Updating Discourse Context with Active Logic

John Gurney
Software and Intelligent Systems
Army Research Laboratory, Adelphi,

MD 20783
gurney@assb01.arl.mil

Abstract

In this paper we present our implementation
of a system of active logic that processes nat-
ural language discourses. We focus on prob-
lems that involve presupposition and the asso-
ciated well-known problems of the projection of
presupposition. We discuss Heim’s largely suc-
cessful theory of presupposition and point out
certain limitations. We then use these obser-
vations to build our discourse processor based
on active logic. Our main contributions are the
handling of problems that go beyond the scope
of Heim’s theory, especially discourses the in-
volve cancellation of presupposition. Ongoing
work suggests that conversational implicature
and the cancellation of implicature can also be
treated by our methods.

Keywords: presupposition, discourse, context,
accommodation, active logic, implicature.

1 Introduction

Discourses that involve presupposition present impor-
tant challenges for research into the computational treat-
ment of the interplay between discourse context and the
flow of utterances that comprise a discourse.

Traditional studies of presupposition [2, 7, 15] have
focused on characterizing the “right” final context re-
sulting from a discourse while paying less attention to
a realistic model of the intermediate processes involved
in achieving the final context (or final interpretation of
what was said). We think that there is much to be gained
from a more fine-grained approach, modeling the under-
lying step-by-step reasoning a listener may perform dur-
ing the unfolding of an ongoing conversation. Active
logic [13, 1] seems to us to be a potentially powerful
tool for modeling such behavior, allowing contradictory
beliefs to trigger reasoned belief revision.

In this paper we will examine a well-known theory of
context updating proposed by Heim [5]. This theory is
largely successful in accounting for much of the complex-
ity of processing discourses that involve presupposition.

Khemdut Purang and Don Perlis
Dept. of Computer Science
University of Maryland, College Park,

MD 20742
{perlis, kpurang}@cs.umd.edu

We will point to some problems with theory. Following
this we will present our implementation of an active logic
system that is based largely on Heim’s theory but uses
the unique machinery of active logic to deal with cases
of presupposition cancellation and other related prob-
lems. The complexity of discourse context updating can
be demonstrated by considering some of the canonical
examples of presuppositional discourses.

1.1 Canonical Examples of Presupposition
Discourses

The presupposition phenomena we will discuss occur in
the following discourses, which we will represent as se-
quences of utterances like this:
D, = (uj,ug, ug, etc.).
We begin with a straightforward example which we as-
sume is thoroughly unproblematic.
D; = (There are roses and tulips. But the roses are not
yellow.)
Here the second utterance us presupposes that there are
roses. That is, even though u, is a negation, the speaker
is presupposing that there are roses to which he is refer-
ring. He means only to say something about the color of
those roses. The presupposition arises from the speaker’s
use of a definite description “the roses”. Now since u;
has already introduced roses into the discourse context,
the presupposition “there are roses” is unproblematic.
We will say that u; makes us felicitous.

Now consider a more interesting, less straightforward
discourse.
D3 = (There is no king. So the king is not in hiding.)
Here us; has the same essential form as the uy of the
previous discourse; there i1s a definite description “the
king” which could (in some cases) suggest a presupposi-
tion that there is a king. However, in this case, u; did
not introduce a king into the discourse context; rather
u;y asserts there is no king. So the context now entails
that there is no king. Yet us is felicitous. In this case the
definite description does not ultimately project a presup-
position.

The next discourse shows a different way that context
influences presupposition.

D3 = (If John has a son, then his son is not here.)
Here the possessive noun phrase “his son” in us gives us
the potential presupposition that John has a son. But in
this context (as the consequent of the if/then sentence)
that presupposition does not project. That is, this sin-
gle utterance discourse has no presuppositions about the
existence of John’s sons.

Note that the next, similar, discourse does presuppose
that John has a son.
D, = (If John has a car, then his son is not here.)

The next discourse displays what appears to be yet an-
other way that a potential presupposition can be stopped
from projecting.

Ds = (If T discover that Bill is in New York there will
be trouble.)

Here the factive verb phrase “discover that Bill is in New
York” has the potential presupposition that Bill is in
New York. This becomes apparent when we compare
D5 to Dg. Yet there is no presupposition in Ds.

Dg = (If John discovers that Bill is in New York there
will be trouble.)

Here the potential presupposition that Bill is in New
York survives. It projects up to sentence level and the
speaker is making that presupposition.

These examples Dy through Dg are among the canon-
ical cases that any theory of presupposition and context
should predict. It is clear that presuppositional behav-
ior 18 complex — even for relatively simple discourses.
Apparently, certain syntactic forms (such as definite de-
scriptions, possessives, and factive verbs) give rise to
potential presuppositions which may or may not pro-
duce a presupposition in the total discourse.! One of
the best theories designed to account for this complexity
was proposed by Heim [5] in the form of three rules for
incrementally updating discourse context. These rules
account for all of the presupposition facts right in the
above examples. We will discuss Heim’s rules in the sec-
tion 2.

These are the rules that we will use as a basis for our
implementation of discourse context updating which we
will present in section 4. We will motivate our implemen-
tation as one which (a) preserves the correct results of
Heim and also (b) deals with other examples such as Dy,
Dg, and Dg below that Heim’s rules do not account for.
These three examples are superficially similar to those
above. However they present problems for a computa-
tional theory of presupposition and context that have
not been widely discussed (but see the section 6 where
we mention [9]).

For our purposes here we will only work with examples
where presupposition is caused by the use of a definite de-
scription. What we say could also be said for some other
sources of presupposition, including factive verbs as in Dy,
possessives as in D3 and cleft sentences.

D7 = (The King is not in hiding, Because there is no
king.)
Here after u; there 1s a presupposition that there is a
king. Then after uy that presupposition is withdrawn.
We call this “presupposition cancellation”. This phe-
nomenon is essentially linked to the flow of time in dis-
course. Heim’s rules (as well as many other theories) do
not address this phenomenon. They deal only with cases
where potential presuppositions may not project due to
the existing context — cases like Dy above. They do not
distinguish these cases from those where a presupposi-
tion that was projected previously must later be with-
drawn. We will call these cases “garden path discourses”.
First the hearer goes down a path assuming some pre-
supposition; then he finds that he shouldn’t have. Now
he must retract that assumption. This is a place where
discourse updating is nonmonotonic.

The next discourse invokes two potential presupposi-
tions.
Dg = (There are no roses. So the roses are not in the
fridge.)
Here, uy creates two potential presuppositions “there
are roses” and “there is a fridge”. But only the latter
projects because the context after u; entails that there
are no roses. It turns out that Heim’s rules cannot ac-
count for this example — even though this is not a garden
path discourse. We will examine this case below in sec-
tion 4.

Here is the garden path version of Ds.
Dg = (The roses are not in the fridge. Because there
are no roses.)

We will use this discourse to demonstrate our system
for discourse processing in section 4.

2 The Theory of Context Updating

Heim’s theory of context updating has two parts:

(1) a set of update rules

(2) a mechanism for accommodation of presupposi-
tions (which we will explain below).

2.1 Heim’s Rules

Heim’s rules for updating a discourse context are based
on a function called +. This is partial function that
takes as input a discourse context ¢ an utterance u. It
outputs a new context ¢’. Although we have no rigorous
specification of what makes up a discourse context we
can say that it is a set of propositions (or one inclusive
proposition) that should include the content of what is
mutually accepted by the discourse participants.

Many of the complex presupposition projection cases,
including the discourses D; through Dg, are predicted
by Heim’s three rules of context updating, the Context
Change Potential Rules, the CCPs, to which we have
added a basis rule CCPB.

CCPA: ¢ + (u and v) = (¢ + u) + v. [conjunction]
CCPN: ¢ + (not u) = ¢ \ (¢ + u).? [negation]

CCPC: ¢ + (ifuthen v) = ¢\ ((c +u) \ ((¢ + u) + v)).
[conditional]

CCPB: ¢ + u = ¢ N [[u]]. [atomic basis]

The first three rules are rewrite rules for complex utter-
ances. Repeated application of these rules will reduce a
complex utterance to a formula containing atomic utter-
ances where rule CCPB can be applied. These rules ac-
count for the complexity of presupposition by systemat-
ically reducing complex presupposition problems to sim-
ple ones.

In the theory, propositions are taken to be sets of pos-
sible worlds, while the utterances that give rise to and
effect these propositions are tokens of natural language.
In our implementation (in section 4) we will represent
contexts and propositions syntactically (as logical for-
mulas) but for the present we will stay with the possible
world interpretations. So adding a new proposition to a
context amounts to the intersection of two sets of possi-
ble worlds. This accounts for the notation in the basis
rule CCPB which says that for a simple utterance take
its propositional content [[u]] and intersect that set of
possible worlds with the context c¢. Updating reduces
the size of the set of possible worlds that constitute the
evolving context.

The first rule CCPA is just what we would expect for
straightforward discourses like D1 above. Think of the
two utterances of that discourse as forming a conjunct uy
and uy. First we add the first conjunct to the existing
context to produce a new context. Then we add the
second.

Rule CCPN is an analog of a rule for logical conjunc-
tion [[P A= Q]] = [[P]] \ [[Q]]. In effect, Heim can be
assumed to be proposing that, for discourse updating
where the utterance is a negation, not u, we do the fol-
lowing: (i) Start with the context ¢ and then imagine
that the discourse had been u (the positive form) rather
than the actual negation not u — but in the same con-
text. Compute the updating of this imagined discourse.
Next (ii) subtract the final proposition that processing
this imagined discourse would yield from the initial con-
text.

A naive rule for updating contexts with negated ut-
terances such as
BADN: ¢ 4+ (not u) = ¢ \ [[u]]
cannot be made to work properly. This rule can account
for D; but it cannot account for Ds. On the other hand
CCPN can account for both of these discourses — as we
will explain below.

The third rule CCPC can be derived from CCPA and
CCPN.

Now take discourse:

2In general, p\q is the set theoretic intersection of p with
the complement of q, i.e., the subtraction of q from p.

D; = (There are roses and tulips. But the roses are
not yellow.) First we apply rule CCPA to update the
context with uj.

ca = (c1 + (there are roses)) + (there are tulips)
Then we apply rule CCPN to update the new context
with us.

cg = ¢z \ (c2 + (the roses are yellow)).

But us has a presupposition, namely, [[there are roses]].
This plays a role in these rules because the function + is
subject to the restriction that ¢ + u is undefined unless ¢
is a subset of (that is, entails) every presupposition of u.
Thus the context for an utterance does, in fact, entail all
presuppositions of the utterance. In the present case, we
can see that ¢y must entail [[there are roses]]. Therefore,
the updating can proceed.

2.2 Accommodation

Context updating becomes interesting when we consider
discourses where ¢ + u is undefined but where things
can be made right through adjustments to the existing
context. For example, assume that the initial context is
something irrelevant like
c1 = [[grass is green]]3

Assume a very simple discourse like
D = (John’s son is here.)
The applicable rule is CCPA
cg=c¢ +m
But the use of + would be undefined here because ¢ does
not entail [[John has a son]] which is the presupposition
of u;. On the other hand, it seems that u; should be
perfectly understandable in this context. The story of
the reason why goes like this: The person attempting to
understand this discourse can easily just assume that c;
should have entailed that John has a son. When a hearer
makes such an assumption he is “accommodating” the
speaker [16]. In this case the hearer accommodates to
transform c¢; into
¢1’ = ¢1 N [[John has a son]],
thus making the updating defined after all. As a default,
accommodation is permitted when required to make a +
operation in a CCP rule defined (as it was in the above
discourse D). Clearly accommodation is another source
of nonmontonicity in discourse updating.

2.3 Global and Local Accommodation

Accommodation is also, however, a source of trouble for
the theory of context updating. The trouble is that,
just as presupposition projection seems to be a complex
function of various kinds of context, accommodation is
also variable. While the empirical facts of the matter are
fairly clear, just when and how accommodation can be
applied is difficult to specify.
Consider the discourse:

We choose [[Grass is green]] as a stand in for a context
that is irrelevant to the discourse.

D3 = (There is no king, So the king is not in hiding.)
Here, after ¢y is updated with uy, we have a c5 that en-
tails [[there is no king]]. This is interesting because us
has [[there is a king]] as a potential presupposition! But
we cannot simply accommodate by adding [[there is a
king]] to cg! That would make the context a contradic-
tion.

However, recall that the applicable rule CCPN analy-

ses the updating process as follows.
¢a + not (x is the king and x is in hiding) =
¢z \ ((c2 + x is the king) + x is in hiding).*
Here accommodation is required because the first + op-
eration to the right of the back slash is not defined; cs
does not entail the presupposition [[there is a king]]. If
we accommodate as in the previous discourse we would
back up and add [[there is a king]] to the original cs.
We would then go forward again using ¢y ’ in place of
cg. This type of accommodation is known in the theory
as global accommodation. However this would yield a
contradiction in the final updated context.

As a way out, Heim suggests using what she calls local
accommodation [5]. Rather than back up to accommo-
dated ¢y and then go forward again to update with us,
we accommodate only the instance of ¢y in the imagined
discourse, to the right of the back slash.
¢z = ¢z \ ((c2’ + x is the king) + x is in hiding).

Here ¢y entails [[there is no king]] and c5’ entails [[there
is a king]] as well as [[there is no king]]. Perhaps it is wor-
risome that cs’ is a contradiction. On the other hand it
does, of course, make the first + here defined. And since
this contradiction appears to the right of a back slash,
1t will have no effect on that context co to the left. This
procedure ultimately leaves the proposition

[[there is no king]]

as the final interpretation of discourse Dy — which we
take to be correct.

2.4 Some Problems with Accommodation

Obviously contradictions and their avoidance (where
necessary) play an important role in context updating
— along with the need to know (or deduce) what a con-
text entails. However, there are two problems in using
accommodation that remain unsolved.

(1) Given both global and local accommodation, is
there a principled way to choose in every case?

(2) Although local accommodation produce the cor-
rect result for D5 1t allowed a contradiction to appear in
the calculation. There are other discourses where this
fact ensures that the method will give the wrong results.

We take (2) to be the more serious problem. The
discourse
D¢ = (There are no roses, So the roses are not in the

fridge)

*From this point forward we follow Heim by using free
variable syntactic forms of sentences.

in which there are two potential presuppositions is a case
in point.

A speaker of this discourse could reasonably be taken
to be asserting that there are no roses while also pre-
supposing that there is a fridge. The final context cj
should entail both [[there are no roses]] and [[there is a
fridge]]. The other potential presupposition [[there are
roses|] should not project. After processing u; we have
this updating calculation to perform.
cg = ¢z \ ((((c2’ + x are the roses) + y is the fridge) +
in(x, y)).
¢s’ is the accommodated ¢y which is now a contradic-
tion, so the first + is defined. But the second +, which
will update with [[y is the fridge]] is now also defined.
So there is clearly no need for any further accommoda-
tion. That means that we never have to accommodate
the instance of ¢y to the left of the back slash. As before,
when all the 4+ ing is over we have simply
¢ = ¢y \ [[contradiction]] = cs.

So the potential presupposition [[there is a fridge]] never
makes it into the final context (although, of course, it
should).

Our diagnosis is that something has gone wrong in the
handling of contradictions. The method of local accom-
modation allows contradictions to appear in the formu-
lae. In some cases they are harmless, in others not. The
trouble was that once a contradiction appeared there was
no way to remove it. Although the theory accounts for
nonmonotonic facts in some sense, the logic employed
is in one sense monotonic. Once a proposition is incor-
porated into a context it cannot be removed. We see
that, in this system, contexts always “increase” mono-
tonically; thus the sets of possible worlds they represent
always shrink monotonically.

An active logic, by contrast, is one that will allow
propositions to be both added and later withdrawn from
the evolving context. It also allows contradictions to ap-
pear. In our implementation any explicit contradictions
are promptly removed. This kind of growing and shrink-
ing of the context as well as the harmless appearance of
contradictions require principled management. Active
logic achieves this by an explicit ordering of steps along
with rules that may refer to previous steps. None of this
was envisioned in Heim’s system. Our hypothesis is that
we can implement most of Heim’s system in active logic
and thereby properly manage the troublesome aspects of
context updating.

2.5 Garden Path Discourses and Cancellation

We have used discourse Dg to uncover a subtle problem
with, what we think, is one of the best theories of con-
text updating. Recall that Ds was not a garden path dis-
course; it was very similar to the canonical examples of
the set of presupposition problem cases that any theory
of presupposition and context updating should account
for. On the other hand, the discourse

D7 = (The King is not in hiding, Because there is no
king.)

is a garden path discourse. Given our previous discus-
sion, 1t should be clear that Heim’s system will not han-
dle this or any other garden path discourse without mod-
ification. These discourses first posit a presupposition
and then withdraw it. It may be conjectured that there
is an easy fix — using backup and restart operations that
could handle these garden paths. The reason we dis-
cussed the subtle problem with the non garden path Dg
first was to suggest that there may be no such easy fix
for all cases.

3 Active Logic Compared to
Nonmonotonic Logic

Active logic [13, 1] is a family of formalisms developed
for the purpose of modeling the reasoning process in a
way that respects the passage of time as reasoning pro-
ceeds. These formalisms have been applied to a number
of domains, from multi-agent interaction to deadline—
coupled planning, from fully—decidable default reasoning
to reasoning in the presence of contradictions, from cor-
recting misidentification errors to perceptual reference.

Rather than proceeding from one nonmonotonic the-
ory (with one set of axioms) to another nonmonotonic
theory (with an updated set of axioms) there is one
evolving theory in active logic. It models a process of
thinking that takes a reasoner from one belief state to
the next. As a default everything believed at step n
would be inherited to step n + 1. But there are various
rules that modify this blanket inheritance. For example,
if p and not p appear at step n then the belief contra(p,
not p) appears at step n + 1. Then both p and not p are
blocked from inheriting to step n + 2. For our present
task, this is perhaps the most important characteristic
of active logic. It works by forward chaining from step
to step allowing contradictions to appear as they will.
It uses detection of explicit contradictions to disinherit
propositions from the belief set. In this way active logic
achieves some of the effects of various nonmonotonic log-
ics but in a different way.

In this paper we will present a treatment of the “fridge
and roses” problem Dy, as a key illustration of our ideas.
First however we provide some material to orient the
reader to our system.

4 Context Updating in Active Logic

Here we present our implementation of context updat-
ing in active logic for the purpose of understanding dis-
For this we will be concerned primarily with
formulae that represent the discourse context, that is,
the record of what has been said up to the current step.
At step n the information state might look something
like

Step n: ctxt([...], n)

course.

[...] is an ordered list of logical formulae of the discourse
context.

Although some of the hearer’s other beliefs will normally
change as the discourse unfolds we will ignore this pos-
sibility and only represent beliefs that concern what was
said in the discourse. Here we introduce some of the
predicates and rules used in our system.

4.1 Predicates used.

1. ctxt(c, t) represents that the context at time ¢
consists of the list ¢ of formulae. For example,
ctxt([assert(exists(x, king(x))), assert(hiding(x))],
3) could be the context at time 3 in the mind of
a hearer. It will become apparent that, in general,
there are many more active logic steps than utter-
ances in a discourse.

2. dfnt(X) represents a definite description in the ut-
terance. This is a piece of syntax produced by the
parser. An example would be dfnt(king(x)).

3. ut(‘X’, t) represents that X has been uttered at time
t.

4. parse(X, t) is the parse obtained at time ¢t by pro-
cessing an utterance at the previous step, time ¢t —
1. If the previous step had a new utterance such
as ut(“The roses are red’, 5) then we would find
parse(and(dfnt(roses(x)), red(x)), 6) at the next
step. The potential presuppositions in most of our
examples arise from the speaker using selected syn-
tactic forms such as definite descriptions. Therefore
it is essential to parse utterances in such a way that
exhibits this syntax.

5. update(X, t) represents at time ¢, elements of
the discourse that still need to be incorporated
into the context according to Heim’s rules. X
is a list of contexts, atoms from the inputs and
the + and \ operators. For example, just after
up of discourse Dy we would have something like
update([cy, assert(+, assert(exists(x, roses(x))), +,
assert(exists(x, tulips(x))))], 3).°

6. presup(X) marks X as a presupposition in the con-
text.

7. exists(x, P(x)) indicates that an object with prop-
erty P exists. This is the typical presupposition, for
example, presup(exists(x, king(x))).

8. assert(X) marks X as having been asserted by an
utterance.

°In the code for our implementation we use a postfix or-
dering of the operators + and \. This facilitates parsing for-
mulae according the CCP rules. In this paper we leave those
operators in their places (as infix operators as they appear in
Heim’s CCP rules) for better readability.

9. contra(X, Y, t) indicates that there is a contradic-
tion between the formulae X and Y in the con-
text at time ¢ — 1. In our implementation, only
explicit contradictions can be detected. An ex-
ample is contra(assert(not(exists(x, king(x)), pre-
sup(exists(y, king(y))), 4))). Here an assertion is
found to contradict a presupposition at time 4.

10. kill(X) indicates that formula X has been marked
for killing. It will not be inherited to the next step.
In our system both members of a contradiction are
marked kill, so neither will be straightforwardly in-
herited to the next step.

4.2 Rules of inference used.

The rules will be presented in the form:

1 X

i+1:Y

If X is believed at step 1, then Y is added to the beliefs

at step 1+1. Nothing else is added to the beliefs that is
not mentioned by these rules.

1oir ut(X7))
i+1: parse(Y, i+1)
where Y is a parse of X. If X is heard as an utterance
at step 1 then the parse of X appears at the next
step.

2. 1 ctxt(C, 1) parse(X, i)

i+1: update(Z, i+1)

This is where a syntactic parse of an utterance gets
translated into a form ready for the application of
Heim’s CCP rules. For example, given ctxt(cq, 1)
and parse(and(dfnt(roses(x)), red(x)), 1) at time 1,
we get update([ci, +, dfnt(roses(x), +, red(x)], 2)
at time step 2.

3.1 update(X, i)

i+1: update(Y, i+1)

where Y is the result of executing the first opera-
tion in the list X. There are several cases depending
on the operator and on the form of the operands.
For example, given update([c1, +, dfnt(roses(x), +,
red(x)], 2) at time 2, we will have update([c; +,
red(y)], 3) provided that exists(y, roses(y)) appears
in ¢1. This case i1s an illustration of the rule CCPA
where no accommodation was needed because ¢; al-
ready entailed the presupposition of dfnt(roses(x)).
These active logic rules are the ones that implement
the CCP rules along with global accommodation
where necessary as described in section 2.

4. 1: update(X, i)
i+1: etxt(X, i+1)
This rule is a sub case of the previous and is applied

when all context updating is complete for one par-
ticular utterance. Once the update is complete, the

new context is put back into the set of beliefs of the
system.

5.1: ctxt([..., foo(X), ..., bar(not(Y)), ...], 1)
i+1: ctxt(]..., kill(foo(X), ...,
kill(bar(not(Y))), ...,
contra(foo(X), bar(not(Y)))], i+1)

This rule detects direct contradictions in the con-
text. Here, X and Y are unifiable and foo and bar
are either assert or presup. Note that both members
of the contradicting pair foo(X) and bar(not(X))
are tagged for killing at i+1. The next rule decides
which member of the pair can be inherited to the
next step.

6. 10 ctxt([..., kill(foo(X), ...,

kill(bar(not(Y))), ...,

contra(foo(X), bar(not(Y)))], i+1)
i+1: ctxt(Z, i+1)
Z is the context resulting from resolving the con-
tradiction flagged at step i. The contradiction can
be resolved by using various additional sources of
information.® In our system, an assertion is always
preferred for inheritance over a presupposition.

All rules are active at all times. That is, if a rule ap-
plies at a step, it always fires at that step. There is no
need to employ resolution between conflicting rules. Sys-
tems of nonmonotonic logic often resort to conflict reso-
lution and prioritizing of default rules. These measures
are applied to avoid the appearance of contradictions. In
our system we can manage contradictions. We let them
arise at one step whereupon we disinherit them at the
next step while choosing which contradictand to kill.

4.3 Owutput Trace for Discourse D

We now present some of the steps of the output trace for
D;. Some details are not shown, for example the argu-
ment representing time in the predicates.

D; = (There are roses and tulips. But the roses are not
yellow)

We assume the initial context is null, containing no in-
formation.

Step
0 ctxt([], 0),ut(“There are roses and tulips’)

Let ¢y = [].7
1 ¢1, parse(and(exists(x,R(x)),exists(y, T(¥))))

This is the result of parsing the utterance and inher-
iting the previous context.

6See Miller [13] for more on contradiction resolution in
active logic.

"We will use c; for both the list of formulae in the context
and for the predicate ctxt(c;, j). Which is meant will be
evident from the context.

2 ¢1, update([er,+, exists(x,R(x)), +, exists(y,T(y))])

This step readies the information from the utterance
for application of the CCP rules.

7 C3

At the end of processing the first utterance, the con-
text contains the assertions that there are both roses
and tulips in the discourse context. We now add the
next utterance.

8 c3, ut(‘But the roses are not yellow”)
9 c3, parse(not(and(dfnt(R(z)),Y(z))))

The new utterance has been parsed and we now need
to incorporate it into the context. For this exercise, we
are ignoring rhetorical words like ‘but’ and ‘because’.

10 cg, update([cs, \, c3, +, dfnt(R(2)), +, Y(z)])

This sets things up for the application the rule for
negation CCPN. Since there is a definite description of
roses, the system first looks for exists(y, R(y)) in c3
which does in fact include it. Thus updating can proceed
normally.

14 c¢g, update([ca, \, cs])

Here everything from us has been absorbed into cg.
All that remains is to combine ¢4 with cg by set differ-
ence.

The final context for D; is

ctxt([assert(exists(x,R(x))),assert(exists(y,T(y))),
assert(not(Y(x)))))

4.4 Output Trace for Discourse D7

Below we will display some of the output from our sys-
tem processing D7 This is the garden path version of the
discourse involving two potential presuppositions that
we discussed earlier.
D7 = (The roses are not in the fridge. Because there are
no roses.)
Here we have a case where something is first added to
the discourse context only to be later removed. Based on
our analysis above, Heim’s system cannot deal with this
discourse nor its cousin Dg. Our diagnosis was that since
Heim had to avoid a contradiction in the final context,
accommodation of the presupposition of the definite de-
scription “the roses” was done locally. In our system
we can manage contradictions. Therefor we can always
accommodated globally. The significance of this will be-
come clear where we discuss steps 3 and 4 below. As
predicted by Heim’s analysis, global accommodation for
examples like these will lead to unwanted contradictions.
In active logic if a contradiction arises we simply disin-
herit it at the next step. In this way our system can
produce the correct results for Dg as well as Dr.

For D7 we can see that Heim'’s strategy of choosing lo-
cal accommodation to avoid global contradiction (which

worked for D3) is not even applicable. After u; the con-
text should contain two presuppositions, that roses exist
and that a fridge exists. Then, after usy, the first presup-
position should be withdrawn. We will show that this is
a fairly straightforward process in our system.

Step
0 ctxt([],0) ut(“The roses are not in the fridge”)

Let the initial context be null, ¢y = [].
1 ¢1, parse(not(and(dfnt(R(x)),dfnt(F(y)),in(x, ¥))))

This is the result of parsing the utterance u; and in-
heriting the previous context.

2 ¢1, update(fey, \, ¢1, +, dfnt(R(x)), +,dfnt(F(y)),
in(x,y)])

The update predicate renders the parse of u; into the
proper form for the application of the CCP rules.

3 ¢1, update(fez, \, c2, +, dfnt(F(y)), +, in(x,y)]

The next applicable rule is CCPA which applies to
[c1, +, dfnt(R(y)]
at step 2. Since we have a definite descriptor, we first
search the previous context c; for a previous mention
of roses. As there is none, we accommodate (globally)
the context with the presupposition that there are roses.
Thus ¢y’ here at step 3 includes the information that
there are roses. Since we began with a null context we
have a very small context at this point.
¢’ = [presup(exists(x, R(x)))]
In our system we always use global accommodation.
That means that both instances of ¢; in step 2 get ac-
commodated with the presupposition. We don’t have to
worry about using local accommodation (in which only
the instance of ¢y after the backslash would be accommo-
dated) because our system can eliminate contradictions
(in a controlled way). Of course, in this example, Heim’s
system would also have used global accommodation be-
cause there was no threat of a contradiction arising.

At step 11 (below) all of the first utterance has been
processed and the next utterance is perceived.

11 ¢4, ut(’Because there are no roses’)

Here

¢4 = [presup(exists(x,R(x))),presup(exists(y,F(y))), as-
sert(not(in(x, y)))])

and we are ready to process us which should cancel one
of the presuppositions in the current context. Since us
itself has no presuppositions it will be added to the con-
text ¢4 in a straightforward way, using the rule CCPA.
We skip down to step 21 where us is fully incorporated
into the context.

21 ctxt([presup(exists(x,R(x))),presup(y,F(y)),
assert(not(in(x,y))),
assert(not(exists(z,R(z))))

We now have a context which presupposes that there
are both roses and a fridge but which also asserts that
there are no roses. At the next step the contradiction is
found.

22 ctxt([kill(exists(x,R(x))),presup(y,F(y)),
assert(not(in(x,y))),
kill(not(exists(z,R(z))))
contra(presup(exists(x,R(x))),
assert(not(exists(z,R(z))))]

The formulae that caused the contradiction appear at
this step flagged for possible killing. One or both will
not inherit to the next step. Nor will the contra formula
inherit to the next step.

Spreading the reasoning over steps is necessary to
properly manage all this. The system can reason at one
step on the basis of something that appears at a previ-
ous step, even though that something does not appear at
the current step. This ability is important to the proper
management of contradiction.

23 ctxt([NULL(exists(x,R(x))),presup(y,F(y)),
assert(not(in(x,y))),assert(because),
assert(not(exists(z,R(z))))

The contradiction has disappeared. Using the fact that
one of the contradictands was a presupposition and the
other an assertion we disinherit the presupposition and
we reinstate the assertion that roses do not exist.

24 ctxt([kill(exists(x,R(x))),presup(y,F(y)),
assert(kill(in(x,y))),assert(because),
assert(not(exists(z,R(z))))

Since we are asserting the roses do not exist, we have to
mark any formulae about roses for killing.

At the end of processing D7, we have the following
context.
ctxt([presup(y,F(y)), assert(not(exists(z,R(z))])
Note that, even though other things were said in the dis-
course, the final context includes only two items. There
is no information about roses not being in a fridge. The
fact that the speaker said the roses were not in the fridge
is part of the meta-linguistic information about the dis-
course. In the canonical presupposition examples we are
treating, meta-linguistic information is, of course impor-
tant. We represent and use this information via our ut
predicate. However there is a discernable concept of the
content of the discourse that is separate from the linguis-
tic events and facts. This is what we have been calling
the context and representing with our ctxt predicate.
The other facts (ut, parse, etc.) are however still avail-
able. They inherit through all steps but we have only
shown them where they play a role in reasoning from
one step to the next.

5 Conversational Implicature

We believe that presupposition and conversational im-
plicature [3], illustrated by the two examples below, are
distinct discourse phenomena. This is a point we will
develop on another occasion. However, both phenomena
are nonmonotonic in that both can be either blocked or
cancelled as a discourse progresses. We have modelled
and 1implemented this aspect of implicature using active
logic. In this section we will briefly discuss the current
state of our implementation.

Using a simple example of a dialog with an implicature
that arises part way through and then is later retracted,
we have modelled in active logic how Gricean maxims
and nonmonotonicity may relate to each other and to
a computational treatment of implicature. In effect we
seek to track reasoning along Gricean lines over time.

In this work we wish to seriously consider how cancel-
lation of implicatures might work and how to implement
the actual positing and withdrawal of implicatures in real
time. Our hypothesis is that the same underlying frame-
work of active logic that we have applied to presupposi-
tional inference in real-time (evolving) dialog—processing
also 1s applicable to inference of implicatures.

We have been concerned with two dialogs that require
the hearer, Kathy, to figure out an implicature in or-
der to realize the import of the speaker’s answer to her
questions. In the first example Bill has given an indirect
answer to her question followed by an explicit cancella-
tion.

(A) Kathy: Are the roses fresh?
(B) Bill: They are in the fridge.
(C) Bill: But they’re not fresh.

In the first example Bill has given an indirect answer
to her question followed by an indirect cancellation.
(A) Kathy: Are the roses fresh?

(B) Bill: They are in the fridge.
(D) Bill: But they are old.

For our implementation we will appeal to three of
Grice’s maxims. These are usually stated as rules for
a speaker 1n a cooperative conversation. They come into
play in discourse processing when the hearer makes es-
sential use of one or more of the maxims in his reasoning
about what the speaker means by an utterance. That is,
the hearer in some way assumes the speaker is adhering
to a maxim an uses that assumption to figure out some-
thing that should follow from an utterance. We have
modelled how this works for certain yes—no dialogs like
those above.

The maxims that play a part in out system are the
maxims of quality, Quantity, and Relevance:

The Maxim of Quality: Always make your contribu-
tion to the conversation truthful; or don’t say something
for which you do not have adequate evidence.

The Maxim of Quantity: Always convey as much and

no more than is required for the purposes of the conver-
sation.

The Maxim of Relevance: Always make your contri-
bution relevant to the purposes of the conversation.

In our implementation which we discuss in more de-
tail in [4], we have not represented any of the Gricean
maxims explicitly. We regard them as specifications for
building a discourse participant. Each of our discourse
rules articulates one or more of the maxims. The system
consists of (a) rules representing three kinds of knowl-
edge and (b) an inference procedure that applies these
rules repeatedly taking us from one step to the next.
The three kinds of knowledge are: the active logic meta—
theory, general beliefs about dialogs involving questions
and answers, and background beliefs about refrigerators,
roses, food, and so on.

The meta-theory rules say things like: If there is a
contradiction don’t inherit either alternative, Otherwise
inherit anything that you can, and Update the time by 1
from one step to the next. The discourse rules say things
like Believe anything that the speaker informs you, Be-
lieve any direct response to your question, and Try to
figure out what an indirect response to your question
means. The background beliefs say things like Things
in fridges are cold, Cold roses are fresh, and Things in
fridges are edible. These last three beliefs happen to be
defeasible; the rules will only fire if the right hand sides
of these rules cannot be proven false.

The relation of our rules to Grice’s maxims can be
explained as follows: The rules about believing the con-
tent of any utterance implement the maxim of quality.
The rule dealing with indirect responses relates to both
the maxim of quantity and the maxim of relevance. For
it 1s this rule that produces the relevance beliefs like
rel(fresh(rl)):infridge(r1). These are the beliefs that be-
gin a search for relevant rules to fire that may lead to an
answer to one’s question. In our model for the first ex-
ample (above) Kathy begins looking for and answer im-
mediately after hearing (B) They are in the fridge. There
is no waiting to hear what comes next. We can view this
as following the maxim of quantity; Kathy assumes for
the moment that Bill has said all that is relevant. From
this she infers the implicature that the roses are fresh;
that is she thinks that Bill has answered her question at
(B). But no harm was done, since implicatures can be
cancelled. Our system performs this kind of generation
and, where appropriate, cancellation of implicature.

6 Related Research

There are numerous theories of presupposition, accom-
modation, and the projection of presupposition. There
are fewer computational implementations. And of these
most do not discuss or attempt to treat the cases of ac-
tual cancellation as happens in Ds and Dg. We have
chosen to study and adopt Heim’s theory because 1t cov-
ers many of the problematic cases and it also suggests the

kind of step by step, forward chaining reasoning of active
logic. Ours is an approach appealing to nonmonotonic
reasoning. Other nonmonotonic approaches to presup-
position include those of Mercer [12] and Marcu and
Hirst [9].

Mercer employs a system of default rules to model the
presuppositions arising from syntactic forms that appear
in utterances. In [12] he deals with adverbial implica-
tures such as the following.

If John kicked the ball, then Bill kicked the ball too.

If Fred called yesterday, then he will call again today.

In these cases the adverbs “too” and “again” give rise
to potential presuppositions; that someone else kicked
the ball and that Fred called before. But in each case the
potential presupposition does not project. The examples
we have been discussing are mostly cases of existential
presupposition triggered by definite descriptions. We do
not think that this is an important difference from Mer-
cer’s examples for the phenomena under study and we
believe that we could in the future bring adverbial and
other sources of presupposition into our system. The
important similarity between Mercer’s paper and ours
is the concern with the complexity of presupposition.
Mercer’s if/then sentences block presupposition just as
the if/then utterance in discourse D3. Now Heim’s CCP
rules which we implement are intended to account for
projection in if/then sentences in a well-founded, uni-
form way. Therefore we expect that our system can deal
properly with Mercer’s examples. A major difference
between Mercer’s approach and ours is that he does not
address the time evolving positing and cancellation of
presupposition. This is a constant theme in the compar-
ison of our approach with others.

Marcu and Hirst [9] present a system designed to
handle cancellation of presuppositions. But they take
an approach quite different from our approach. They do
not model the step by step incremental reasoning about
context. Rather they compute an entire new theory af-
ter each utterance. Although we have not verified this,
their system may be able to get the correct results for
most if not all of our examples. It appears that they
would deal with a discourse like D7 by first comput-
ing the two presuppositions after u;. Then, after us
they would discard all beliefs and compute a fresh set
of beliefs consistent with the entire discourse. They also
develop an ontology based on Meinong’s theory of ob-
jects. They use this ontology to deal with discourses
about fictional entities and discourses that involve pre-
supposition. We believe, along with others [2, 5, 6, 14,
8] that presupposition can be treated separately from
fictional discourse and that we can achieve this without
a Meinongian ontology. The ultimate success of our ap-
proach would bear out this claim.

McRoy [11, 10] presents an abductive treatment of

misunderstanding in dialogs. By way of contrast we use
a largely deductive (though time-situated) inference en-
gine. As McRoy and Hirst note, a deductive approach
leads to contradictory beliefs and the need for belief re-
vision. However, in our approach, belief revision is han-
dled as part—and—parcel of the inference process; it does
not require an additional module or phase of processing.
Moreover, contrary to [11], we do not need to assume
there are no “abnormalities”; or rather any abnormality
is easily retracted later in the dialog when new evidence
is heard.

Thus our approach is an exploration of the utility of
largely deductive methods in natural language process-
ing; when contradictions arise, our logic engine applies
the applicable rules. As shown in our output traces in
section 4 and in Miller [13], active logic engines are of-
ten able to reason quite effectively with contradictions.
It is that fact that provides the underlying framework
that we are exploiting.

7 Conclusion

In conclusion, we have shown that active logic can be
applied to the problem of updating according to the +
function in Heim’s system of rules for discourse context.
Heim’s rules account for important effects of complex
structure in utterances. And active logic accounts for
the problem of how to alter a given context by both ex-
panding and contracting contexts as required. In this
way the resources of active logic can be brought to bear
on an important class of problems in natural language
discourse processing. Well-known problems of presup-
position projection can be accounted for as well as new
problems exemplified by cancellation of previously in-
ferred presupposition.

Our long-range goal in this work is the design
and implementation of a time-situated natural-language
discourse-understanding system based on a formal the-
ory of pragmatic reasoning. Among the issues for the fu-
ture research there is the following question: At any time
(or step) in the discourse process there can be implicit
contradictions — ones that have not yet been detected.
Our current system only detects explicit contradictions.
A question is: could this lead to trouble in a discourse?
One answer is Perhaps not; perhaps a feature of a co-
herent discourse is that the speakers quickly say things
to prevent such problems. If so, the fact that our sys-
tem may be vulnerable to this kind of bad discourse may
indicate that we are on the right track. This is a mat-
ter for empirical investigation. One immediate goal is
to unify our algorithms for presupposition and implica-
ture, to facility treatment of both of these in the same
discourse.

Acknowledgements

This research was supported in part by the Army Re-
search Laboratory through a contract from the Army

Research Office and in part by the National Science
Foundation. We thank Betsy Klipple, Jean Braithwaite,
Michael Miller, and Michael Morreau for helpful discus-

slon.

References

[1] J. Elgot-Drapkin and D. Perlis. Reasoning situated
in time I: Basic concepts. Journal of Ezperimental
and Theoretical Artificial Intelligence, 2(1):75-98,
1990.

[2] G.Gazdar. Pragmatics, Implicature, Presupposition
and Logical Form. Academic Press, New York, 1979.

[3] P.Grice. Studies in the Way of Words, chapter Pre-
supposition and Conversational Implicature. Har-

vard, Cambridge, Ma., 1989.

[4] J. Gurney, D. Perlis, and K. Purang. Active
logic applied to cancellation of gricean implicature.
AAAT Spring Symposium on Implicature, 1996.

[5] I.Heim. On the projection problem for presupposi-
tions. In S. Davis, editor, Pragmatics. Oxford, 1983.

[6] L. Kartunnen. Presuppositions of compound sen-
tences. Linguistic Inquiry, 4:167-193, 1973.

[7] L Kartunnen and S Peters. Conventional implica-
ture. In Choon-Kyu On and Dinneen David, A.,
editors, Presupposition, volume 11 of Syntaz and
Semantics. Academic Press, Orlando, 1979.

[8] Paul Kay. The inheritance of presuppositions. Lin-
guistics and Philosophy, pages 333-379, 1992.

[9] Daniel Marcu and Graeme Hirst. An implemented
formalism for computing linguistic presuppositions
and existential commitments. pages 141-150. In-
ternational Workshop on Computational Semantics,

1994.

[10] S. McRoy and G Hirst. Abductive explanations of
dialogue misunderstandings. pages 277-286. Asso-
ciation for Computational Linguistics, 1993.

[11] S.W McRoy and G Hirst. The repair of speech act
misunderstandings by abductive inference. Compu-
tational Linguistics, 21(4), 1995.

[12] R. E Mercer. Solving some persistent presupposi-
tion problems. COLING, pages 420-425, 1988.

[13] M. Miller. A view of one’s past and other aspects of
reasoned change in belief. PhD thesis, Department
of Computer Science, University of Maryland, Col-
lege Park, Maryland, 1993. (Directed by D. Perlis.).

[14] S. Soames. How presuppositions are inherited: A
solution to the projection problem. Linguistics In-

quiry, 13:483-545, 1982.

[15] S. Soames. Handbook of Philosophical Logic, vol-
ume IV, chapter Presuppositions. Reidel, 1989.

[16] R. C. Stalnaker. Presuppositions. Journal of Philo-
sophical Logic, pages 447-457, 1973.

