only male cardinals like the trees in your yard. Such wondering and speculation can be

prompted by the additional denial of the default that cardinals typically are red.

The above sort of knowledge that one may have about cardinals is precisely what a range default about
cardinal color expresses, and this knowledge is crucial to the reasoning illustrated. Another illustration
is to inform another reasoner to avoid a mistaken default; e.g., reminding someone that “people are
not typically male.” Thus, not only is the formal representation of range defaults of interest in a purely
theoretical sense (Can a formalism represent them?), it also has pragmatic ramifications for commonsense

reasoning formalisms.

The representation and use of range defaults clearly hinges on the representation and use of denied

17 Typically males are red, females russet.
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defaults: defaults that not only are not part of one’s belief base but are explicitly believed to be false.
This then is the topic we turn to next. However, we retain the larger picture of range defaults since they

will play a role in how we go about solving the representational problems.

4.2 Denying defaults in other formalisms

The difficulty in representing range defaults is not peculiar to the #zsi-constant approach. Let us return
to the example of the gender range default, and consider how to represent it in three other widely studied
formalisms, namely default logic (DL), nonmonotonic logic (NML), and circumscription. In each of the
three formalisms we can write the plain disjunctive default principle. In NML the default is written as

the axiom

Va{Person(z) A Consis(Male(z) V Female(z)) — Male(x)V Female(z)}. (4.8)

In DL the default is written as the inference rule

Person(z) : Male(z) VvV Female(z)
Male(z) vV Female(z)

(4.9)

P . Q

where =

has the approximate reading: If P is known, and if @ is consistent with all that is known,
then R is inferred (known). In circumscription the default again is an axiom, as in NML, this time using

an abnormality predicate, Ab:'®

Va{Person(x) A = Abperson:{Male Female} (¥) — (Male(x) V Female(z)} (4.10)

In each formalism, the plain disjunctive default principle together with Person(Tony), for instance,
can be used to produce Male(Tony) V Female(Tony), which is as expected. However, this does not get
us home free. How can we represent the denials of the feminine and masculine mystiques? When we
use the simple negation of the inappropriate (false) default (as we did above for range defaults using

iisi-constants) problems arise in each formalism. We discuss some of these in what follows.

18Here we take up the practice of indexing Ab predicates with the names of the other predicates which appear in the
default.
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4.2.1 Denial in DL

A technical problem surfaces in DL, because here defaults are represented not as formulas but as rules

of inference. Here the masculine mystique could be, and is in standard treatments, written as

Person(z) : Male(z)
Male(z)

(4.11)

But in DL (as in any standard logic) there is no recognized formal notion of the negation of a rule of
inference.'® Thus there appears to be no built-in way in DL to deny the masculine mystique using the
standard representation of defaults. We will see later that a very simple change in default representation

will allow DL to do this, however.

4.2.2 Denial in NML

Technical machinery is not the only thing getting in the way of default denial representations. Defaults
are not merely declarative descriptions of facts about the commonsense world, such as “virtually all birds
in these parts can fly.” They also serve as procedures for basing defeasible inferences on those facts, such
as the inference that “the bird over there can fly.” It is duck soup to deny the former: “It is not the case
that virtually all birds in these parts can fly.” But denying a procedure is harder as we’ll see in both

NML and circumscription.

In NML, the standard representation of our ill-reputed masculine mystique default is

Vz{Person(z) A Consis(Male(z)) — Male(z)} (4.12)
Its negation then is
Ve {Person(z) A Consis(Male(z)) — Male(z)} (4.13)
which is equivalent to
Jx{Person(z) A Consis(Male(z)) AN ~Male(z)} (4.14)

Intuitively (4.14) does not assert that the default itself is a bad one that should not be used so much as
that there exist counterexample (at least one) to (4.12). But counterexamples should be expected now
and then as simple evidence that (4.12) is a default after all, and not a universal fact. Thus a default

and counterexamples to the default should be able to coezist rather than the counterexample negating

(denying) the default.?°

19Delgrande [5] makes this same point.
20This is addressed using a scoping mechanism in [10] and structural circumscription in [35]. However, neither scoping nor
structural circumscription meets our needs: we want to avoid the default, not keep using it. In our own proposal below, we
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This means that a denial is not the same as a counterexample: a default denial should go together
with the absence of the default. Yet in traditional formalisms defaults are codified in terms of drawing
conclusions about individuals: if such-and-such is the case, then conclude that a particular individual
z has property P. Denying this leads directly to counterexamples (except in DL, where denials are
not representable using the standard treatment at all). So we are in a quandary; we will analyze and
attempt to resolve this in Section 6 below. In brief preview the issue seems to revolve around the
difference between individual-oriented default representations (as in DL, NML, and circumscription) and
population-oriented default descriptions. (For related comments see [21], p. 44, where a distinction due

to Scriven is described.)

4.2.3 Denial in circumscription

Circumscription also has problems with denied defaults, much like those of NML. In the masculine

mystique case, instead of the NML default axiom (4.12) we have

Va{Person(z) A =Abpersonimate} () — Male(z)} (4.15)
Here again the issue is whether the outright negation of this, namely

Jz{Person(z) N ~Abperson{maie} (&) A ~Male(z)} (4.16)

really counts as denying the undesired default; the same arguments we gave earlier for NML apply.

Things only get worse when we try to reset the above in the original range (irreducible disjunctive)
context. If a default has \/; ., ®;(z) on its right hand side and [I| = n then not only are 2" — 2 denials
needed (just as in NML) but so are 2" — 2 additional abnormality predicates, one for each of the proper
non-empty subsets of I.2! (The proposed solution given in Section 6.3 may lend itself to a compaction
of these exponentials associated with the sub-defaults of a range default.) More formally, for a default of

the form

Va{¥(z) A = Abg (o, (x) — \/ ®i(2)} (4.17)
iel

we require the negation of each of the more restrictive defaults of the form

Ve {¥(z) A=Abga,).e,(x) — \/ ®ilx)} (4.18)
ieJ

can have the best of both worlds: denial of a default will avoid default, whereas a mere counterexample (properly scoped)
leaves the default (both use and mention) in place for further inferences.
21Note that n can be rather large; consider “typical” colors of crayon, for instance.
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where () 2 J C I. Each of these denials is a counterexample axiom; i.e.,

3 {W(2) A = Abg 3,3, (®) A=\ Bl (4.19)
i€J

As an example, the gender range default (where T is {Male, Female}), including the negation of both the

masculine and feminine mystiques, looks like

Va{Person(x) A = Abperson:{Male Female} (£) — (Male(x) V Female(z)} (4.20)
Jz{Person(x) A ~Abperson {Male} (£) A "Male(z)} (4.21)
Jz{Person(z) A ~Abperson {Female} () A 7 Female(z)} (4.22)

Thus, in every model of (4.20)—(4.22) there are two counterexample persons @ and b with =M ale(a) and
—Female(b). The existence of a is asserted by (4.21) and the existence of b by (4.22). But much as noted
in [10] the latter two counterexample axioms serve to block the use not merely of the mystiques but also
of the desired default that people typically are gendered!?? The following theorem makes this precise,

even when | I |=n > 2.

Theorem 4.2 Let ¥ and subscripted ®’s be predicate letters, let I be a finite set of indices with at least

2 elements, let D be the plain disjunctive default

Va{¥(z) A=Aby ey, (®) — \/ ®i(2)},
1=y

let S be the denial set (of sentences)

{F2(U(2) A= Abgga,y.c, () A=\ Bi(2)) | 0 £ T C T},
i€J

and let a be a constant. Then S+ D+ ¥(a) f=,;,. Vics Pi(a).

Proof: There is a minimal model (with respect to Aby.(#,},.,) of S+ D + ¥(a) in which \/;.; ®;(a)
is not true, namely any model M with a single domain element. Specifically, ¥(a) must be true, and
in order for S to be true in M (i) for all J, 0 # J C I, Aby js,},.,(a) must be false and (ii) for each
i € I, ®;(a) must be false. Now for D to be true (since ¥(a) holds, and since \/;.; ®;(a) fails because

each ®;(a) fails) then Aby.(3,},,(a) must hold;?3 this requirement is easily satisfied by interpreting

22 There are possible ways around this, of course [10, 35]. However, the ones we are aware of involve yet further complicating
of the formalism. On the other hand, these remarks are intended as merely motivational; and our solution below avoids
this entire issue by re-structuring the representation of default information in a very simple way.

23Note: J # I, hence this is a distinct Ab predicate from the ones in S, all of which fail in M.
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Abg 4®,},c, s0 that Aby.(s,1,.,(a) is true. These choices make M a model of the axioms S+ D 4 ¥(a).
Moreover, M is minimal since the extension of Abg,(s,},., cannot be made smaller without violating

the truth of D. O

Theorem 4.2 shows that in the presence of the denial set S, default reasoning is blocked. From
VU(a) and the default D one would expect the conclusion \/;.; ®;(a), yet this is not forthcoming because
= Aby.{8,},c;(a) is not entailed. That is, we cannot show a to be normal even though we know nothing

about a that would make i1t abnormal.

Another difficulty with this representation is that the meaning of the expression =Aby (s,}..,(%),
found in each counterexample axiom, is unclear. In the absence of a believed default, what does
—Aby 43,},c,(x) mean? Thus, what is it about a person and maleness that makes someone not ab-
normal (i.e., normal), as asserted in the above denial of the masculine mystique (4.21), if there is no such
believed default asserting what is “normal maleness” for people, i.e., a default like (4.15), in the first
place? An abnormality predicate is the standard circumscriptive mechanism for asserting what is normal
(and abnormal); and the meaning of such assertions is standardly given in default axioms such as (4.15).
The absence of a default (like 4.15), not to mention the presence of its denial (like 4.21), together doubly
rob us of the essential characterization of the meaning of the default’s abnormality predicate! We will

return to this in Section 6.1.

Thus circumscription has the same problems with range defaults as does NML, along with some
puzzling features regarding the semantics of the various abnormality predicates. In short, denial seems
to create varied difficulties for most of the widely regarded default formalisms. While there are ways
of handling some of these problems in isolation, we will propose an alternate approach that appears to
handle all of the denial problems simultaneously and uniformly across all the formalisms we will consider

in this paper.

4.3 Disjoined defaults

Reasoning about defaults is not limited to their denial. For example, consider remembering that there is
a sport that Canadians typically love, and that it is either hockey or soccer, but being unsure of which.
If Pierre is a Canadian we might reasonably conjecture that either Pierre loves hockey or Pierre loves
soccer. Notice that this is very different from our earlier singularly-gendered (male or female) default:
the Canadian example consists of two separate defaults at least one of which is taken to be true. In
particular if Jeanette is also Canadian, then we conjecture Jeanette and Pierre both love the same sport.
There is no implicit denial in this case; nevertheless Default Logic has no way to represent the disjunction

of two defaults.
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5 Related Work

The general issue of denying and otherwise reasoning about defaults has not gone unnoticed. Three

existing approaches are those of Delgrande, Poole, and Schlechta, which we discuss below.

5.1 Delgrande’s approach

Delgrande has developed default formalisms based on conditional logic in which, among other things,
attention is paid to the representation of the denial of defaults (see [4] and [5]). In these logics—there
are two of them, one propositional and one first-order—the conditional operator = is added to an
otherwise standard logical language in order to represent defaults, or what Delgrande calls statements
of “normality.” In the propositional version, called NP, a default is a statement of the form a = f;
intended to be read roughly as “if a then normally 3.” For example, “if it is raining then normally the
grass is wet.” In N, the first-order version, defaults are written in the form Vz(a = ), intended to be

read as “a’s are normally 3’s.” For instance, “ravens are normally black.”

A possible world semantics is the basis for truth in both NP and N. Specifically a« = 3 is true if 3 is
true in each of the least exceptional worlds in which « is true, and Vz(a(z) = B(z)) is true in a world w
iff (& = 3) is true for each individual in the domain of individuals in w. In this formalism the denial of
Ve(a(z) = B(2)) is simple and straightforward: =Vz(a(z) = B(z)) For instance, the denial of the male

mystique is =Va(Person(z) = Male(x)).

Delgrande’s primary aim in these logics is to provide a mechanism for reasoning about defaults, for
drawing conclusions which themselves are defaults, rather than reasoning with them (e.g., for drawing
conclusions about individuals). As examples, in the propositional case, the default P = @ follows from
P — @, and in the first-order case Vz(P(z) = R(z)) follows from Vz(P(z) = Q(z)) and Vz(Q(z) —

Indeed, the first-order version N does not permit default reasoning about individuals. This is due to
the fact that despite the suggestive notation, the default Yz(a = £) is not to be construed as concerning
ordinary quantification. Specifically, no mechanism is provided for substituting individuals for z, nor
therefore for drawing default conclusions about an individual z from the default. Thus, though intuition
may suggest that Flies(tweety) ought to follow from Vz(Bird(z) = Flies(z)) and Bird(tweety), if
Tweety is “normal”, such is not the case in N. There simply is no inference rule nor axiom (schema) in the
logic to help accomplish this. This prevents the problems seen in the previous section of the conflation of

counterexamples with denials. Delgrande provides a separate mechanism for drawing default conclusions
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about individuals.?4

One interesting feature of Delgrande’s approach is the relationship which arises between typicality
entailment (=) and strict entailment (—): Ya(Pz = Qz) follows from Vz(Pz — Qz). One could argue
whether this is appropriate. Certainly = and — bear some relation to one another, as Delgrande notes,
though just what that relation ought to be may not be clear. On the one hand, it may seem reasonable
that if all P’s are @)’s then also typically P’s are Q’s, as comes out in N. On the other hand it can
be considered misleading to assert the typicality statement when the universal implication is believed.
Asserting that “typically birds are animals,” since “ all birds are animals,” is surely misleading as the
former encourages the listener to assume that some birds are not animals. Grice’s [12] maxim “be
maximally informative” supports this view, as does the claim espoused in [10] which states that it is in
the very nature of a default to have counterexamples. We refer to the use of a typicality statement when

the corresponding universal implication is believed, as “understated universality.”

Delgrande also points out that in some systems such as Default Logic, Vz(Rz — Bz) and Yz(Rz =
- Bz) can “peacefully coexist” even though this seems counterintuitive. If all R’s are B’s, then how can
R’s typically be non-B’s? The DL treatment would allow the axiom Vz(Rz — Bz) and the default rule
%. Here the default rule will never be used since the default simply never applies, and so will not

conflict with the axiom Yaz(Rz — Bz). Yet the intuitive reading of the rule should have it conflict with
the axiom. The behavior of N differs: From Va(Rz — Bz) follows Yo (Rx = Bz), as stated above.

Nevertheless, viewed at a finer level, the “peaceful coexistence” problem may re-appear in Delgrande’s
approach in two related ways. First, within a single possible world both VzR(z) = B(z) and VzR(z) —
—B(z) can hold. For instance consider the model having two worlds wy; = {R(a), R(b), 7 B(a),~B(b)} and
wy = {R(a), R(b), B(a), B(b)} where Ewjws?®. Then w; | Vz(R(z) = B(z)) AVzR(z) — —B(z); the
default holds since wy = VzR(z) — B(z) and wsy is more normal than w;. Delgrande does not consider
this to be counterintuitive since = refers not to the world at hand but rather to a more normal world.
He further states that normalcy in his sense is not a statistical notion; however his formal treatment does
ultimately depend on statistics or quantity in its requirement that in some accessible world all elements

behave normally.

Delgrande gives as example a ten-fold increase in gravity rendering all birds flightless, where still one
might say birds normally fly. But to us this appears to hinge on an intuition that such an episode is an
irregularity in a much larger time span during most of which birds do fly. Thus again there appears to

be a vestige of statistics in the underlying intuitions.

24See [5] for more on this. Our approach below, by way of contrast, accomplishes both about and with default reasoning
using a single mechanism (which is a minor addition to traditional default formalisms.)
25Delgrande’s notation for wy being accessible from w; .
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Second, suppose that the known facts or axioms state that there are exactly one thousand distinct
entities aj ...a1ggp and that all of them satisfy R and exactly 999 of them (all but a;) satisfy B. Then
every world in every model must satisfy these facts as well. Now intuitively given this situation Rs are
normally Bs, even though there is no world in which all Rs are Bs. So for Delgrande we do not get
the default Ve R(z) = B(z): Our knowledge of the single counterexample —B(a;) effectively blocks the
default. This is because Delgrande’s semantics requires strict compliance in some world: 100% of Rs

must be Bs.

Our example may seem unusual in that we have supposed all atomic facts known, not what default
reasoning is usually concerned with. However, usual default reasoning aims to draw conclusions about
individuals whereas Delgrande’s treatment turns this around to draw conclusions about defaults. Thus if
a reasoner knows about an entire population of individuals, it might very well reason about what defaults

to adopt from that knowledge.

5.2 Poole’s approach

Poole [32] bases his work on the premise that reasoning is not a matter of deduction but of theory
formation. He views default reasoning as an attempt to use a set of hypotheses and a set of facts to

explain observations. The hypotheses used in an explanation play the role of defaults.

Poole uses a first-order language together with a set F of facts, a set A of names of possible hypotheses
and aset C of constraints. Names of possible hypotheses are predicates of the same arity as the hypotheses
they name. For each name in A there is a fact in F which links the name to the hypothesis. If, for
example, we want to have as default that birds normally fly, we would put birdsfly(z) in A as the name
of a hypothesis. F would then contain Va birdsfly(z) — (bird(z) — fly(z)). The constraints in C are
formulas that state when a particular hypothesis is not applicable. For example, if we do not want the
birdsfly(z) hypothesis to apply to ostriches, we would put Yz ostrich(z) — —birdsfly(z) in C. Poole
defines a scenario of (F, A, C) to be a set DUF where D is a set of ground instances of A and DUCUF

is consistent. An exzplanation of a closed formula g 1s a scenario that implies g.

As an example, let

F = {bird(tweety), ostrich(fred), Yz birdsfly(z) — (bird(z) — fly(z)),Yz ostrich(z) — bird(z)}

A = {birdsfly(z)}
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C = {Vz ostrich(z) — —birdsfly(z)}

With this, we can “explain” fly(tweety). The set D contains birdsfly(tweety) which lets us derive
bird(tweety) — fly(tweety) from F, and from that we can get fly(tweety). However we cannot find
an explanation for fly(fred) because ostrich(fred) and the hypothesis birdsfly(fred) are inconsistent

with the constraint in C.

Unlike the approaches of Delgrande and Schlechta (below), Poole’s treatment combines reasoning
with defaults and reasoning about defaults. The latter 1s achieved through the constraint mechanism. It
appears however to suffer from the peaceful coexistence problem: n € A and —n € C' together simply lead
to the default named n not being used; no particular tension arises. This amounts to the odd situation
in which VzR(z) — —B(z) can be a fact even though n(z) — (R(z) — B(z)) is also a fact: a default

with no true instances.

Poole’s system cannot reason about constraints such as that w is not a constraint. This is a limi-
tation, in that one can imagine the need for a robot to be advised that, say, all ostriches except Alfred
cannot fly, i.e., birdsfly(z) is constrained by all ostriches except one. While we can write the con-
straint (ostrich(z) A @ # alfred) — —birdsfly(z) this does not entail the absence of the constraint

z = alfred — —birdsfly(z), and there seems no way to express this absence.

An additional difficulty is the equivalence problem. Suppose for example, that we have default names
n and m corresponding to the defaults Va n(z) — (bird(z) — flies(z)) and V& m(z) — (feathered(z) —
flies(z)), together with the fact that Vaz feathered(z) < bird(z). If it is also known that ostrich(tweety)A
Vo ostrich(z) — bird(z) and if Vo ostrich(z) — —n(z) is a constraint then n(tweety) is blocked but
m(tweety) is not and so we can still conclude flies(fweety). The “equivalence” of n and m is not

recognized.

5.3 Schlechta’s approach

Schlechta [37] represents defaults in first-order logic with a generalized quantifier. An open default such
as “Normally birds fly” is taken to mean “Most birds fly” and is represented as Vz bird(z) : fly(z) which
says that there is an “important” subset of the set of birds, all of whose members fly. We will mainly
discuss the simpler case of normal open defaults: “Normally things don’t fly”, represented as Va—fly(z).

This says that there is an important subset of the set of all objects, all of whose members don’t fly.

The notion of important subsets is captured in the semantics by a system A (M) of important subsets
of the domain. N (M) consists of subsets of M such that the intersection of any two of the subsets is not

the empty set (unless the domain is empty). This condition rules out contradictory important subsets
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? are true. Also

and therefore rules out situations where both “normally ¢(z)” and “normally —¢(z)
ruled out are empty important subsets when the domain is not empty. The notion of truth follows that
of first-order logic with additional inductive steps including: Vz¢(z) holds in (M, N (M)) provided there
is a set A in N(M), for all members a of which ¢(a) holds. This captures the idea that for something to
be normally true there has to be an important subset of the domain for which that property holds. Since

it is not possible for an important subset of the domain to satisfy —¢(z) while Vzé(z) holds, we cannot

have “peaceful coexistence” between Vaz—¢(z) and Vzg(z).

The language is a first-order language augmented with the quantifier V and with a set of ax-
iom schemata. The equivalence property is obtained from the axiom schema: Vzg¢(z) A Vz(é(z) —
¥(z)) — Vaip(z). Inconsistencies in the defaults can be detected using the axiom Vz¢(z) — -Va—-é(z).
Analogous axioms are present in the open default case where another axiom of interest is [Vzo¢(z) :
P(x)| AVe(d(z) Ap(x) — ¥(z)). — Vag(z) : ¥(x). This enables us to infer from “normally birds fly” and
“things that fly have wings” that “normally birds have wings.” However we also have: Yz¢(z) — Vzg(z)
which (as mentioned earlier in the discussion of Delgrande) we find unintuitive: if all birds are animals,

then it seems misleading to say that typically birds are animals.

Schlechta’s approach enables us to reason about (and deny) defaults and to resolve conflicts between
defaults in a principled way. But as with Delgrande’s first-order proposal, we cannot use Schlechta’s
scheme to conclude facts about individuals. There is no axiom or inference rule that lets us infer from
Ve fly(z) that = fly(fred). We applaud his introduction of sets, and think this can fruitfully be made

more explicit (see below).

6 Formalizing Trends

6.1 Use and mention components of defaults

The representational difficulties illustrated in section 4 we see as hinging on a conflation of use (inferential,
procedural) and mention (descriptive, declarative) components of default reasoning. To be sure, explicit
denials of defaults, or inferences of a default from other defaults, have been considered (by Delgrande,
Poole and Schlechta) apart from default use concerning individuals. But we think that even ordinary

default use has an implicit default mention aspect that is better brought out into the open.

Research interest in the procedure (use) of drawing defeasible conclusions has been so high that the

declarative (mention) component of default information has been given only limited attention.?® The

26 This is not to say that default information was not represented, nor that such representation had no declarative
features, nor that typicality mentions were never used; but rather that little concern—Delgrande, Poole, and Schlechta
are notable exceptions—had been shown for the detailed interpretation of various declarative mechanisms, as opposed to
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latter (mention) is a bit hard to convey using the familiar terminology which is so infected with the
inferential capacity of the former (use). We have already made a stab at it above in earlier sections,
especially with regard to denials; however, the following may serve to reinforce the idea and make it
more general. Tt may be a fact (or even just a belief) about the world that most birds can fly, quite
independently of any disposition to draw defeasible conclusions from it. A separate piece of reasoning
(whether via a rule or another belief) is required before the general belief about most birds can be applied
to a particular bird. In DL this is done with rules; in NML and circumscription it is axioms that, together
with yet further apparatus, produce defeasible conclusions. A state of affairs in which most birds can fly
we will call a {rend, namely a trend of the population of birds. Thus the existence of a population trend
is logically prior to the inference that an individual member of that population obeys that trend (i.e. is

typical or normal).

For concreteness (see the discussion near the end of Section 4.2.3): the circumscription default axiom
U(x) A= Abg 451 (x) — ®(x) both encodes what is normal and how to draw normality conclusions about
any particular individual z. Denying this via a simple negation has the odd consequence of affirming
Abg g1 (x), that is, of affirming there is a notion of normality (and hence of abnormality). The attempt
to deny a notion of what is normal results in asserting it! We see this as due to the unfortunate mix
of two mechanisms, normality-mention and normality-use, further amplified below, at work in a single

formula.

The expression “default reasoning” is perhaps misleading with regard to this distinction. The declar-
ative (mention) component is not a default, it is a (presumed) fact about a population. The default is the
disposition to base defeasible reasoning on that declarative fact. However, it has become so customary
to regard defaults as “encoding” typicality information that we will not try to buck tradition here. We
will, however, suggest terminology for the two parts: typicality-mention (the trend) and default-use (the

individual inference). Tt is the latter that holds all the nonmonotonicity.

We are accustomed to writing the world-facts of typicality-mention, e.g., that most birds fly, as part
and parcel of the default-use mechanisms. As a result, it becomes problematic how to deny what is often

not explicit or at least not separately represented: the typicality-mention itself.

6.2 Summing up the problem

Since defaults have tended to be formally represented in combined use-mention form, then they contain a

confusion between a default being true as a mention of general typicality about a population, and sound

considerable concern for what default inferences were drawn from those representation. What we have argued above is that
default information is also used in other ways (denials) where typicality mentions are crucial. Furthermore, as we saw in
the previous section, even default conclusions can be adversely affected when denials in range defaults are not properly
represented.
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(or true) vis-a-vis its particular conclusions. The negation of such a representation (when possible at all)
then mixes together both the unsoundness of the inferences, and the denial of the typicality-mention,
even if (as in the case of range defaults) only the latter is wanted. As a result it is not clear whether we
are getting what is needed when we try to deny a default, and our earlier discussion above suggests we

are not.

The key, then, is to view a default D as having two complementary features. One is a declarative
statement, Trend, as a fact about the commonsense world. The other is the individual-inference mecha-
nism [IM by which Trend is used to produce default conclusions. It is 7TM that involves a plausibility
assessment. In the usual formalisms these two are conflated. What we need for default-denial is to negate
Trend, not IIM. But when ITM and Trend are combined in a single monolithic representation, this is

problematic.

ITM asserts, defeasibly, that default conclusions are true. Trend asserts, indefeasibly, that the given
typicality relation does obtain.?” But that relation can obtain without all particular conclusions defeasibly

inferred from it also obtaining.

To be more concrete, we may believe “birds typically fly,” and this belief is distinct from (although
related to) our subsequent beliefs that Tweety (probably) flies. We might find out that we are wrong
about Tweety and yet retain our trust in the commonsense wisdom that birds typically fly. We may also

conclude that, in this case, the bird in question (Tweety) is simply not typical.

Thus, from the fact that typically birds fly, it does not follow as a logical consequence that Tweety
flies. Rather it follows as a defeasible conclusion under the (perhaps tacit) defeasible assumption that
Tweety is typical. So, it may be that Tweety does not fly even though we have concluded the opposite,

and without jeopardizing the truth of the fact that typically birds fly.

Should we want to deny the default itself, we assert that the typicality-mention is false: it is not the
case the birds typically fly. We do not need to undo the default-use since that cannot function without

the information of the typicality-mention.

6.3 A formal solution

It remains for us to formalize the above ideas and illustrate them in NML, DL, and circumscription.
Our proposed solution then is to “divide” default representations into two parts, corresponding to their

factual-mention (T'rend) and inferred-conjectural-use (I7M) aspects.

We propose invoking a new predicate expression, roughly T'rend(P, @), that has the intuitive meaning

27This does not mean that Trend cannot later be found wrong and retracted; it simply means that Trend is believed.
Our treatment does not preclude the inference of a trend as a default; however we will not develop this here.
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that “typically P’s are Q’s.”?® This plays the role of Trend above: it is the claim that the commonsense
world has a certain typicality feature. It is not in itself a means to infer particular default conclusions
about particular entities. The latter is done by ITM, which takes different forms in different formalisms.
We present here ways to represent IIM in DL, NML, and circumscription. The idea is that ITM will

invoke Trend, roughly as follows:

IIM: If Trend, then draw a Trend-ish default conclusion when possible.

This contrasts with the traditional representation in which the antecedent “If Trend...” is missing.

Here we suppose typicality-mentions to be stated as ordinary axioms, e.g., Trend(Bird, Flyer). In

rough terms what we have in mind is along the following lines:2°

Trend(Bird, Flyer) — (Bird(z) — Flyer(z))

The antecedent is our representation of the factual trend that birds do indeed typically fly, and the
consequent Bird(z) — Flies(z) sanctions the defeasible (not necessarily factual) conclusion about an
individual member z of the set of birds. Thus we combine both mention and use, but separated into
sub-formulas. Moreover the mention (trend) sub-formula will in general also appear on its own as a

separate belief and modus ponens will then be brought to bear when default use is desired.

Notice that our formulation has a superficial similarity to that of Poole:

Birdsfly(z) — (Bird(z) — Flies(z))

Nevertheless there is a major difference: Birdsfly(z) is a statement about an individual satisfying a
typicality condition, and is not a population trend at all. In fact we recall that in Poole’s system there
need be no trend at all; peaceful coexistence is permitted. However, our approach requires a trend to be
in place before a default is used. This is not to say that trends should not be inferred from facts about
individuals; we alluded to this in our example of one thousand known entities (section 5.1) and is a major

topic for future work.

Our notation requires attention to some formal details which we develop now.

28Regarded as a relation between the classes P and Q.
29We use < as a generic notation for ITM (defeasible inference about an individual) whether in Default Logic, circum-

scription etc. We have abandoned 2P since we used it earlier to capture traditional use-mention conflations. On occasion,
the equivalent formulation Trend(Bird, Flyer) A Bird(z). — Flyer(z) will be used.
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6.3.1 Reification of properties

We seek a satisfactory means to express something along the lines of

Trend(R, B) — (R(z) — B(z))

where R and B are terms in the antecedent and yet R(z) and B(z) are formulas. This can be done in a

number of ways, including a quotation device as in [27]:

Trend(“R”, “B”) — (R(z) — B(z))

Here we instead employ lowercase letters r and b to designate reified properties corresponding to the
formulas R(z) and B(z): Trend(r,b) — (R(z) — B(z)). We now illustrate this device as a simple
modification to traditional formalisms; then we will discuss a way to make this even more useful by

treating the reified terms as sets.?"

6.3.2 Formalizing denial in DL

We replace the inference rule
Person(z) : Male(z)
Male(z)

(6.1)

by the rule
[ Trend(person, male) A Person(z)] : Male(z)

Male(z)

(6.2)

Then as long as Trend(person, male) is not believed, the rule cannot fire. We can even explicitly deny
this typicality-mention by asserting —=Trend(person, male). Here < corresponds to the DL inference rule

itself rather than to a formula.

6.3.3 Formalizing denial in NML

In NML we replace the axiom

Person(z) A Consis(Male(z)) — Male(x) (6.3)

by
[ Trend(person, male) A Person(z) A Consis(Male(z))] — Male(z) (6.4)

30Sets would appear to have a number of potential uses in commonsense reasoning; see [28, 29]
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and argue as above for DL. Again, the default can be denied by asserting —=Trend(person, male), and

without the conflation with counterexamples. Here the — corresponds to —.

6.3.4 Formalizing denial in circumscription

Here we replace the axiom

Person(x) A —Ab(z,i) — Male(x) (6.5)

where i is the relevant “aspect,” by

[ Trend(person, male) A Person(z) A —Ab(z,trend(person, male)) | — Male(z) (6.6)

and again argue as above.3! Again — corresponds to —.

Note that =Ab(z, ) is also a typicality statement, but about the individual z. That is, it says that
has the typical behavior for the population of people with respect to maleness, but it does not say what

that typical population behavior is; Trend(person, male) says the latter.3?

6.3.5 Using sets

We now return to the idea of reifying population trends as sets. This has the advantage that now we can
give an arithmetic characterization of population trends, namely Trend(r,b), will be true if “most” of
the set r is contained in the set b. This can be formalized by a parameter A that measures the proportion

of rs that are bs. We say that Trend(r,b) is true iff

[r N b

A<
Ir|

Here the first inequality expresses that most of 7 is contained in b, and the second inequality addresses

the understated universality issue: we take a typicality statement to entail that there are exceptions. 33

The terms r in the typicality formulas are a notational simplification for {z | R(z)}. To relate these

31We find it happily suggestive here to interpret McCarthy’s “aspects” as simply the population trends themselves
(Trend(p, q) reified via a function symbol as trend(p, g)).

32Vladimir Lifschitz has pointed out to us that we can bend the Ab predicate to our needs, eliminating its individual-
dependence, by writing Yz Ab(x,a) for some aspect a, to replace our =Trend(P, Q). Then Trend(P,Q) corresponds to
(3z)—Ab(z); but this has an odd feel to it as a way to assert a population trend: one “normal” entity is surely not enough
for there to be a valid notion of normality, let alone no such entities as is suggested by use of VzAb(z,a)—the peaceful
coexistence issue again, where a trend is represented and yet applies to nothing at all.

Thus Ab(z,a) seems to have a presupposition, that the indicated aspect encodes a genuine population trend (which
however is not followed by x). Negating Ab(z, a) then is confusing for the same reasons as we have dwelled in above: which
of the two is being denied? In our treatment these are separated.

33We put aside the issue of how much of a set constitutes “most” of it; this can vary greatly depending on context.
Presumably A > 0.5; our treatment will not depend on the specific numeric proportion A. In future work we intend to
explore connections with other statistical foundations [1]. The second inequality can be left out with no harm done to our
treatment; it simply serves to avoid understated universality.
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terms to formulas R(z), the language needs to be augmented:

1. We introduce a binary predicate € for set membership.

2. For each formula ¢(z) in the language, we add a term

{z | 6(x)} (6.7)

where z is one of the free variables of ¢, representing the set of individuals satisfying the formula.

3. We employ a “comprehension” axiom schema:

Vy(o(y) <y €{z | 6(x)}) (6.8)

where ¢(y) is a formula in the language: this relates the formula to the set term introduced above.3*

4. For each typicality statement Trend({z | ¢(z)},{z | ¥(2)}) (which is written more simply as
Trend(¢,v)) we add the axiom:

Trend({z | ¢(2)}, {z [ ¥(2)}) — Vy(y € {z | 6(z)} — vy € {= | ¥(z)}) (6.9)

5. We also add the axiom schema

{z]o(@)} ={z | (@)} = (Vz z € {2 | ¢(2)} = z € {z [ P(2)}) (6.10)

for set equality.

As an illustration, suppose we are given the trend axiom:

Trend(bird, fly)

Then from 6.9 it follows that

Ve(z € {z | Bird(z)} — z € {z | Fly(z)})

34 Introducing € into the language, together with schema (6.8), brings with it the possibility of paradoxes. There are many
proposals for dealing with this, e.g. [27, 11, 2]. Here we opt for a very conservative solution to the problem: we suppose
an original language L that does not contain the predicate symbols € or Trend. We then extend this with set constants
{z | ¢(x)} for each formula ¢(z) in L, as well as with the two symbols € and Trend. We employ the comprehension schema
6.8 only for formulas ¢ in the original language L. This amounts to a second-order logic, a very weak set theory. Stronger
set theories are also available, of course.
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If tweety is a constant in the language, we then derive

tweety € birds — tweety € fly

We can now solve the equivalence problem (which arose in Poole’s system) in our augmented language.
If we know that typically birds fly, Trend(bird, fly), and we also know that birds are precisely the

feathered vertebrates, Yz Bird(z) — Fuv(z), we want to conclude that typically feathered vertebrates fly,
Trend(fv, fly).
We have
Trend(bird, fly)

and

Va(Bird(z) — Fo(z))

The first of these is simply
Trend({z | Bird(z)}, {z | Fly(z)})

The comprehension schema yields the following two formulas:

Vy(Bird(y) < y € {z | Bird(z)})

Yy(Fo(y) =y € {z| Fuv(z)})

Substitution then provides:

Vy(y € {z | Bird(z)} <y € {z | Fv(z)})

We then get the set equality:

{z | Bird(2)} = {z | Fo(x)}

Another substitution gives:

Trend({z | Fv(x)},{z| Fly(z)})

which is the same as:

Trend(fv, fly)

As a final illustration recall an example mentioned in our discussion of Delgrande: Yz(P(z) = R(z))
follows from Va(P(z) = Q(z)) and Vz(Q(x) — R(z)). If it turns out that Yz (P(z) — R(z)) then,

as we have already observed, we question the appropriateness of asserting that Ps normally are Rs:
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the expressions normality and typicality carry a sense that most but not all members of {z | P(z)}

are members of {z | R(z)}. In our treatment because of the second inequality in A < % < 1 from

our characterization of T'rend(r,b), this sense is enforced. As a consequence we can prove the following

strengthened version of Delgrande’s result: suppose Trend(p, q) and Vz(Q(z) — R(z)). Then A < % <
1 by the statistical characterization of trends; it follows that A < % by elementary finite set theory. If
in addition 3z(P(z) A = R(z)) then the second inequality follows as well: |p|;|r| < 1.

6.3.6 Exponentials avoided

If a powerful enough language is available (e.g., set theory as above), the exponentially-many to-be-denied
sub-defaults (typicality-mentions) associated with a range default can be described compactly in generic
form by means of quantifying over subsets of the n disjuncts in a range default. A similarly compact
treatment can be given for desired default-use mechanisms. Thus all default-uses in, say, circumscription

could be written at once 1n the form:

Vu,v [Trend(u,v) Az € u A—=Ab(z,trend(u,v)). — = € v]

7 Discussion and Future Work

We have examined default reasoning from a number of perspectives, beginning with that of range defaults
and #isi-constants. While such constants did not in the end prove workable, their study helped clarify
the nature of the problem of denying default principles, a problem which remains in traditional formal
approaches as well. Others who have considered default denials and other meta-default notions have
proposed formalisms differing markedly from the traditional ones; moreover, those new proposals are
themselves not without curious features that may not be appropriate. Our own proposal stays within
traditional formal methods, and simply conjoins a new predicate to them. The new predicate plays a
meta-role, which we have characterized as a population trend, while the remaining (traditional) portion

now can be seen more clearly in its pure default-use role, eliminating previous conflation.

If a population-based notion of typicality is to be taken seriously, then a deeper connection between
typicality-mentions and actual population data is called for. We noted earlier that Delgrande’s approach
does not offer this; our own “trend” approach as captured in the T'rend predicate applied to sets does

appear to lend itself to such an attempt. More work is needed to see how far this can be carried.

Recent work by Bacchus et al [1] provides a very satisfying tie between numerical (statistical or
probabilistic) approaches to nonmonotonic reasoning, and qualitative approaches such as are found in

the various logic-based formalisms. Our own efforts reported here can be seen as a different step in this
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direction: we have highlighted default-mention as quintessentially a matter of (a belief concerning) a
population trend. We believe it essential to carry forward these ideas fully if nonmonotonic reasoning
is to enter into the ranks of genuinely practical techniques in the Al arsenal. A reasoning agent that
cannot reason (or be usefully advised) that one class under consideration is much larger than another,
or that two classes are sufficiently similar in characteristics that they can be treated alike, or that so few
members of one class have a given default property that the default should be declared inappropriate, is

a very poor commonsense agent indeed.

The chief advantages we see for our approach are (i) that it allows default denials (and other metar-
easoning) by almost trivial adjustments to existing approaches, (ii) it appears to have the beginnings of
a mechanism for a more proper connection with population data, and (iii) it clarifies what had been a

monolithic conflation of two conceptually distinct notions.

Conflations are perhaps most notorious in the case of the iisi-constants we analyzed early in the
paper, but appear as well in more traditional formalisms. And the apparent commonplace occurrence of

range defaults makes it essential to tease the conflations apart.

We conclude by re-examining the conflation that occurs in the iisi-theory, which is parallel to but
a bit different from that of use-mention. ®(iisig) masquerades as a typicality-mention (the population
trend that ¥s are typically ®s). And yet prepending a negation sign conflates the denial of such a trend
with the assertion of the opposite trend (¥s are typically non-®s). The denial would simply assert that
it is not the case that Ws are typically ®s. What is needed to achieve this is a syntactic marker that has
a unique role as a trend-assertion. The extra baggage of izsi-constants gets in its own way and causes the
negation to assert more than is wanted: it asserts that the constant has the negated property, because for
an individual, failing to have a property is the same as to have its negation (at least in two-valued logics).
Replacing the iisi-treatment with Trend(1, ¢) achieves precisely what is wanted, turning attention to

the population rather than a (fictitious) individual.

The same observations apply to a disjunctive trend (range default): instead of asserting that typically
people are either male or female, the obvious disjoined iisi-formula asserts that the either the typical
person is a male (and hence most people are males), or the typical person is a female (and most people
are females). An iisi-constant does its job too well, forcing defaults when none is wanted. This closing
example serves to remind that, despite the title of this paper, it is not denials alone that are problematic,

and that appear well-served by the population-based approach we advocate.

As mentioned earlier, it is of interest that humans apparently do at times reason with something
very like iisi-constants, yet do not seem to make the associated conflation errors. We suspect that the
ability to judiciously refrain from applying a given mode of thought in certain contexts is a large part of

commonsense reasoning, and one in need of much more exploration [13, 19, 30].
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