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Abstract
In planning situations involving tight deadlines, a commonsense rcasoner may spend a substantial amount of the avail-
able time in reasoning towards and about the formulation of the (partial) plan. This reasoning involves, but is not
limited to, (partial) plan formulation, making decisions about available and conceivable alternatives, plan sequenc-
ing, and also plan failure and revision. However, the time taken in reasoning about a plan brings the deadline closer.
The rcasoner should therefore take account of the passage of time during that same reasoning, and this accounting
must continuously affect every decision under time-pressure. Step-logics were introduced as a mechanism for rea-
soning situated in time. We employ an extension of them here, called 'active logics', to create a logic-based planner
that lets a time-situated reasoner keep track of an approaching deadline as he/she makes (and enacts) his/her plan,
thereby treating all facets of planning (including plan-formation and its simultaneous or subsequent execution) as
deadline-coupled. While an agent under severe time-pressure may spend a substantial amount of the available time
in reasoning towards and about a plan of action, in a realistic setting the same agent must also measure up to two
other crucial resource limitations as well, namely space and computation bounds. We address these concerns and
offer some solutions by introducing a limited short-term memory combined with a primitive relevance mechanism,
and a limited-capacity inference engine. We propose heuristics to maximize an agent's chances of meeting a deadline
within these additional realistic constraints. We give examples from commonsense planning, including ones we have
solved and implemented in Prolog.
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1 Introduction

Time is the most obvious critical resource in planning with deadline constraints. There is a
given moment d (for deadline) in the future by which a goal G must be achieved, and the
agent's task is to find a suitable plan to achieve G and enact it before time d. This means that
as time proceeds, at any point of time, both the planning and the enacting of the resulting plan
must take no more than (d — Now) time units, where Now is the current time.

Proper planning often involves 'meta-planning', in order to adjudicate between alternative
plans, reject infeasible plans, and so on. But that takes time too! Action, which takes time,
occurs in the very process of thinking or reasoning, including such meta-reasoning. In [63],
it is argued that, traditionally, actions in AI are viewed as separate from the planning process
which leads to those actions. Even when the two are intertwined, as in real-time, dynamic
or reactive planning, the planning effort is treated as a different kind of beast, not an action
itself. Just as it is essential to understand certain features of actions in order to make an intel-
ligent choice of actions in a plan, it is necessary to reflect upon features of planning to make
intelligent decisions while planning.

When the reasoning is not carried out within but rather only about a deadline situation, the
time for meta-planning does not enter the computation. However, in reality, meta-planning
often itself must go on as the deadline approaches. To be sure, in some commonly encoun-
tered situations the time taken for meta-planning may be very short But what of highly novel
settings in which one cannot a priori assign expected utilities to various conceivable options
or refinements? Then the planner is forced to decide on utilities and other factors in real time.
In these cases it seems unlikely that such meta-planning will always have a modest time cost.
Clearly, the emphasis then is not on searching for a theoretically optimal plan, but one which
is speculated to work within the deadline. The reasoner must have the flexibility to interleave
planning and execution, not only because there may not be enough time to wait until a com-
plete plan is formulated, but because future planning actions may depend upon the outcomes
of earlier executions.

The importance of accounting for time of meta-planning as part of overall time of plan-
ning and acting then is real. But in general it may be impossible to determine in advance how
long meta-planning will take. An alternate perspective, which we explore here, is to measure
how long planning, meta-planning, and acting are in fact taking, and use this increasing time
measure to help decide how to continue in the planning/meta-planning/acting vis-d-vis the ap-
proaching deadline.

Thus our approach is not to provide a special technique for pre-computing time for meta-
reasoning (which we suspect is indeterminate, in general) but rather one in which the reasoning
and meta-reasoning are performed together and the time for each is fully accounted for as they
occur. We don't pre-compute how long meta-planning will take; we do some rough estima-
tion of time to perform actions, but chiefly, we track how long planning, meta-planning and
acting are taking in real-time, as they occur. Simultaneously we compare the evolving time
elapsed with the approaching deadline, and this comparison effects decisions about continued
planning and acting.

We revise the mechanism of step-logics [16, 17, 18, 21] into so-called 'active logics', in
solving the fully deadline-coupled planning problem. In contrast to other formalisms for com-
monsense reasoning, step-logics (and active logics) give the reasoner the ability to recognize
that his/her reasoning takes time. What is of special interest to us is not an 'ultimate' plan
computed in a static world, but a plan which evolves in time in a changing world [57]. Every
activity of the reasoner is carried out in fundamental time units called steps. The reasoner's
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thought activity is treated in the same manner as his/her other activities in the outside world.
The two take place concurrently with each other and with other changes in the world, in partic-
ular, with the ticking of a clock. The active-logic reasoner has a (largely) declarative inference
engine, with some procedural rules.2

It is worth clarifying how we use the notion of logic and inference in this paper: a formal
logic is often taken to be the semantics of a formal language. While we have done some work
on semantical foundations for active logics described below [60] and [61], this work is prelim-
inary and not the main focus of this paper. Rather, we focus on the syntactic rules of inference
by which a reasoner proceeds to make and enact plans. Ultimately, of course, one would like a
semantics to go with the syntax. The formalism described below is a logic in the sense that we
have a precise notion of axioms and rules of inference, and a largely declarative representa-
tion. We believe that this formalism lends itself to a principled way of incorporating the issues
in deadline coupled planning into the knowledge representation. It is also an inference engine
in the sense that the inference rules are coupled to an external clock that provides a semantics
for the crucial predicate Now.

This paper is organized as follows: first, we present a sample illustration of a planning prob-
lem in which many of the underlying issues we are interested in surface. Then, in Section 3
we present the key technique which allows active logics to 'keep track of time' as reasoning
proceeds. In Section 4 we apply this technique to deadline planning. In Section 7 we look at
the illustrative example from Section 1 formally. In Section 8 we take up the issue of resource
limitations, and introduce 'short-term memory' to address this issue. (In Section 8.3 we prove
that under certain strong conditions this places no real limitation on the proof-power of the for-
mal logic.) In Section 8.4 we address heuristics for planning with deadlines. In Section 9 we
discuss related work, and in Section 10 we discuss our conclusions and future work.

2 An illustration

To elaborate on the fully deadline-coupled planning problem, we present an illustrative do-
main, which we call the Nell & Dudley Scenario}

Nell is tied to the railroad tracks as a train approaches. Dudley must formulate a plan
to save her and carry it out before the train reaches her.

Let us suppose Dudley has never rescued anyone before, nor can he rely on having any very
useful assessment in advance, as to what is worth trying. He must deliberate (plan) in order
to decide this, yet as he does so the train draws nearer to Nell. Dudley must not spend so
much time seeking a theoretically optimal plan to save Nell that in the meantime the train has
run Nell down. Moreover, Dudley must do this without much help in the form of expected
utilities or other prior computation. Thus, he must assess and adjust (meta-plan) his ongoing
deliberations vis-d-vis the passage of time. His total effort (plan, meta-plan and action) must
stay within the deadline. He must, in short, reason in time about his own reasoning in time.

The above dramatic life-and-death scenario is deliberately chosen to illustrate a hard dead-
line setting. Real-life abounds with deadline scenarios. One can envision the use of automated

2Tbe time taken for executing such procedures, however, is itself accounted foranddeclaralively represented, and
the results of such procedures are also in declarative form. An example is the calculation of WET (working estimate
of time) discussed later.

3This problem was first mentioned in the context of time-dependent reasoning by McDermott [53], and more re-
cently discussed in [8].
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agents in scenarios such as a pilot trying to rescue a wounded soldier before an enemy patrol
arrives at the spot, a relief squad trying to deliver aid in the face of an approaching hurricane,
or simply planning to catch an airplane flight. A very familiar and interesting hard deadline
scenario is the examination problem [63].

A student is talcing an exam. Initially she spends time planning (i.e. deciding) which
problems to attempt first. She may even partially attempt a problem for better assess-
ment. Although this planning is very useful towards improving her overall perfor-
mance on the exam, as time ticks, she must eventually begin to work on the problems
themselves, and write up her solutions.

Here is the basic trade-off: every second spent thinking about strategy is one less second for
actually working. A particularly bad outcome is a problem completely worked out in the mind,
but no time to write it on paper.

3 How can a logic keep track of time as theorems are proven?
Step-logics [18, 21, 19] were introduced to model a commonsense agent's ongoing process
of reasoning in a changing world.4 These logics have been generalized and renamed active
logics to allow several new features, including limited short-term memory, and the introduc-
tion of new expressions into the language over time; only the first of these extensions will be
addressed here.

An active logic is (partially) characterized by a language, an observation function, and a
set of inference rules. A step is defined as a fundamental unit of inference time. Beliefs (i.e.
theorems) are parameterized by the time taken for their inference, and these time parameters
can themselves play a role in the specification of the inference rules and axioms. The most
obvious way time parameters can enter is via the expression Now(i), indicating the time is
now t. Observations are inputs from the external world, and may 'occur' at any step i. When
an observation occurs, it is considered to be a belief. Each step of reasoning advances i by
1. At each step i the only information available to the agent upon which to base his further
reasoning is a snap-shot of his deduction process completed up to and including step t - 1.

The agent's world knowledge is in the form of a database of beliefs. These contain domain
specific 'information' (which may be observations). A number of inference rules constitute
the inference engine. Among them may be rules such as Modus Ponens (MP) and rules to
incorporate new observations into the knowledge base as well as rules specific to deadline-
coupled planning such as checking the feasibility of a partial plan or refining a partial plan.
Figure 1, adapted from [18] illustrates four steps in an active logic with Modus Ponens (i.e.
' i + ' i " ^ ) ^ o n e ° f l t s mference rules. The notation i : ... followed by a set of formulas
indicates that among the agent's beliefs at time-step i are those beliefs denoted by the given
formulas.

The following features of this framework relate and contrast it to conventional common-
sense reasoning systems:5

(i) Thinking takes time
Reasoning actions occur concurrently with other physical actions of the agent and with the

4 Step-logics have also been used for multi-agent coordination without communication using focal points [47].
Note that step-logics are not 'temporal logics' in the usual sense (e.g., [51,44]), since the notion of the present time
changes as inferences are drawn.

5 This description is necessarily very brief; for details seethe various papers by Elgot-Drapkin etal [18-21].
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FIG. 1. Active logic illustration

ticking of a clock. The agent cannot only keep track of the approaching deadline as he enacts
his plan, but can treat other facets of planning (including plan formulation and its simulta-
neous or subsequent execution and feasibility analysis) as deadline-coupled. Related to this
feature of active logics is the fact that there is no longer one final theorem set. Rather, theo-
rems (beliefs) are proven (believed) at certain times and sometimes no longer believed at later
times. Provability is time-relative and best thought of in terms of the agent's ongoing lifetime
of changing views of the world. This leads to the issue of contradictions below,
(ii) Handling contradictions

An agent reasoning with active logic is not omniscient, i.e. his conclusions are not the log-
ical closure of his knowledge at any instant, but rather only those consequences that he has
been able to draw.6 Also, since commonsense agents have a multitude of defeasible beliefs,
they often encounter contradictions as more knowledge is obtained and default assumptions
have to be withdrawn. While a contradiction completely throws an omniscient agent off track
(the 'swamping' problem), the active-logic reasoner is not so affected. The agent only has a
finite set of conclusions from his past computation, hence contradictions may be detected and
resolved in the course of further reasoning.

Inferences are very tightly controlled in active logics. Contradictions are handled by a gen-
eral handling rule in active logics and by specific rules that manipulate the context sets and
plans in the planning framework. Also, even when contradictions do occur, they do not result
in all possible beliefs, only ones brought in by active-logic inferences and these are kept in
check and stopped from propagating once the contradiction is recognized. Contradiction dis-
covery drives the reasoning to eliminate default conclusions that no longer hold in the face of
new evidence, and subsequently the reasoning ferrets out such inconsistencies.

(iii) Nonmonotonicity
Active logics are inherently nonmonotonic, in that further reasoning always leads to retraction
of some prior beliefs. The most obvious case is Now(i), which is believed at step i but not at
i + 1.7 It is widely recognized that nonmonotonic behaviour is fundamental to commonsense
reasoning [29], and in particular to the Frame Problem [52].

We remind the reader that these 'logics' are a combination of formal inference rules and an

6Konolige [43], Levesque [48] and Fagin and Halpem [23] proposed systems in which the agents also are not
omniscient. However, the inference time is not explicitly captured in their systems.

7Put another way, the incoming observation Now(i + 1) causes the retraction of Now(i).
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inference engine and a representational system (a meta-interpreter and a meta-language) that
can reason about the ongoing proof process itself with the help of an external clock. This in
fact is the mechanism that allows the time spent meta-planning to be factored into the overall
approach of deadline reasoning and planning. While it is true that any logic has to function
under space and computation limitations, our system has the ability to reason about its limi-
tations, or to control its own heuristics, such as the time taken to make inferences as well as
other parameters such as size of its 'memory' (discussed later) and the number of inference
rule firings in each step. Space and computation management are built into the formalism.

Our formal treatment of evolving time makes the knowledge representation issues chal-
lenging and interesting because of the capability to reason about the reasoning process itself.
Another advantage of having as much as possible in declarative form instead of control pro-
cedures is the possibility of dynamically changing the parameters or the inference rules either
as a result of learning or as a function of the context of reasoning. We note that humans often
regard these parameters as dynamic in their reasoning; e.g. people ask for paper and pencil or
seek help from other persons when it appears that a particular problem has a higher memory
requirement and cannot be 'solved in one's head'.

4 Planning in deadline situations using active logics

In this section we present a formalism for planning in deadline situations. The approach is
deliberately noncommittal with respect to a number of traditional planning issues, such as to-
tal or partial order. Indeed, any planning algorithm can be implemented in the active-logic
framework. In our illustrations we use total order planning to keep the planning as simple
as possible while dealing with the temporal aspects. We have not sought to build an optimal
planner, not even a state-of-the-art planner; there are many ways to make the planner more
sophisticated. Our aim has been first and foremost to couch planning in a fully time-situated
framework; further work will be required to incorporate our findings into state-of-the-art tech-
niques for a truly efficient planner. However, in our view, evolving-time is a sufficiently criti-
cal issue for real-time deadline coupled planning, that it must be tackled directly (as our effort
attempts) no matter what other desirable features may or may not be included (such as partial
order planning).

We have created a representational language to tackle prototypical variations of the illustra-
tive Nell & Dudley deadline problem. These have been implemented in Prolog. A few sam-
ple axioms and inference rules can be found in the appendices. We start by providing a brief
description of the syntax used in the deadline-coupled planning mechanism based on active
logics.

A formula X(s : / , Args) consists of a predicate name X which may represent a fluent or
an action predicate, with a list of arguments. The first argument denotes the time interval 5 : /
over which the predicate holds, where s and / are the interval's beginning and ending points,
respectively. The other arguments of the predicate follow and are denoted by Args for easy
reference. We often wish to express formulas with predicates that hold only over the duration
of their interval s : / but do not continue to hold (or, persist) beyond/. Most of the predicates
denoting agent actions (e.g. Run, Release, etc.) fall into this category. We denote the time
intervals in formulas involving these predicates by s : f. We use the shorthand s for s : s to
denote an instantaneous action over a point time interval. The subscript 06s indicates that the
formula it is attached to is the result of an observation.

Further, we use four different forms of formulas:
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• X(s : t, Args), which denotes that (the agent believes) X holds over interval s : t.

• -iX(s : t, Args), which denotes that (the agent believes) ->X holds over interval s : t.

• Xc(s : t, Args), which denotes that (the agent believes) X holds over s : t, and also (has
reason to believe) that the time point s is a possible point of change of the predicate from
-iX to X.

• ~<Xc(s : t, Args), which denotes that (the agent believes) ->X holds over s : t, and also
(has reason to believe) that the time point s is a possible point of change of the predicate
from X to ->X.

For example, On(2 : 4, floor, ball) should be read as 'the ball was on the floor during the
time interval 2 : 4', and Onc(2 : 4, floor, ball) is read 'the ball was on the floor during the
time interval 2 : 4 and possibly was not there before time 2'.

We define three types of contradictions: direct, uniqueness, and du: (i) each of X(s : f,
Args) and Xc(s : f,Args) are defined to be in direct contradiction with each of ->X(s :
f,Args) and ->Xc(s : f,Args). (ii) a uniqueness contradiction exists between formulas
X(s : / , Argsl, U,Args2) and X(s : f,Args\,V, Args2) if both U / V and X{s :
/ , Argsl, U, Args2) ->• -<X(s : f, Argsl,V, Args2) are beliefs of the reasoner (e.g. the be-
liefs At(5, Dudley, home) and At(5, Dudley, railroad)8 would normally be in uniqueness
contradiction), (iii) A formula a du-contradicts a formula 6, if it is in direct or uniqueness
contradiction with 6. (The same definitions of contradiction extend to Xc and to the negated
versions.)

We use annotated formulas such as X(s : / , Args)[0i,..., /?*] to denote a formula that
is derived using the default formulas (projections) /3 i , . . . , /3k in its proof. Such an annotated
formula itself has the status of a default and is as feasible as the weakest default in the anno-
tation, as explained in Sections 6.1 and 6.3.

An action triplet, denoted by [CA,A, RA], consists of an action, A, preceded and followed,
respectively, by a list of conditions, CA, and results, RA- A is a formula containing an action
predicate and CA and RA are lists of formulas.9 The conditions may need to be true over all
or some of the time interval required for execution of the action. An action may be complex
or primitive (atomic). The firing of an inference rule corresponds to a think action. Dudley's
non-defeasible beliefs are treated as facts.10 Observations are incorporated as beliefs at the
same time step that they are 'observed'. Theorems whose premisses consist of facts alone are
also regarded as facts.

Now(i) denotes Dudley's belief that the time is currently i. A partial plan is a belief
Ppl( i , p, Triplet-List) denoting a partial plan at step i with the name p. The Triplet-List
is an ordered list of action triplets. We will sometimes use Pp l | , p to denote the Triplet-List
with respect to t and p.

A special plan with the name null is a plan with no actions in it. Dudley simultaneously
develops alternative plans towards attaining his goals or subgoals. Each of these partial plans
(including the null plan) defines a context within which reasoning can be done about the ex-
pected state of the world if the plan were to be carried to completion.

8Recall that we use S here as a shorthand for 5:5.
9 Whenever formulas appear in lists such as CA or RA and later in beliefs CS, Proj and Ppl, they are in fact treated

as if they are 'quoted'. We omit the quotes to keep the long strings readable. Thus the beliefs of the agent that we
will describe shortly are still first-order formulas.

10 Strictly speaking though, the agent only has beliefs, never facts, since ever, observations are not etched in stone,
and may very well change over time. In all the problems that we tackle though, we will treat observations and facts
synonymously.
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The agent maintains a belief CS (t, p, Context-List) denoting the context set for each plan
p at each step i. The list Context-List consists of quoted formulas (we omit the quotes for
readability), and includes all of the facts (observations),11 formulas corresponding to actions
in the plan, and formulas that the agent deduces to be true in the state of the world resulting
from the successful execution of plan p. We will often use CSi i P to denote the list Context-
List. The context set changes with time as the plan undergoes modification and as inferences
are made in the context of the plan.

At each step i, the belief Proj ( i , p, Proj-List) denotes the projection that is formed in the
context of each partial plan p in progress, based on the default of persistence.12 The i denotes
the step number, and Proj-List is a list of quoted formulas. We will often use Proj i i P to
denote the list Proj-List with respect to i and p.

The belief W E T ( i , p , n) denotes the working estimate of time for the plan p computed as
of step i of reasoning is n. WET computation is revised at each step by an inference rule and
the feasibility of the plan p is continuously checked by making sure that the sum of n and i
does not exceed the deadline.

The belief Goal(p, g, d) denotes that the plan p is being developed to meet a goal g by
deadline d.

5 How long will it take?
A truly time-situated planner must be able to keep track of every unit of time spent, whether
it is spent in inferential or physical activity. This also includes the time spent in making esti-
mates of how much time will be spent. Thus, first of all, we need a time-situated estimation
mechanism. The next subsection deals with this, followed by further details related to dif-
ferences among types of actions with regard to time; we outline various categories of actions
relevant to our main example concerning Dudley and Nell.

5.1 Computing the WET of a plan

The WET (working estimate of time) of a plan is a rough estimate of the total time that the plan
will consume. It consists of two parts. The PET (planning estimate of time) is the (estimated)
time to be spent in reasoning about the plan. This includes plan formulation, refinement, tem-
poral projection and context-based reasoning. The EET (execution estimate of time) of the
plan is the (estimated) time required to actually execute the actions that have been identified
in the plan. Thus, WET = EET + PET. We estimate the WET of a plan based on the estimates
of the WET's of the actions that are already part of the plan. We do not have a mechanism to
estimate the WET of the unknown portion of a partial plan except for the sliding Now which
accounts for the time taken to identify the remaining portion of the plan.

The PET of an action A is computed based on these considerations:

(1) Whether A is an action that needs refinement
(2) Whether A has any unbound time variables (whether or not the exact start and finish time

of the action is known).
1 1 Actually it only consists of the subset of facts that is relevant to the particular partial plan. Section 8 deals with

space bounds on the reasoning and proposes a relevance mechanism to keep the reasoning directed to a particular
partial plan for a duration of time.

'^Projections (and persistences) have been studied by numerous authors; see e.g., [77, 42, 54]. Our treatment is
along the lines of time-maps of [12].
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(3) Whether A has any other unbound variables in its description.

(4) Whether A is the first of a sequence of actions or whether its time variables will be bound
automatically when the time for a previous action is decided upon.

For a non-primitive action, i.e. when (1) is true, we account for at least one time step in
the PET to refine it to the level of primitive actions. If (2) is true, we estimate that it will
take at least one time step to bind the time variables. If (3) is true, we add another step to the
PET since there is at least one step necessary for instantiating the other unbound variables.
If according to (4) the action is one of a sequence such that its time variables will be bound
whenever those of an earlier action are bound, we subtract one from the PET.13 The examples
will illustrate the PET estimation for various actions. We estimate the PET only by a small
factor that is an estimate of how long it will take to refine the current action to the level of
primitive actions. Basically, for each action that is non-primitive, this adds a constant number
of time steps (default is two) that are required to firstly refine the action, and secondly to bind
the time variables for actual execution of the action. Thus, we add at least 2n to the WET of
the plan if there are n non-primitive actions currently in the plan. If a measure of the level of
abstraction of an action is available (such as in the representation in the ABSTRIPS planner
[67]) that number would reflect the number of steps required to refine the action into primitive
level actions, and could be substituted as an estimate in place of the default one step that we
currently account for.

An agent may have a specific belief about the EET of an action. For example, in a plan to
do laundry, one may know that the dryer cycle takes 45 minutes, even if the actual start and
finish times are not known. If there is not an explicit belief about the EET for a particular
action then the EET for the action is the difference between the start and finish times for the
action, when known.

In our design, the decision not to include an estimate of the (future) meta-planning time14

into the WET was taken to avoid recursion of meta-meta-meta . . . levels of estimation. Time
must be spent to choose between alternatives or to adjust the plan to ensure that it does not
violate other goals [77]. Inferencing such as this constitutes the meta-planning that Dudley
performs. We do account for the time spent in making these inferences, as they are made.
But the WET is restricted to a calculation based on actions in the plan, namely object level
actions. This is not a serious disadvantage. We have a uniform approach to treating planning
and meta-planning. A meta-level plan will eventually be translated into an object level plan-
that satisfies the meta-goal. Once at this level, the WET will accommodate the execution time
of the meta-plan into the new WET. We give a brief example to illustrate this.15

Suppose Dudley has a plan to go out and fetch the newspaper in the morning. However, on
a particular morning, it is raining outside. The plan being developed to fetch the newspaper
has the ramification that it will cause Dudley to get soaked, and violate the sustenance goal16

to keep himself dry. He must then (meta-) plan to try to keep himself dry. The meta-reasoning
results in an object level plan to wear a raincoat, which must be merged with the plan to fetch
the newspaper. The new WET will continue to reflect only the execution time of the plan to

1 3The various components, namely refinement, binding, etc., that constitute the PET of a particular action may be
concurrent with those of another action in the plan due to the assumption of unlimited parallelism. In this case, the
WET may be estimated to be higher.

14Currcnt and past meta-planning time is fully accounted for in the sliding Now predicate and is factored already
into the feasibility analysis.

l s This example is mentioned in [77].
1 6 A sustenance goal is one which must be preserved during the entire planning process.
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walk outside and fetch the newspaper while the meta-planning proceeds in time. But once the
object level plan to wear the raincoat begins to be synthesized, the WET reflects this additional
time to look for a raincoat and put it on. As the meta-planning proceeds, time is consumed
and is accounted for by the sliding Now. In this sense, we have a commonsense formalism
for a fully deadline-coupled estimation of the WET. One may argue that the planning time
may be too high, and if the WET cannot factor that into the computation the estimates will
be too low to be useful! That may very well happen if planning continues to introduce only
inferential actions into the plan for which no object level estimate is available. With human
reasoners, in case the problem involves very complex deliberations that are all inferential, they
may not have an idea of how long their reasoning may take. So long as the agent can switch
to reasoning about object level actions after a certain amount of thinking, the estimates will
not be too low. Between these estimates and the accounting for how much Now has changed
while making them, we feel that we have a reasonable estimation method for the WET. It has
the advantage that it is a simple computation that does not require too much prior knowledge
or tedious processing.

Note that the WET is only a rough estimate and hence feasibility conjectures based on it
are at best approximate. The agent tries to estimate an upper bound on the WET, so as to
make sure deadlines are met. Deadlines may still be missed because: (i) The WET estimate
was not accurate as individual components took longer to execute than expected, (ii) the agent
experienced sudden unexpected changes that rendered the planning obsolete, or (iii) actions
in the plan took their estimated time too execute, but, these actions failed and did not yield the
expected results.

The following rule computes the WET of a plan at every step in the reasoning.17

Computing the WET

CM

*:Ppl(t,p,
RA,

CAk

i + l: WET(*,p, £*=i EET(Aj) + PET{Aj))

where the EET and PET for each action A, is computed based on the criteria described above.
The EET = [fj - Sj) if known, or otherwise is obtained from a belief that the agent has at step
i regarding the execution time. These beliefs are axioms of the form:

estimate({action), {timeJojcompletejaction)).

As partial plans develop estimates of the amount of time needed to carry the plan to comple-
tion are refined.18 In the beginning phase of plan generation, actions are more complex and
abstract. Estimates for the execution time for these actions are based on prior experiences
with the action or with similar actions, or may be acquired as a result of observation. As Now

17In active logics all rules that are applicable at any step i are in fact applied to draw inferences forming beliefs
at step i + l. This presupposes unlimited parallelism and is an idealization that is formally convenient, but clearly
unrealistic for an implemented agent. In Section 8, we describe work on limited time and space that addresses this
problem. Nevertheless, even the idealized version does account for the fact that time is taken in applying inference
rules such as calculating WET.

18The WET estimate is one of our concessions to procedural methods: we do not require Dudley to figure out how
to do arithmetic but rather allow that he already knows. But we do require him to note the passage of time during
the execution of the procedure.
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changes, and time is spent in planning, the agent substitutes lower-level actions into the plan
for which closer estimates may be available, up until the level of primitive actions where the
estimate is simply the anticipated interval for executing the low level task. In general, the
estimate may or may not be separable into individual constituents.

The PET is computed depending upon the primiti veness and level of instantiation of action
Aj, taking into account any abstraction level information known about A, at step t. The WET
is Dudley's calculation of how long his partial plan (formed as of the previous step) will take
to refine and execute. This he adds to the current time and compares the result to the deadline
to make sure the plan is not hopeless.

As long as the sum of a (partial) plan's WET + Now is within the deadline, Dudley declares
the plan Feasible using the following rule, and continues refining and/or putting the partial
plan into execution.

• Marking a plan 'feasible'

t :Pp l (p , i , { - - -} ) ,Goa l (p , g l d) ,WET( i - l , p ,q ; )

i + 1 : Feasible(i,p)

ifu + i < d.

If the WET computation indicates the plan is not feasible, the plan is frozen (no longer refined
for the time being), but may be used in the future.19

5.2 Categories of actions and time estimates for plans

Dudley's database of axioms and rules contains knowledge about actions and their (intended)
effects. However, not all actions are the same from the perspective of planning. Especially
with regard to planning under time pressure, Dudley may have to estimate differently the time
interval for the duration of each action in the plan, depending on the type of the action. We
attempt here to formalize some categories of commonly encountered actions from the stand-
point of planning.

• The Repeat.until category

(Repeat(action)until) signalling .condition))

is the form of an action that needs to be performed in a loop. In order to achieve a particular
goal, the only known procedure may be to repeat a certain action or sequence of actions.
Very often, there is an observation that signals the successful completion of the task. This
observation (signalling xondition) may or may not coincide with the goal. For example,
dialing the telephone repeatedly until a connection is obtained, is a means for establish-
ing contact with someone. Similarly, beating egg whites until stiff peaks appear [28] is a
means for beating eggs to the right consistency. An agent must incorporate repeated ac-
tions into plans in many day-to-day situations. The signalling xondition is often known
to the agent. The inference rules for plan formulation enable the agent to formulate a plan
with a RepeatMntil action, and guide the actual execution of this type of action. A prim-
itive action can be directly acted upon, and is removed from the plan upon its execution.

19Our focus here is not to find an optima] heuristic for producing the best plans, but rather to develop the underlying
framework for incorporating passage of time into an inference based approach to planning. Within such a framework,
numerous experiments contrasting various heuristics can now be undertaken; this is a direction for our future work.
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A Repeat.until action is a non-primitive action which can be executed, i.e. the repetitive
part of it can be executed, but is not removed from the plan unless the signalling condition
is observed.
For most actions that fall in this category, the agent may have an estimate of how long it
may take until the signalling .condition typically appears. The agent knows what sequence
to repeat, but does not know the exact number of times that it must be carried out. For
example, in the case of beating egg whites, Dudley may know that this typically takes 3
minutes. If 6 minutes go by and stiff peaks do not appear, it signals a possibility of failure
of the RepeatMntil action.20 The planning process as well as execution is incremental; the
actual number of times the repeat is executed is determined in real time through execution
combined with observation.
There is a difference in the two examples of Repeat.until actions described above. In
the case of the egg whites, it is necessary to repeat the action, not because it fails to give
the intended result, but more because it is part of a sequence of actions that must be per-
formed in order to achieve the goal. Here, the cumulative effect of the repeated action
marks the end of the loop. In the example of dialing until a connection is obtained, the
agent keeps redialing because the earlier dialings fail. The first successful action marks
the end of the loop. However, we will omit this distinction here, and put both examples in
the Repeat juntil category, since, from the planning agent's point of view the plan has the
same structure and monitoring must be done to watch out for the signalling xondition?1

• The Conditionaljeffect type actions
Axioms for Conditional jeffect type actions are often of the form

C A A -»• R,

i.e. (if(condition(s))and(action)then{result)), where R is a (sub-)goal, and is the re-
sult of performing action A, given that condition C is satisfied. The condition C must be
true in addition to the list of conditions CA which are seen as necessary by the agent in
order to be able to perform A.
There are two possibilities here: (a) C is doable under the agent's domain of control, and
(b) C is not doable, but merely observable.

(a) C is doable under the agent's domain of 'control', i.e. the agent has an axiom of the
form

The inference rule for planning for this type of axiom is:
To make a plan to achieve R, insert A into the plan, and add C along with CA as
the conditions in the triplet corresponding to result R.

In our formalism, once inserted, C will also be continuously checked at each step, so
that the plan may be altered in the event that C ceases to hold. Further,

20This paper docs not offer a formal treatment of plan failure and recovery. An alarm mechanism can be built
that signals a potential failure to Dudley in the event that he overshoots his estimate for a Repeauuntil action by a
substantial margin.

21 Another real time scenario which illustrates the use of a Repeat jintil action, is one in which Dudley chases a bad
guy in real time. As the target object moves, Dudley must perform the action of taking one pace in the direction of the
current position of the target. At every step. Now and Here must be used as parameters to create a new instance of a
pace in the dynamic plan. Dudley may be able to estimate the time required to reach the bad guy from the differential
in their respective speeds, and can use it to tailor his plan vis-d-vis the approaching deadline; but the actual number
and specification of the paces must match the uncertainties in the changing environment.
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(i) If C is already true in the context of the plan, the agent does not have to plan addi-
tionally for it. The estimate of the time for achieving R in this case is not affected by
the presence of C.

(ii) If C is not already in the context of the plan, it will be necessary to add action B to the
plan to first achieve C and then proceed with A. In this case the estimate should in-
clude along with the estimate of A, at least two additional time steps: one is estimated
for the addition of B to the plan, and at least one other for executing it. In this case,
the estimate is E + 2, where Estimate(A, E). In subsequent steps, as B is added
and refined, a more accurate estimate can be obtained.

As an example of this category, consider this axiom from the Yale Shooting Problem[31]:

Loaded(t) A Shoot(t) -> ->Alive(t + 1).

If the goal is to kill Fred and Load(t) -> Loaded(t + 1) is known, a plan for killing must
include along with the conditions for shoot, the condition that the gun must be loaded.
Further, in the event that the gun is not already loaded, the Load(t) ->• Loaded(t + 1)
axiom suggests additional planning to this end.

(b) C is not doable, but is merely observable, i.e. it is not under the 'control' of the agent.
Here there are also two cases to consider:

(i) If C has already been observed and is projected to remain true, planning and time
estimation can proceed as in case (a)(i) above.

(ii) C is an observable condition, but it is not known Now whether or not C is true. Here
the agent must insert into his plan an action to observe whether C is true, and de-
pending on the conclusion, insert A into the plan, in the event that C is indeed true.
If several alternatives exist, based on several observable conditions, each suggesting
different actions to be undertaken, he must postpone deciding between them for the
present. However, he can use the possible list of alternatives to obtain a bound on the
estimate, taking the alternative that has the maximum estimate into account.

As an example of (b)(ii) above consider: Dudley can see that Nell is tied to the tracks,
but cannot tell from the distance what kinds of knots the bad guy has used in tying the
ropes. He knows of the following common kinds of knots from his boy scout days and of
particular procedures employed in tying and untying them.
CloveJiitch A UntiejcloveJiitch(t : t + 2) -> -*Tied(t + 2)
Timber Jiitch A UntieMmberJiitch(t : t + 2) -)• ->Tied(t + 2)
UnknownJmot A Cut.ropes(t : t + 8) -f ->Tied(t + 8)
Estimate(Untiejclove Jiitch, 2),
Estimate(UntieJimber Jiitch, 2),
Eatimate(Cut-ropes, 8)

Since Dudley has no control over which knot he will encounter upon arriving at the tracks,
he must plan for all contingencies. The decision regarding which action to insert into the
plan must wait until the appropriate observation. He could plan to cut the ropes regard-
less, but that will take the longest time. Thus, by postponing his decision until run-time,
Dudley may save time. He must, however, make sure that the conditions corresponding
to all the above alternatives will be satisfied at that point in time, if he wishes to keep the
choices to the very end. He must therefore bring a knife to the tracks in case he will have
to resort to cutting. He thus creates at this point a kind of pseudo-action (or meta-action)
to insert into the plan. This action is the disjunct of all the alternatives. To supplement
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the plan to take that decision, Dudley inserts an Observe action into the plan,22 which
will itself take a time step. The estimate of the pseudo-action is taken to be the maximum
of all its disjuncts. The result of the Observe action is unknown at the time of planning.
At execution time, more will be known, and the pseudo-action can be substituted for the
actual action applicable in that context.23

• Actions with a simple formula for an estimate

These are the kind of actions for which the agent can determine a time estimate instantly,
if an estimate for the rate of the action is known, and if an estimate for the amount of
work to be done is also known. The Run action is in this category. Knowing the distance
to Nell and his speed of running, Dudley can estimate how long his Run will take. But, it
is possible that one or both of the distance or the speed may not be known. Dudley must
carry out a deliberate observation or calibration to obtain these; e.g. Dudley looks out of
the window and sees Nell tied to the rail tracks. He may not know the distance between his
house and the tracks. Either he must look it up, ask someone, or do some calibration, such
as simple trigonometry. His own running speed, he may know from past experience, or he
may need to figure that out too, by running the length of his living room and timing himself
as he does so. Such methods for obtaining estimates for actions in this category may be
undertaken in circumstances where it is very crucial to obtain these estimates, and further
decision making hinges on them. The cost of the more refined methods is obviously the
time spent in obtaining them. In our simplified scenario, Dudley knows the distance to the
rail track and his speed of running.

• An action with a fixed interval between its start and finish times

This is the simplest category, and includes the kinds of actions which are relatively sim-
ple. These actions have a fixed duration. The estimate for an action in this category is the
difference between its start and finish times where known. An example of this category
of action is Pull. It takes one step to Pull Nell from the tracks once she is untied.

For each category of actions described, we have described the inference rules for planning
for the actions and for the estimate of the time required to carry them to completion. In most
cases some form of a time estimate is either known from prior experience, or acquired from
observation. In those cases where no known estimates are available to the agent, the unknown
estimates are a measure of how much knowledge the agent has regarding the WET of the plan.
The currently unknown estimates may potentially be a big drain on time. Dudley keeps a count
of how many such unknown estimates exist in each plan. In ongoing work on this front, we
are looking at 'agent attitudes' to characterize agents who can use this and other uncertainty
information along with perhaps some on-line utility computation, to perform a primitive risk
analysis as a basis of choosing between plans which have the same time estimates. An agent
who is risk averse may choose to go with a plan that is better known even if it has a large WET.

22This ties to spatial reasoning, and to aspects of a plan that involve getting more information; for instance Dudley
may have to move in order to see whether Nell is tied. This in turn relates to existing work [46,10] on ignorance and
perception.

23This is also linked to the notion of plan commitment. This is a strategy to delay commitment until the last possible
instant to allow for more flexibility in planning, of course at the cost of planning for all contingencies and allowing
for the time in the on-the-spot decision-making.
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6 Temporal reasoning aspects

This section describes Dudley's inference mechanism for temporal reasoning. We describe
three inference rules that are crucial for this: (i) the temporal projection rule (TP), (ii) the
context set revision rule (CSR), and (iii) the restructured modus ponens rule (RMP). In all the
active-logic scenarios we have underlined new formulas in the context sets or projections, to
highlight the differences with the corresponding beliefs at the previous step. In each step the
TP rule derives a new projection in the current context and the RMP and CSR rules together
deduce a new context set.

6.1 The temporal projection rule (TP)

The temporal projection rule (TP) effectively smooths beliefs over time intervals which present
gaps in the agent's knowledge. At each step, Pro j i i P holds the results of the temporal pro-
jection rule applied to the context set C S J _ I I P of the previous step. Our approach is best de-
scribed by the term parallel projection. Here the entire known state of the world at one mo-
ment is used to determine the (expected) state at the next moment. Since active logics are built
around the idea of specifying what is known (e.g. proven) so far, all predicates, and all context
sets can be simultaneously reconsidered at each new time step.

We now describe the TP rule applied to atomic formulas corresponding to a given predicate
X in the context set at step i in order to constitute P r o j i + i i P for the partial plan p. Note that
formulas of the form X(s : f, Args) are not projected, since they are intended to represent
mostly agent actions that do not persist. Formulas X(s : f, Args) for each predicate X are
kept sorted in C S i p with (s : / ) as the key. Only predicates corresponding to fluents (i.e.
those formulas without the bar on top as in s : / ) are eligible for projection. The formulas
in P r o j i + i i P are strictly those that are obtained by persistence of those in CSj i P . Let a0 and
OCJ+\ denote consecutive formulas in sorted order in CSi i P and let Q/ denote the last formula
in this order. The TP rule can then be described as follows:24

1. If Q_, is of the form X(s] : / , , Args) and aJ+i is of one of the forms:
(a) X(s:+i : f}+i, Args),
(b) Xc{sj+i : fj+1,Args), or
(c) -iXc{sj+i • Jj+i, Args),

then Pro j i+ i i P contains X(fj + 1 : s_,+i — 1, Args) whenever / , < Sj+i.

2. If a , is of the form X(s , : fj,Args) and o,+i isoftheform-'X(sj+i : fJ+i, Args) then
P r o j i + i i P does not speculate over the truth or falsity of X over / , + 1 : Sj+\ - 1. The
projection rule will smooth over this interval when further information about a possible
point of time where the value of X changes becomes available.

3. If ai (with the latest interval in CSi i P corresponding to the predicate X is of the form
X(si : fi, Args) or Xc(si : //, Args) then P r o j i + i i P contains X(fi + 1 : oo, Args).

Figure 2 shows a pictorial description of the TP rule, with the dashed lines denoting the
intervals that are filled with the projection, with rules numbered as above.
Example
Consider a scenario with a bucket filled with water and a ball lying on the floor. This example

24 For brevity, we only describe the rule fora j =X(SJ : fj,Args). The same applies to a, =XC(SJ : fj,Args).
The dual form involving ->X is similar.
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FIG. 2. Pictorial description of the TP rule

simply illustrates an application of the TP rule to CSiB ) P to yield P r o j i 6 , p . (Shortly we will
give two more extended examples in this domain.)

15: . . . , CS(15,p, {...,Filled(Q), Filled(4), ^Filledc{7), Filled(10),
On(0, floor, ball), -.Onc(5, floor, ball),...}),...

16: . . . , Proj(16,p, {..., Filledjl : 3), Filledjb : 6), FilledjU : oo),
O n ( l : 4, floor, ball), -^On{6 : oo, floor, ball),...}),...

Notice that (i) Filled is projected in three disjoint intervals; 1 : 3, 5 : 6, and 11 : oo, (ii)
On is projected in one interval; 1 : 4, and (iii) -<On is projected in one interval 6 : oo, all as
expected.

If any of Oj andaj+i in the context set du-contradict, the projection is 'frozen'for the inter-
val in dispute, and the TP rule itself does not decide on which of the contradicting formulas to
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project.25 Sometimes it is necessary to break up the formulas into two or more parts to identify
the extent of the contradiction over some sub-interval, e.g. when X(5)[y(4)] and ->X(1 : 6)
are in a context set, the latter must be split into {-<X(l : 4), -*X(5), -<X(6)} to identify the
range of the contradiction; 5 : 5, or simply 5, is the range of contradiction in this example.

6.2 A restructured modus ponens (resolution) rule (RMP)

Instead of applying modus ponens (MP) in its familiar form: namely from a and a ->• /? de-
duce (3, we use a restructured MP rule (RMP) in accordance with our philosophy to let earlier
defaults play out their effects completely to result in an anticipated state of the world to which
later defaults may be applied if necessary. (RMP depends on a clause form representation of
data.) A formula which is a fact has no justification attached to it. All axioms are treated as
facts. A formula a which was derived using one or more projections I3\, (3? • • • is only as fea-
sible as the weakest projection, and is itself classified as a default. Such a formula is annotated
with the projections used in its derivation and is written as a[(3\ , /?2, •••]•

Let ->ai V -ia2 V . . . V ->an V (3 be the expression in clause form that appears in the context
set CSi i P of a plan p at step i. This may either be an axiom or an observation. We formulate a
rule that adds new atomic formulas (with or without justifications) derived within a context to
CS|-|_iiP. We use the terms, finished and unfinished to describe a resolution where the results
are atomic and non-atomic formulas, respectively. The rule only carries over the result of a
finished resolution to the context set at the next step.26

Our use of resolution can be outlined as follows:

• All the a3 from CSi i P which are facts are first used to resolve. If there are no facts that
are eligible for resolution, the resolution is not carried out at all. There must be at least
one fact among the resolvents for the RMP to fire.27

• Subsequently, if the resolution is unfinished, members from CSi i P U Proj i i P which are
themselves defaults are next tried. All formulas from Proj i , p as well as those formulas
in CS | i P that are annotated with projections qualify as defaults. From among those in
P r o j | i P , those with earlier time parameters are used before the ones with later parameters.
For the annotated formulas, the annotation with the latest time parameter that was used in
the derivation is used to decide the priority.28

2 8 Various heuristics may be applied to help try to resolve contradictions. One that we have used in the event that
one of the contradictands is a fact and the other comes via projection is to freeze the projection and let the fact persist.

26Since we have the luxury of applying all rules simultaneously to all formulas at every step, not much is to be
gained by adding the results of an unfinished resolution to the context set We wait to get more information later such
as from observations or from further deductions so that an atomic formula can be derived. This serves the purpose
of limiting the size of the context set. It is possible to write a version of the RMP that will also add the results of
unfinished formulas to the context set, and would effectively function the same but use more space.

27The motivation behind this is to reduce the large number of formulas resulting from applying RMP to projections
alone, since what can be derived thus is also obtained by the combined effect of RMP and TP. This reduces the actual
number of formulas in the context set without loss of any meaningful commonsense conclusions. As an example,
consider the axioms Alive(T) -* -iDead(t); i.e. ->/iltt>e(t) V -*Dea.d(t). Suppose Alive(0) is the only formula
in the context set. By TP, the agent would add Alive(l : oo) to the projection, and by RMP, -*Dead(0) to the
context-set. Note that -^Dead{\ : oo) will subsequently be in the projection, and there is no need to additionally
have -i£>ead(l : oo)[Alive(l : oo)] in the context set. Hence this is a reasonable way to curtail the size of the
context set

2 8 In case of a tie, we draw all the conclusions resulting from the use of the projections with identical time intervals,
one at a time. This may result in implicit contradictions. In this situation, what the system deduces is an expected
contradiction.
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• The result of the resolution, namely 0, is then annotated with all the projections used, ei-
ther directly, or in the annotation of resolving formulas from the context set. The annota-
tions are attached in square brackets to the formulas. This provides the basis for a real-time
truth maintenance mechanism which is useful in resolving contradictions.

• If a projection a with a later time than the time of /? is used in the RMP application, /? is
not added to the context set, instead it is discarded. Thus the axioms are used to derive
future conjectures based on projections of current beliefs, but prevented from using future
projections to derive past conclusions and from jumping to extreme conclusions.

• If /3 = X(s : / , . . ) such that s is later than the time intervals of all the Oj used in the
resolution, then it is marked as Xc(s : / , . . . ) in the context set to denote that it could be a
potential point of change in the truth value of the predicate X.79 This marking is of help
in deciding whether to project X, such as via the TP rule above.

Example
This example illustrates two applications of RMP (in steps 4 - 6 ) following Dudley's obser-
vation of someone dropping a ball into a full bucket of water. Given the axioms that a ball
dropped into a full bucket results in a spill, Dudley concludes that the floor will no longer be
dry.30

Axioms (These are part of the Context-List of every context set)

-,Filled(t) V -•Drop(t, ball) V Spill(TTT)
V -*Dry(t + 1, floor).

4: CS(4, null, {..., Dry{0, floor), Filled(0),Drop(4,ball)}),
Proj(4, null, {..., Dry{\ : oo, floor), Filled(l : oo)}).

5: CS(5, null, {..., Spillc{5)[Filled{4)}, Dry{0, floor), Filled(0), Drop(i, ball)}),
Proj(5, null, {..., Dry(l : oo, floor), Filled(l : oo)}).

6: CS(6, null, {..., Spill(E)[Filled(4)], Dry(0, floor),
^Dryc(6,floor)[Filled(4)}, Filled(0), Drop{4, ball)}),
Proj(6,nuZ/, {.. .,Dry(l : oo), FilledQ. : oo)}).31

29There is an implicit causality assumption here; earlier events are potential causes in axioms for changes but later
events are useful only in explanations of past values, not responsible for changing the past values. Note that we say
a potential point of change.

30This is an extended effect of the spill; we will elaborate later on the significance of this type of reasoning.
3 1 Note that there is a contradiction between the C S and the Proj . The underlying idea is that projections have a

default status, and are not really treated as true (unlike facts), and cautiously used in derivations. The agent keeps track
of their use and makes necessary adjustments to iron out the inconsistencies in time. In this example the contradiction
is resolved in the next step.
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The RMP rule is used in extending the context set. This allows Dudley to compute the ex-
tended effects of actions. It also allows him to deduce the future consequences of his planning
as it interacts—possibly with the actions of other agents or with events observed in the world.
It allows for reasoning with the current projection by letting earlier events play out their conse-
quences in an anticipated future before later events. Just as in the Yale Shooting Problem there
is in principle an un-intuitive outcome, such as that someone emptied the bucket unknown to
the Dudley, exactly before the ball was dropped. However, the RMP rule excludes this and
other similar outcomes, by not allowing later defaults to serve as justifications to form earlier
beliefs [58]. Thus the conclusions ->Filledc(4)[Dry(6, floor)} will not be drawn because
Dry(6, floor) is a default with a later time then the potential belief ->Ft//edc(4).

6.3 Context set extension and revision rule (CSR)

The CSR rule ensures that the context set is always kept updated to match the most current pro-
jection, and the state of the world in which the agent is situated. As explained before, formulas
are annotated by the projections which are used to support them in future conjectures. In the
event that the projections cease to hold as of 'now', the formulas that are supported by them
are dropped from the context set in the revision process. The revision is a kind of real-time
truth maintenance. The CSR rule also plays the important role of resolving contradictions in
a time situated manner.

Following is a description of the rule used in deciding the contents of CS|+i,p based on the
contents of CSi,p , Proj i i P and Ppli ,p . In Part I we decide a set Candid | i P selected from
CSj i P which are formulas to be considered as candidates for retention. Part II decides which
members of Candid) ,p will make it to CS|+i ,p .

Part I: (Select candidate formulas to inherit)

1. If two formulas a and 6 in CSi,p du-contradict each other, then the following criteria are
used in deciding which of them go into Candidj,p .3 2

(a) If Q is a fact, while 5 is a default (is annotated with a projection), select a and reject 5
to go into Candidj i P .

(b) If Q and 6 are both defaults, select neither to go into Candid| ,p .3 3

2. Formulas that are not part of a contradiction go into Candid; ,p .

Part II: (Choose among candidate formulas)

1. A formula a from Candid | , p which is a fact is inherited to CSi + i i P .
2. A formula a[/3i , & , ...,/?*] which is a default is inherited unless for some 1 < j < k,

(3j & Proj | i P . Also, if any of 0i,... ,0k now appear as facts in CS|,P , they are removed
from the annotation.

3. Formulas corresponding to actions that are added to the plan in the previous step are added
to the 3

3 2 Note that we do not encounter situations in which facts (direct or indirect descendents of observations alone)
contradict each other. Observations with different time intervals involving the same predicate may well disagree, but
these are not contradictory.

3 3 Where both are defeasible beliefs, a working strategy is to not inherit either of them, and to continue the reasoning
to see if one of them will reappear in the face of stronger evidence.

^Formulas in the context set are in fact, doubly annotated in the implementation, with (i) the projections, if any.
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There are two other rules which fire to add formulas to CSi+i ) P which we mention only
briefly here. One is called OBS, which adds observations which are made at step i + 1 to
C S i + i t P . The other is RMP, which was described in detail earlier.

Example
As in the previous example, Dudley again concludes at step 5 that there must have been a spill
at step 5 based on the projection that the bucket was still filled at step 4. At the same moment,
however, he is told by a reliable observer that the bucket was in fact not filled at step 4 and
adopts it as a fact.

The projection catches up at step 6 to no longer believe Filled(4). As a result of CSR,
Spill(5)[Filled(4)] and -<Dryc(6, floor)[Filled(4)] are no longer inherited to the context
set at step 7. Note that the projection at step 7 already reflects a wet floor. This will also be sub-
sequently revised in step 8 by an application of the TP rule, since -'Dryc(6, floor)[Filled{4))
is no longer in CS

4: CS(4, null, {..., Dry(0, floor), Filled(0),Drop{4,ball)}),
Proj(4, null, {..., Dry(l : oo, floor), Filled{\ : oo)}).

5: CS(5, null, {..., Spill(E)[Filled(4)], Dry(0, floor), Filled(0),^Filled(4)ob,,
Drop(4,ball)}),

Proj(5,null,{...,Dry{\ : oo, floor),Filled(\ : oo)}).

6: CS(6, null, {..., Spill(S)[Filled(4)], Dry(0, floor), Filled(0),^Filled{4)ob,,
^Dryc{6,floor)[Filled(4)}, Drop{4, ball)}),

Proj(6,null, {..., Dry{\ : oo, floor), ->Filled(5 : oo)}).

7: CS(7, null, {..., Dry(0, floor), Filled(O), ̂ Filled{4)ob,, Drop{4, ball)}),
Proj(7, null, {..., Dry (1 : 5, floor), -^Dry(7 : oo, floor), ^Filled(5 : oo)}).

8: CS(8, null, {..., Dry(0, floor), Filled(O), ̂ Filled(4)ob,, Drop{4, ball)}),
Proj(8,null, {..., Dry{\ : oo, floor), ^Filled{b : oo)}).

This again illustrates behaviour reminiscent of Yale-Shooting-Problem-like scenarios (e.g.
Fred is found alive after the shooting).

7 Examples: Dudley, Nell and the rushing train

In this section we present several examples, starting with a very simple one, to illustrate the
notation and operation of inference rules applied to the Nell and Dudley scenario from Sec-
tion 1. After that, we consider slightly more complex versions of this scenario.

used in their derivation, and (ii) the action(s) in the plan that are used in their derivation. Should the plan be revised
to no longer require any of these actions, the corresponding formula is not inherited in the CS.
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7.1 A simple case

To give a flavour of the deadline-coupled reasoning, we first consider a very simple scenario
and show some steps from Dudley's real-time reasoning.35 Here Dudley knows that Nell is
a distance of 30 'paces' from him when he first realizes (at step 0) that the train will reach
her in 50 time units. He begins to form a plan, seen below in step 1 as Ppl (partial plan), and
refines the plan in subsequent steps. The deadline is 50 in this example, d is Dudley, n is Nell,
h denotes home and r the railroad track. We use the shorthand r — h to denote the distance
between the railroad track (r) and home (h). Subscripted t's indicate times (step numbers).
The term save, which appears as an argument to Ppl, Proj, Goal, and Feasible in step 1, is
a label naming the plan he is forming. The symbol •-•, as it appears in X(s : t»-> R,...),
denotes that X is intended to hold beyond s : t, and up to R (by default). Its use in a result of
an action indicates that the result must be preserved for use in a later segment of the plan. The
number at the right bottom corner of a triplet denotes that triplet's order in the plan sequence.
The subscript obs on a formula indicates that that formula has come in as an observation and
thus is not based on a projection.

Below we indicate the steps of Dudley's reasoning, beginning at step 0, and continuing to
step 42, when Dudley has both formed and enacted a plan to save Nell. Only a few of Dudley's
beliefs are shown below. For additional axioms see Appendix A.

StepO:

Proj(0,mJ/{}),
Goal(«a«e, Outjof jdanger(50, n, r), 50),
Unsolved(0, Outjof jdanger(50, n, r)), . . .

(Step 0 represents Dudley's state of mind before planning had begun, but after he learned that Nell is tied to the
tracks.)

Stepl:

CS(l,null,{...,At{0,d,h)ob.,r- h = 30ob.,Tted(0,n,r)ot,,t1 = t2 + 1}),
Proj(l,nuH,{y4t(l : oo,d,h),Tied(l :oo,n,r)}),
CS(1, save, {..., At(O,d,h)ob.,Tied(0,n,r)ob,}).

Ppl(l,jat>e, < Pull(ti : h,d,n,r)
^ | ut-aJjdanger(tj»-> 50,n,r)

Proj(l,»ave,

Feasible(l, save), ...

(A new plan called save is begun and is initially declared to be feasible.)

MFor fuller details see [45, 59].
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Step 2:
CS(2,*at>e, {...,At(0,d,h)ob,,Tied(0,n,r)ob,,Pull(ti : h,d,n,r),r - h = 30o(,,,t2 < 50,

At(t3:t4,d,r)
Release(t3 :tA,d,n,r)

-.Tted(t,,n,r)
Puil(ti : h,d,n,r)

50,n,r)
Ppl(2, save,

Proj(2, save, {At(l : oo, d,h),Tied{l : oo,n,r)}),
W E T ( 2 , aaue, 2).
Feaslble(2,save), ...

(Plan refinements begin, and now for the first time WET and feasibility are actually computed. The plan in Step
I includes only one action, namely Pull. The PET for Pull is the time required to bind its time variables. There
are no other un-instantiated variables, and it is not part of a sequence. Pull is primitive action which does not need
further refinement. Since it takes one time step, EET for Pull is 1. Thus WET for Pull is 2, which is also the WET
for the partial plan save. For brevity we suppressed the null plan. The pull action in the partial plan of step 1, is added
to the CS of step 2, indicating that the pull action will occur in the context of the plan save.)

Step 3:
CS(3, save, {..., At(0, d, h)ob., T - h = 30^,., Tted(O, n, r)ob,,Pull(ti :h,d, n, r),
OutjoJ jdangere(t2,n, r), Release(t3 : J4,d,n, r),t? < 50, ti = tj — 1,

At(te,d, 1) "I I" At(t3 : t3 + l,d, r)
tj,d,l:r) Release\(t3 : t3 + 1, d, n,r)
t3,d,r) J , [ ^ried(t3 + l»->«i,n,r)

At(t3 +2 : tt,_d,r) "I
fle/easej(t3 + 2 : U,d,n,r)

Ppl(3, save, <

Proj(3 , save, {At(\ : oo,d,/i),Tted(l : oo,n,r)}) ,
W E T ( 3 , save, 7),
Feasible(3, save), ...

(Since the consequence of the pull action is that Nell will be out of danger, this is added to the CS of step 3 as a result
of applying RMP to the appropriate axiom. The WET for Pull is 2 as explained in step 2, that does not change. The
PET for Release is 2 (one to bind the time variables, and another to refine it into primitive actions) and its EET is
3. Thus the WET for Release sums to 5, and the WET for the plan (as of the previous step) is 7, as reflected in the
WET belief.)

Step 4:
CS(4, save, {..., At(0, d, h)^.^ - h = 30ob,, Tied(O,n, T)OI>,, Pull(ti :t2,d, n, r),
Out-ofudangerc(t2,n,r), Release\(t3 : t3 + 1, d, n, r ) , . . . , Run{t% :tj,d,l:r), ->Ttedc(t<, n , r ) ,
h < 50, ti = t2 - 1, t3 = U — 3, U < t i , t« < ty < t3}).

( [ At(t6,d,h) ] [ A t ( t 3 : t 3 + l,d,r) ] ~\
Ppl(4, save,I Run(t6 : h, d, h : r) Release\{t3 : t3 + l ,d,n,r) . . . \),

Proj(4, save, {At(l : co,d,h),Tied(l : oo,n,r),OutjofJUtngeT(tj + 1 : oo,n,r)}),
WET(4,sai;e ,9) ,
Feasible(4,save), ...

(Planning continues as above. The plan in Step 3 consists of three new primitive actions obtained by refining Release
into its three components: Releasei, Releases, and Releases. Of these, Releasei has a PET of I, which is the
step required to bind the time variables, since it is the first of the sequence of the three actions that constitute the
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Release. Once this is bound, the times of the other two are decided automatically. Thus PET for Release? and
Release3 are subsequently zero. The EET for each of them is 1. The Run action has a PET of 3 (one to bind the
time variables, I to refine it, and 1 to bind the other variables). Thus the WET of the plan is now 9. Also, notice that
in this step, the variable I in the Run action has been bound to h by looking it up in the projection.)

Step 5:
CS(5, save, {..., At(0, d,
Pull(ti : t2,d,n,r
t7 < 5 0 , t i = h - l , t 3 =

Ppl(5, save, <

,,,Atc(t7,d, r),Run(t« : I7,d,h : r ) , r - h = 30ob,,Tied{0,n,r
•2inir)i Releasei(t3 : t3 + l,d, n,r), -iTtedc(t4,n,r),

- 3 , t 4 < tute = t7-30, t7 <t3}).
At(t6,d,h) ]

+ l , d , / i : / i + l )

Pace(te, + 1 : t6 + 2, d, h + 1 : h + 2)
At(t6+2t3,d,h + 2)

At(tfj + 29, d, h + 29)

30

Poce(f6 + 29 : te + 30, d, /i + 29 : r)
v4t(<7»-> t3,d, r)

Proj(5, save, {At(l : oo, d, h), Outjof jdanger(t2 + 1 : oo, n, r),
Tted(l : (4 — l , n , r ) , -iT>ed(t4 + 1 : cc>">»")}),
WET(5,5at)e,38),
Feaslble(5, save), . . .

(Because in step 4 it was deduced that Nell will be untied by time t4, in step 5 the projection is revised so that Nell
is tied only until 14 — 1 instead of 00 as before. The WET now takes on significance (becomes large), at last, since
the 30 steps that Dudley must run have been included in its calculation, as the difference between the start and finish
times of Run is known. The PET of fiun, with / instantiated, is now 2, but its EET is 30. This takes the combined
WET to 38. The partial plan is significantly refined in this step to include the paces that he will run. )

Step 6:
CS(6, save, {..., At(O, d, h)obt, Atc(t7,d, r), Runfo :t7,d,h:r),r-h = 30ob,,Tied(0, n, r)ob,,

r), Pull(ti : 1,2, d, n, r), Outjojjdangerc(t2,n, r),
l,d,h:h+ 1 ) , . . . , Pace(te + 29 : t6 + 30,d,/i : r), Releasei(t3 : t3 + l , d , n , r ) ,

t2 <50,ti = t2 - 1, t3 = U - 3, t4 < t i , te = 6, te = t7 - 30, t7 < t3}) ,
f At(6,d,h)

Pace(6 : 7,d, h : h + 1)
[ At(7,d, h+1)

At(7,d,h+ 1)
Pace{7 :8,d,h + l :h + 2)

At(8,d,h + 2)
At(35,d,h + 29)

Pace(35 : 36, d, h + 29 : r)
/lt(36»+ t3,d, r)

Proj(6, save, {At(l : te - l,d, h),... ,At(t7 + 1 :"oo, d, r), Outjof jdanger(t2 + 1 : oo,n,r),
1 tedyl \ 14 — 1,n,r) t —ii tea(£4 + 1 : 00,n tr)f),
VrET(6,savetZ7),
Peaslble(6, save), ...

Ppl (6 , save, {

30

(The start and finish times of the Paces have been bound using Now in this step, since the first action in the plan is a
primitive action that can actually be acted upon. The WET estimate is done similarly, it is 2 for the first Pace (PET
is 1 for binding the time variables, and EET U 1), and 1 for each of the subsequent Paces. Thus the WET is 31 for
the Pace actions, 4 for the Release, and 2 for Pull, totaling to 37.)



132 How to (Plan to) Meet a Deadline Between Now and Then

Step 7:
CS(7, save, {..., At{O,d, h)ob,, Atc(t7, d,r), Run{6 :t7,d,h : r),r - h = 30ob,,Tied(0,n,r)ob,,
~'Tiedc(U,n,r), Pull(ti : t2,d,n,r),Outjofjdangerc(t2,n,r),
Pace(6 :7,d,h + l: h + 2 ) , . . . Pace(35 : 36, d, h + 29 : r), Release\{t3 : t3 + l,d,n,r),
*2 < 50, ti = t? - 1, t3 = t« - 3, t« < t i , t« = 6, is = t7 - 30, t7 < t3)}),

At{7, d, h + 1)
Pace(7 : 8, d, /i + 1 : h + 2)

At(8,d,h
Ppl(7, save, <

At(35,d,h
Pace(35 : 36, d, h + 29 : r)

30
Proj(7, save, {At(l : 5, d, h),..., At(37 : oo, d, r), Out-of jdanger{ti + 1 : oo, n, r),
Tied{\ : t4 - l , n , r ) , ->Tied{t* + 1 : oo,n,r)}),
WET(7,iat;e,36),
Feasible(7,5at)e), .. .

(The ume variables in the partial plan at step 5 have become bound to constants in step 6. Consequently, the WET of
the first Pace was decreased by 1, reducing the WET for the plan to 36. Dudley also performs the first Pace action.)

The following chart summarizes the remainder of Dudley's time-situated reasoning and acting, until he has saved
Nell:

Step number First action in Ppl WET

Step 8: Pace(8:9,d,h + 2:h + 3) W ET{%,save, 35)

Step 9: Pace(9 : 10, d, h + 3 : h + 4) WET(9, save, 34)

Step 34:

Step 35:

Step 36:

Step 37:

Step 38:

Step 39:

Step 40:

Step 41:

Step 42:

Pace{34 : 35,

Pace{35 : 36,

Release^ :

fle/eajei(37

Rcleasci(38

Released

Pull{ti : h -f

Pu//(41 : 42,

Null

d, h + 28 : h + 29)

d , h + 2 9 : r )

t3 + l , d ,n , r )

: 38,d,n,r)

: 39, d,n,r)

: 40, d,n,r)

-M,n,r)

d,n,r)

WET{34,save,9)

WET{35,save,8)

WET{36, save, 7)

WET{37,save,6)

WET{38,save,5)

WET(39,.ave,A)

WET(4Q,save,3)

WET{4\,save,2)

WET{42, save, I)

In the next two sections we consider more complex scenarios from which we have been
able to identify more critical issues and enhance the framework with additional time-situated
planning capability.
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7.2 The knots may be too tight, a knife may be needed

Frequently in planning, a given action has more than one pre-condition that must be satisfied.
Each pre-condition may be satisfied by performing other actions. In such a case the order in
which those actions should be performed becomes an issue.

Suppose that Dudley thinks that a knife may be required to cut the difficult knots around
Nell, and plans for that contingency. He knows of a knife in the house, he projects it to still be
there when he needs to use it. Requiring a knife corresponds to a compound condition for the
action Cutjropes(s : / , . . . ) , namely, At(s : / , d, r) A Have{s : / , d, knife). The inference
rule whereby Dudley can subsequently formulate two plans, one in which he plans to satisfy
Have(...) before At(...) and the other in which this order is reversed, fires. Both conditions
must, however, hold up to the time they are needed for the Cut.ropes action. This is where
•-¥ comes into use. It enables Dudley to notice that when the result of an action is expected to
be preserved up to the time when it is to be used, a plan in which it must be undone in order to
satisfy the condition for a subsequent action, is in fact inefficient, and can be frozen in favour
of another plan.

This inferencing, although domain independent, does not necessarily handle every situation
involving conjunctive goals. It can be thought of as a heuristic aid for commonsense reason-
ing in deadline situations to help in plan selection. In the second plan, picking up the knife
requires Dudley to be at home (the same location as the knife) which interferes with his at-
tempt to preserve At(tn, d, r) until time i4 when he will finish untying Nell. Dudley chooses
to proceed with the first plan, not the second. Below are a few key steps in this reasoning.

Step 3:
CS(3, save, {At(0, d, h)ob,, At(0, knife, h), Tied{0, n, r)ob,,t3 = t4 - 3,...}),

(\ At(t3 : t4,d,r)AHave(t3 : tA,d, knife) 1 \
Ppl(3, save, I Cutjropes(t3 : t 4 , d , n , r ) • > ) ,

[ [ \ J
l

P r o j ( 3 , save, {At(\ : oo,d,h),At{l : o o , knife, h),Tied(\ : t4 - l , n , r ) , . . . } ) . . .

Step 5:
CS(5, savel , {...,

Ppl(5, savel, <

>U(te,<Ui) A At(tfi,knife,h)
Pick.up(t6 : t7, d, knife)
Have(tT-t t^,d, knife)

[ At(ts_,d,l2)
Run(t8 :tg,d,l2:r)

[
CS(5,save2,{...,tA > = t l3 - 1, t i l <

Ppl(5, save2, ),

:tn,d,U:r)
At(tn»+U,d,r) J j

At(ti2,d,l3) A At(te,knife,l3) 1
Pick.up(ti2 : tl3,d, knife)
Have(t\3++ ti,d, knife) J 2

Proj(5, save2, {At(l : co, d, h), At(\ : oo, knife, h),Tied(l : t4 - 1, n, r), . . .}), . . .

(Here Dudley has formed two alternative plans, corresponding to two orders: (i) plan savel: first satisfy At and
then Have, and (ii) plan save2; first satisfy Have and then At.)
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Step 6:

Ppl(6, savel, <

CS(6,

At(t6, d, h) A At(t6, knife, h)
Pickjupfo : h, d, knife)
Have(tT~¥ t+,d, knife)

I" At(t8,d,h) 1
Run(t8 : h,d,h : r) . . .L J

., t6 = t7 -

At(tio,d,h)
Run(tio :tn,d,h:r)

At(ti2,d,h) /\ Atfa, knife, h)
Pick.up{tl2:ti3,d,knife)

Ppl(6, save2,

CS(6, save2, { . . . , t\2 = tj.3 — 1, £4 > ^13, tn *

(Refinement of the two alternative plans continues.)

Step 7:
Freeze(7, savc2), ...

(Since in plan save2 t\2 < '4 and At(tu, d, h) du-contradicts At(tu,...) this plan is judged to be nonpromising
and is frozen (see rule 12 in Appendix B).)

7.3 Another alternative: stop the train!

Here we indulge in a more speculative example (not yet implemented) that further illustrates
the power that is inherent in our approach. Suppose we enhance Dudley's set of axioms so
that he knows about stopping trains, warning drivers and making telephone calls. Then, as he
synthesizes the above obvious plan to run to Nell and untie her, he can simultaneously plan
for another alternative - he could get the driver to stop the train in time! He believes it will
take the driver 2 steps to stop the train, once alerted. But how does he establish contact with
the driver? One way is to go to the nearest telephone and call the train station. Dudley knows
that it is 50 time steps until the deadline. Where is the nearest telephone? His neighbour has
one, and the neighbour lives only 5 paces away. How long will it take Dudley until he can
get the connection? We assume his previous experience with telephones tells him he must
allow 5 steps; he possibly may have to redial several times, i.e. perform a Repeat.until type
of action.36We assume it will take him an additional 5 steps to warn the train driver. Thus,
overall, he will eventually allow 15 steps, but it takes him time to realize this. Dudley can
plan for this stop the train alternative in parallel with the run to Nell and untie her plan, but
we do not illustrate the parallel 'untie' version here (see above).

3 6 Recall this type of action from Section 5.2.
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This plan involves a dimension that we have not alluded to before; it involves the action
of another agent. Unlike the earlier plans, where all actions were under Dudley's control, this
plan depends on an action StopJrain which has to be performed by an agent other than Dud-
ley, in this case, the train driver (denoted dr). How can Dudley plan for this? Dudley has the
following two axioms:

t < 48 A StopJrain(t : t + 2, dr) ->• Outjofjdanger(t + 2,n,r).
Warn(s : t,d,dr) -> Stop-train(t: t + 2,dr).

The second axiom hints at an unknown in the plan: Can Dudley trust the driver to stop the
train? What if a villain is driving the train? Suppose that Dudley does believe, that by warn-
ing the driver he can get him to stop the train, then his plan must include the action Warn, and
his total time estimate must allow for the time taken by the driver in performing the stop. He
cannot attempt to satisfy the conditions for StopJLrain since they are not within his control,
but he must proceed with his bit of the plan, i.e. with warning the driver. The following steps
illustrate his formulation of this plan.

StepO:
CS(0, null, {At(0, d, h)ob., Tied(0, n, r)ob,}),
Goal(stop, Outjof -danger(50, n, r), 50), ...

Stepl:
CS(l,nuH, {At(Q,d,h)ob,,Tied(0,n,r)ob,,t2 < 50, ii = t2 - 2 } ) ,
Goa\(stop, Outjof _danger(50, n, r), 50),

StopJrain(ti : t 2 l dr)
50, n,r

Ppl ( l , stop,

WET(0, 3top,0),
Feaslble( 1, s(op), . . .

(Dudley is forming a plan that includes an action, namely StopJrain, which must be performed by someone else,
the train driver dr.)

Step 2:
CS(2, null, {..., t2 < 50, ti = t2 - 2, t3 = U - 5,U < t i } ) ,

Injcontact(t3 : tt,d,dr)
Wam(t3 : t+,d,dr)

Knowsjabout(ti»-* ti,n,dr)
Ppl(2, atop, <

Stopjtrain(ti : t?,
50,n,r)

WET(2,5top,2),
Feasible(2, stop), ...

1 >

(Since StopJrain is not Dudley's action to perform, he does not refine it; but rather he adds an action Warn to
the plan, which (according to one of his axioms) will cause the driver to perform the StopJrain action, by means
of the result Knows jabout which can be one of the preconditions to Stop-the-train. Dudley now estimates that 5
steps are required to perform the warning, but has not yet included this into the WET, nor has he yet considered the
time it will take to get to the neighbour's house to use a phone, nor to establish a phone connection.)
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Step 3:
CS(3, null, {...,t2 < 5 0 , h - t2 - 1, t3 = U -3,U < ht7 < t3,t7 - 1 > «6 > t7 - 5 } ) ,

f At(t6 : t7,phone,h) K At(t6 : t7,d,h) "I
Repeat-until (t$ : t7, Dial, Get .connection, d, dr)

Ppl(4, stop, i L
 r . - ,

Warn(t3 :74,d,dr)
|_ Knowsjabout(ti»-¥ t\,n,dr) J

WET(3 , j«op ,7 ) ,
Feaslble(3, j top) , . . .

(Dudley adds the Repeat-until action to his plan, in order to make phone contact with train driver. The WET is now
7 ( 5 + 2). The 5-step estimate for making phone contact has not yet been added to the WET, nor have the 5 steps
required for 5 paces to the neighbour's house (phone). These (additions) would occur in subsequent steps.)

8 Towards realism: limited space and computation capacity

We have thus far sketched our original formalism and shown how it is used to tackle the fully
deadline-coupled reasoning problem, further details of which can be found in [45, 59]. The
system described thus far has been implemented in Prolog.37 The implementation serves two
purposes: in addition to confirming that the inference engine indeed performs the desired se-
quence of deliberation and 'execution', it also has brought to our attention the need to address
other problems that we had set aside in the interest of providing a basic treatment of deadlines.
We address these other problems in this section.

The space problem
As time advances, more knowledge is gathered as a result of observations from the agent's
environment and as a result of the deduction processes within. The knowledge base which is
expanding can potentially become so formidable that it would be unrealistic to assume that
the agent could possibly apply all the inferences to all the beliefs in the knowledge base. Usu-
ally, most of the information contained in the knowledge base is not directly relevant to the
development of the agent's current thread of reasoning. Active logics, and our treatment of
deadline-coupled planning in the previous sections, have disregarded the space problem in
preference to dealing with time-related issues. The space issue deserves serious attention as
well.

Unrealistic parallelism
A step is defined as the time required by the agent to perform one inference or one primitive
physical action in the world. Actions can be carried out in parallel if the sensors and effectors
permit. For example, an agent can walk and eat simultaneously. Active-logic planners treat
'think' actions within the agent in the same spirit as physical actions. The original active-logic
inference system assumed that during a given step i the agent can apply all available inference
rules in parallel, to the beliefs at step»— 1. There are two problems with this. One is the unre-
alistic amount of parallelism needed to allow the agent to draw a large number of inferences
in one time step. The second problem is that it is unreasonable to expect that all inference

37Except for Section 7.3.
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rules have the same time granularity. For example, it is unlikely that a simple application of
Modus Ponens will take just as long to fire as an inference rule to refine a plan or check for
plan feasibility, especially as plans become very large. While the representation is uniformly
declarative, some rules have more procedural flavour than others, and thus those rules can be
imagined to require more implementation 'time steps' than less procedural rules. Just as there
is a limit on the physical capabilities of the agent as to how many physical actions can be done
in parallel in the same time step, there is a limit to the parallel capacity of the inference engine
as well.

A claim towards fully deadline-coupled reasoning would be a tall one if the model depicts
an agent with an infinite attention span and infinite think capacity. In this section we propose
an 'active logic7 extension of the original step-logic formalism to take into consideration com-
putational space and time constraints. We revisit the fully deadline-coupled planning problem
in the light of this new framework. For each component that is needed to handle the time and
space limitation, we present one possible heuristic. The effectiveness of these heuristics can
be questioned, but as mentioned earlier, our concern here is not with optimality, but rather
with a time situated framework in which computational limitations can be reasoned about.
(In future work we will consider alternative heuristics aimed at improved performance.)

8.1 A limited span of attention

We propose a tentative solution to the space problem partially based on [20] as follows. The
agent's current focus of attention is limited to a small fixed number of beliefs forming the STM
(short-term memory), while the complete belief set is archived away in a bigger associative
store, namely, LTM (long-term memory). In addition, we use what we call QTM, which is a
technical device to hold the conclusions that result at each step, for 'meta processing' before
the next time step. The size of STM is a fixed number K.38 In general, inferences are drawn
based on beliefs in STM, rather than LTM as a whole.

In the simplest model, STM can be represented as a queue, in which case the inference/
retrieval algorithm reduces to a simple depth-first or breadth-first strategy depending upon
whether new observations and deductions are added to the head or tail of the queue, respec-
tively. Choosing STM elements without consideration of focus leads the reasoning astray
quite easily, and also leads to incomplete reasoning due to thrashing. We propose to maintain
a predicate called Focus which keeps track of the current line of reasoning. This is dynami-
cally changed by the agent's inference mechanism and is responsible for steering the reason-
ing along a particular thread even when a large number of seemingly irrelevant inferences are
drawn. Among the agent's inference rules is a set of focus changing rules, which when fired
alter the focus. Those K beliefs from the associative LTM which are most39 relevant to the
current focus are highlighted to form STM.

In short, the framework can be described as follows. QTMt/i+1 is an intermediate store
of formulas that are theorems derived through the application of inference rules to the formu-
las in STMi (STM at step i). They are candidates for STM at step i + 1, although only K
among them will be selected. Thus the results of the inference rules fall into QTMi/i+\, and

3 8 What is a realistic K for a commonsense reasoner? There is psychological evidence that suggests that human
short-term memory holds seven-plus-or-minus-two 'chunks' of data at one time [55]. What relation, if any, the data
in our model has to a 'chunk' requires further investigation.

39There is then a ranking among the relevant formulas and the K formulas with the highest ranking arc picked. In
our current implementation however, we select the K formulas at random from among the candidate formulas.
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are available for selection via a meta-rule to form STM at the next step. Focus and Now,
which are crucial to time-situated reasoning, are always accessible to the agent for inference.
LTMx+l is LTM, appended with QTMi/i+1.

The main problem in limiting the space of reasoning is to decide what should be in the fo-
cus. In our planning framework, we have developed a mechanism that is at work to limit the
focus to a single feasible plan at a given time step. A list of actions, conditions, and results
from the plan that need further processing form a list of keywords in the focus. Heuristic rules
are proposed to maximize the probability of finding a solution within the deadline. This would
correspond to a sort of a best-first strategy or a beam-search of width K in the general frame-
work. Although these heuristic rules are independent of the instance of the problem in ques-
tion, they are likely to differ depending upon the category of the problem being solved. A
deadline-coupled actor-planner is likely to maintain a much narrower focus than a long-range
'armchair' planner. In Section 8.4, we outline some of the specific heuristic strategies em-
ployed for the tightly time-constrained planner.

8.2 A limited think capacity

Next, we address the bounded computation resource problem. An intelligent agent can be
expected to have a sizable reservoir of inference rules acquired during its lifetime. Firing of
an inference rule corresponds to a 'think' action. Without a bound on its inferencing power, the
agent could fire all the inference rules applicable (termed in conventional production systems
as the conflict set) simultaneously during a time step. We limit the inference capacity of the
engine to / . Each inference rule j is assigned a drain factor d3. This is a measure of the drain
incurred by the inference engine while firing an instance of this rule. For instance, Modus
Ponens and the more elaborate inference rule for plan refinement, would be given different
drain factors to reflect this difference in granularity, i.e. to reflect how much work is required
to apply the rule.40

Our limited-capacity inference engine fires only a subset of the applicable rules in each time
step. Among the various alternatives, it is possible to pick the inference rules either completely
nondeterministically up to the engine capacity / , or one could again apply some heuristics to
improve the agent's chances. Several parameters, such as agent attitudes, the uncertainty of
the environment, or the urgency to act could dictate this choice.

Thus, in effect, during each step, K beliefs are highlighted from the knowledge base (LTM)
to constitute STM. From among the rules applicable to these K beliefs, a subset of rules is
chosen such that the sum of the drain factors does not exceed the engine's inference capacity
/ . The results of the inferencing are put in QTM. Finally, the contents of QTM are copied to
LTM.41

w How to calibrate the inference rules for the assignment of these drain factors is a separate and interesting issue,
but we will not address it presently. Also, how thinking actions compare with physical actions is a technical issue
that could be resolved by trying to calibrate the system to check on the relative speed of its inference cycle with that
of its sensors and motors. We skip this implementation-sensitive issue for the present.

*1 LTM is of unbounded size, however it will grow more or less linearly given that STM has a fixed upper bound, K.
Without the mechanisms of the section (i.e. STM, K, LTM, and QTM) the belief set in general can grow exponentially.
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8.3 On the adequacy of the limited memory model

Let SL(OBS, INF) denote an active logic with an inference function INF, an observation
function OBS, and unlimited memory as described in [21].42 Let SL^ET{OBS, INF) de-
note the corresponding active logic with a limited short-term memory of size K and an algo-
rithm, called FET, describing the strategy for fetching elements into STM.

The following theorem demonstrates that under appropriate conditions, any inference deriv-
able in an active logic with no memory limitation, can also be derived in a memory-limited
active logic. The size of STM (i.e. K) can be as small as two beliefs. One might expect that
for larger Ks a given inference will occur more quickly. However, this is true up to a certain
point only. We discuss this further at the end of the proof.

THEOREM 8.1

Let K > 2. If all the inference rules in INF are monotonic then it is possible to describe a
(simple) algorithm FET such that any theorem of SL(OBS, INF) will eventually appear
as a theorem of SLCET(OBS, INF), i.e. if H; a in SL (a was proven at step i) then 3j such
that \-j a in SLp^(OBS, INF).

Note: the requirement of monotonicity in particular entails that the 'clock'-rule for Now
is left out. Thus the result applies only to Now-free inferences. We also assume that new
observations are consistent with previous facts and derivations.

PROOF. We begin by showing that the following dovetailing transformation on INF into
Dove[INF] yields an equivalent active logic with unbounded memory in terms of the final
theorem set.43 We then show that SL(OBS, Dove[INF]) and SL^iOBS, Dove[INF])
have the same final set of theorems, where the algorithm FET is described below.

Let all the rules in Dove[INF] have at most two antecedent formulas. This is achieved by
transforming every rule in INF which is of the form:

i : Ai,A2,...,An

i + 1 : W

into n rules of the form:

i : A3,.

1:

nn, rn

i + 1 : W
41 In this section, familiarity with the notation in [21] is assumed.
43Note that since all rules in INF are monotonic, the logic itself is monotonic. Thus every theorem proven before

the step of this 'final theorem set' also appears in the final theorem set
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This, of course, can make the number of rules very large, but it allows us to have a very
simple algorithm FET to show that there is no net loss of theorems caused by limiting the size
of STM. Let InfChc denote the inference chain used to derive a theorem a. The algorithm
FET proposed uses dovetailing to ensure that STM cycles through all possible combinations
of beliefs, so that eventually whatever formulas are used in InfCha also occur in STM.

We want, first, to ensure that the algorithm has access to all logical axioms, so we feed
them in lexicographically. At each step, some more (finitely many) logical axioms are added
to the LTM; we feed in all formulas of length < t at step i, that use only the first i symbols
of the language. FET forces STM to cycle through all combinations of beliefs in LTM, all
combinations of two at a time, to allow every rule that could fire to actually fire.

As time goes on, more and more logical axioms are fed into LTM, and also new inference
results are being produced and going into LTM. FET is an algorithm that gets every combi-
nation of two formulas, including new ones that come in by either inference or feeding. We
can conceptualize all formulas (in the entire language) to be already in LTM but only those
that occur in InfCha to be marked red. As time goes on, more and more become red, due to
inference and feeding. We also mark each formula with an index (a unique natural number),
and bring into STM two at a time, and never repeat a pair already brought in; we can imagine
each pair of formulas has a link that become blue when it is brought into STM; so we never
bring a blue-linked pair in again. At each step we bring in a non-blue pair and apply all appli-
cable rules to it. One could either bring in the pair with the smallest index-sum, the pair with
the largest index sum or pick a pair at random, among many alternatives.

FET performs all possible inferences, including those in InfCha, eventually deriving a,
although after many more time steps. I

We can see now that even for very small K (such as 2) there are in the worst case many
combinations of beliefs (e.g. in pairs) to be brought in turn into STM; this is slow. As K in-
creases, the number of combinations gets larger up to a point (the point where K is roughly
half the size of LTM)—the number of such combinations is simply the relevant coefficient of
the binomial expansion. Beyond that point as K approaches the size of LTM, the number of
combinations reduces and is even better than for very small K; and on average it will also be
better in terms of the likelihood of finding an appropriate combination (useful for inference)
sooner. These are time-advantages of large K; however, large K has the space-limitation that
we addressed above. A not implausible suggestion to keep the worst case of inference-time
small and also address the space problem might be to choose A" to be the maximal number of
antecedents in any inference rule.44

In SL(OBS, INF) where there is no limit on memory, partial plans get refined whenever
possible, and the context set is revised at every time step. Also, the projection in the latest
context is recomputed at every time step. With SL^ET(OBS, INF) however, the order in
which these rules will fire depends upon the simultaneous occurrence of the matching formu-
las in STM. If the refinement of the partial plan proceeds before the context set revision, it is
possible that redundant plans will be developed before the context set and the projection will
catch up to let the planner know that something is already true and does not need to be planned
for. As an example, consider a plan in which a condition for a certain action requires that a
certain high-rise building be pink. Dudley may have an axiom which says that all high-rises
are pink, but has not had a chance to apply it to the context set in question to conclude that
the high-rise building in question is pink. Hence he formulates a (redundant) plan to paint the

<4We do noc yet have an optimal choice for K. This is left for future work.
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high-rise pink. Subsequently, as the context set is revised this condition is already true in the
projection and an inference rule needs to be fired to identify and eliminate this portion of the
plan.

We note here that redundant plans of this nature may be generated even in the case of un-
limited memory, if there is a long inference chain based on the facts required to derive the
condition in question. For example, if Dudley does not directly know that all high-rises are
pink, but infers it from the fact that all high-rises are tall structures, that all tall structures are
made of concrete, and that anything made of concrete is pink. Since bringing in all these ax-
ioms and revising the context set may take quite a few steps, it is likely that redundant plans
are generated even in the case of unlimited memory. A rule that corrects this situation is useful
in both cases.

LEMMA 8.2

If the inference rules for plan refinement, context set revision, and computing projection com-
pute all possible instances of PP1, CS and Proj, instead of working on the latest instances
alone, then all the partial plans generated by the unlimited active logic will also be generated
by the bounded active logic where K > 2.

PROOF. When each instance of the partial plan, context set and projection is kept active, the
same combinations that occur in the unlimited active logic will eventually cycle through STM,
giving the same partial plans, in addition to several other plans generated. I

In some cases, where context-set revision precedes planning, in fact efficient plans may be
generated since the planner is in fact more informed about extended effects and side effects
prior to the planning.45

8.4 Heuristic strategies for deadline-coupled planning

In the previous section we presented some formal results on the adequacy of an active logic
to generate the required plans even when there is a bound on the size of STM. The algorithm
FET used to demonstrate this uses a simple breadth-first strategy. In this section we present
other algorithms to be used in place of FET to improve the chances that the formulas used in
the derivation of the plan will appear sooner in STM.

8.4.1 Focus and keywords
As a general approach to limiting space, we proposed that beliefs be organized in LTM by
association with some topics or keywords. When one or more of these topics are in focus,
the related beliefs become candidates for retrieval into STM, as a result of a retrieval rule.
Formulas in STM are not automatically inherited from one step to the next. Only when they
are still relevant to the current focus do they become candidates and must compete with other
relevant formulas to fit into the limited size STM.

4 8 In the FET algorithm, bringing the lowest sum of indices corresponds to a breadth-first strategy. Using highest
sum of indices would correspond to a depth-first strategy. The former will ensure that partial plan refinement will
not get too far ahead of the context-set revision. Once the partial plan is refined, a context set revision rule must fire
since its antecedents were already present in LTM. In the depth-first method, you will refine a plan as far as possible,
then revise CS as much as possible, then project as much as possible, and then alternate. It is interesting to explore
how these will interact. In a random strategy that exhaustively brings in all pairs, arbitrary speeds of the three chains
need to be considered to see its effects on the planning.
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The focus holds the keywords of current interest.46 Beliefs related to high priority topics
are given preference for being brought into STM. As mentioned earlier, for our actor-planner
Dudley we restrict the focus to equal priority keywords related to a single plan at a given time
step. Non-primitive actions that appear in the triplets of a given plan, that still need to be
refined, are appropriate keywords for goal-directed retrieval. Also, the results that appear in
these triplets serve as keywords to deduce the effects of the plan. These are kept in focus as
the formula plan.in.focus(p, PKWL) where p is the name of the partial plan and PKWL
is the list of keywords for p.

Observations are put into the current focus at least for a few time steps, since it is possible
that they may be important, and may trigger some new threads of reasoning.47 Current ob-
servations are kept in the focus as the formula obsJn .focus (OBL) where OBL is the list of
observations that serve as keywords. Thus, we treat the focus as a predicate

Focus(i, planJn.focus(p, PK WL), obsJn.focus(OBL)).

When there are multiple options in STM for achieving a goal, more than one partial plan
is spawned. AH plans for achieving a certain goal may be given equal priority at first, allow-
ing them to continue to develop in a time-shared manner and then to be brought into focus
sequentially. However, in a deadline situation, it may be advisable to commit to a plan (i.e.
to put it in focus and to hold others in a background queue for backtracking if necessary) and
continue with it unless it seems infeasible.

The development of an appropriate plan depends on three aspects: (i) satisfying (pre-) con-
ditions, (ii) refinement of general actions into more detailed ones, and (iii) using the result of
the plan for finding its effects. To illustrate, given a triplet in the Ppl[C,4, A, RA], the follow-
ing are used to compute the extended effects: axioms that produce CA (i.e. CA appears in the
axioms' conclusions), axioms that are used for refinement of A (i.e. A appears in the axioms'
conclusions), and axioms in which RA appears in the antecedent (i.e. RA -* e), to compute
the extended effects. If these three types of axioms are brought into STM, the probability that
a plan will be found is likely to be increased.

8.4.2 Some inference rules for resource limited reasoning
At each step, the agent reflects on its long-term memory reservoir to pick out formulas that
are relevant to its current focus of reasoning using a retrieval rule. LTM is an associative store
and hence this retrieval is fast.48 The focus-directed retrieval meta-rule (FDRR) is as follows.

i : .. ,LTM,{...,P,...},Focus{i,PlanJnJ'ocu3(p,PKWL),ObsJn-Focu3(OBL)),..

i+l:QTMi/i+1{...,P,...}

where 0 is relevant to either p or to a keyword either in PKWL or OBL.
4 6 It has similarities to RTM, proposed in [20]. We imagine that in a more general framework the focus would

contain keywords arranged in a partial order according to priorities.
The main question is how to choose the 'keywords' that are in the focus at a given time, and how to assign priorities

to them. Our ideas presented here are aimed at a commonsense agent engaged in deadline-coupled planning.
4 7 How to in fact select some crucial observations from all the stray input to the sensors remain unaddressed, but

it is not among the problems we will solve at present. A tutor's or a human's hint to the automated agent that some
observations are worthy of more consideration is one possibility. In our example, Dudley may first start to think about
running to Nell to rescue her, when he suddenly sees a telephone. This brings 'calling', and subsequently the related
axiom of calling the driver to stop the train into focus. This spawns the generation of a second plan.

4 8 The retrieval rule is a weak parallel of the inheritance rule in Elgot-Drapkin's step logics, in the sense that for-
mulas in STM at the previous step reappear in STM at the current step provided they arc still relevant.
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In our work on planning, the Focus includes keywords related to a feasible plan. A (partial)
plan is feasible if the sum of Now and the plan's working estimate of time is still within the
deadline. A list of feasible partial plans is maintained. From among these a subset of plans is
selected to work on and is called the interleaving list (IL). Dudley works on each plan in the
interleaving list for a fixed period number of steps, then goes on to the next plan in the IL in
round robin fashion. The interleaving rule (ILR) serves this purpose by periodically selecting
the next plan in the IL to put into the focus. This is one of the focus changing rules in Dudley's
inference engine.49 This rule time-shares between plans and always fires. A separate rule
controls the contents of IL.
The Interleaving Rule (ILR) is

i)IL(\pjpi ])
y l > if i mod period = 0.« + 1 : F o c u a ( i + \ , p l a n J n . f o c u 3 ( P ] l , . . . ) , . . . ) , I L ( \ p J 2 , . . . , p J n , P ] i ] )

When there are two or more plans in the EL and it is time to choose between them, a rule
fires to narrow the focus to only one plan. We hypothesize that the difficult problem of 'when
to decide to choose' depends on mental states and attitudes of agents [71]. A more 'cautious'
type of agent will skeptically continue to process two alternatives, perhaps risking overshoot-
ing the deadline, but a more 'daring* type of agent will take the risk to pursue just one plan.
We have developed a heuristic rule under the following commonsense observation: an agent
can continue to work on several plans provided there is ample time ahead to try to pursue them
one after another in the interest of fault tolerance. For example, even after calling the driver
to stop the train, Dudley may want to run to the railroad track and attempt the rescue Nell
nevertheless, if there is enough remaining time. An agent may do so as a guard against possi-
ble failure of his own or other agents' plans, or perhaps as an extra precaution when the plans
are not recognized to be mutually exclusive. We look then at the sum of the WETs of all the
plans in the IL as a measure of the overhead planning time. When the sum of the WETs plus
Now exceeds the deadline, a plan is dropped from the IL. We currently use the simple heuris-
tic of dropping the plan with the largest WET, but recognize that this may very well be the
most refined plan as well.50 The Reduce-IL rule (RILR) achieves this:

An agent may be forced into a decision if two or more plans are ripe for action and the
actions are mutually exclusive. The agent must evaluate the relative merits of the plans before
making a decision if acting on one will commit the agent to one plan. Although we do allow
planning and acting to be interleaved, we allow the agent to act on a plan if it is the only one in
IL. This is to avoid the complex interactions between plans as the result of the changed state of

49Other scheduling procedures that were developed by operating systems researchers such as swapping, time-
sharing, etc. might be useful here, but this is beyond the scope of our paper. We only demonstrate how such pro-
cedures can be used in time.

5 0 If one can find a way to include a good estimate of planning time (and probably decision time) into the WET it
seems that more refined plans will require less planning time than other plans. Maybe, the three parts of the WET
should not be combined and (he decision whether to knock out a plan from the IL should be made using some sort of
multi-attribute decision rule (i.e. based on executing time, planning time and decision time).

Additional bookkeeping is necessary to ensure that two rules do not alter the IL or the focus simultaneously. We
skip these implementation details in this description.
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FIG. 3: Pursuing two alternatives within space limitations. Dudley develops two alternative
plans in a time-shared fashion until there comes a time when the sum of their WETs plus Now
is no longer within the deadline. The figure shows a snapshot of the two plans at such a time
step. Dudley exercises a choice through the rule RILR which reduces the interleaving list to
the plan to call the driver of the train. Abbreviations used are: n = nell, d - dudley, r = the
railroad track, nh = the neighbour's house, and dr = the driver of the train.

the world following the execution of one plan. We continue to examine this issue in ongoing
work.

8.4.3 Capacity of the inference engine
As mentioned earlier, we suggested a limited capacity inference engine that would fire a cu-
mulative set of inference rules in order to not exceed its inference capacity in each time step.
In the simplistic examples that we present, there are a limited number of rules firing at each
step. Furthermore, if the plan length is within a reasonable bound, drain factors of the rules
are also quite small and as a first approximation we postulate them to each take roughly the
same time and fire in parallel in a single step whenever applicable. It should be noted that the
meta-rules for resource limited reasoning which were described above fire alongside the other
object level inferencing at each step as part of a uniform framework. If we limit the capacity
of the engine, the meta-rules that are fired will limit the number of planning rules that are fired
in each step.

8.4.4 Some illustrations from two plans
Dudley begins to formulate a plan save to get Nell Outjof-danger. Initially, the focus con-
sists of FOCUB(J,planJn.focus(save, [Outjjfjdanger(...)]),...), and the interleaving list
is IL([save\). Here, save is the name of the partial plan and is used to retrieve formulas re-
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lated to the plan such as its WET, its context set, projection, etc. The list of keywords for
this plan contains Out-ofjdanger. It is used to retrieve axioms from LTM whose right-hand
side matches the keyword. Thus, the plan save bifurcates into savei and save? based on the
following axioms which are retrieved from LTM:

Pull(t :t + l,y,x,l)-> Oxitjof jdanger{t + 1, x, /

StopJrain(t : t + 2, driver) -»• Out JO j-danger(t + 2,nell,r)

Plan 1: Pull NeU away from the tracks
-vTted(tii,n,r)

Ppl(ll,sauel, Pull(t u >)• {fi2 < Deadline,tn = ti2 - 1}
Outjojjdanger(ti2*-* Deadline,n,r)

Plan 2: Stop the train
Knowsjabout(t2i ,n, dr) "1 ^

Ppl(ll, jauej, { | 5topJra«n(t2i : t22<dr) >), {t22 < Deadline,t2i = t22 - 2}
Outjafjdanger(t22»-¥ Deadline,n,r) J J• II

The interleaving list is expanded to contain both savei and save2, and Dudley continues
to work on both feasible plans in a time-shared fashion. The focus thus contains savei for an
interleaving period during which axioms for untying Nell and running to her are progressively
retrieved from LTM. Other facts of no relevance to the plan, such as color -o/_eyes(...), or
that are relevant to the other plan, such as the axioms about dialing to get a connection are left
alone in LTM. After the period expires, savei is brought into focus and worked on in a similar
fashion. It is not until much later that Dudley realizes that the sum of the WETs of both plans
plus Now is going to overshoot the deadline, and he must restrict the IL using the RILR rule.
We show a snapshot of the two plans when this happens in Figure 3, in which we have made
the simplifying assumption that dialing will always result in establishing contact.

Using this heuristic, Dudley gives up the plan with the higher WET, which in this case hap-
pens to be the one to run to Nell, and executes the plan to go to the neighbour's house to call
the driver to stop the train instead. (The run to the railroad tracks is longer than the run to the
neighbour's house.) The sum of the WETs exceeding the deadline, Dudley starts to run in the
direction of the neighbour's house and removes savei from the IL, still retaining it in the list
of feasible plans to be available in case of unanticipated run-time failure.

9 Related work

Here we briefly summarize related planning and reasoning research and contrast it with our
approach. A recent issue of Artificial Intelligence (vol. 76, nos. 1-2) is devoted to the topic
of planning and scheduling; two papers there bear at least some general relationship to our
concerns here: [11] specifically addresses the issue of planning under time constraints, but
oriented to stochastic domains and not particularly concerned with deadlines. [69] is a logic-
based approach to planning, but with a very different emphasis, where multivalued logic is
used to represent graded preferences rather than time. There is, however, an extensive related
literature, which we summarize below, treating in turn the areas of (i) temporal projection, (ii)
plan interaction, and (iii) meta-planning.
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9.1 Temporal projection

The issue of temporal projection has been extensively studied in the AI literature. In particular,
much effort was devoted to the problem of forward temporal projections, or predictions that
are necessary for planning. This is the problem of determining all the facts that will be true
during a future time period, given a partial description of the facts that are known. Numerous
solutions have been proposed to the temporal projection problem including [4,25,27, 32,42,
49, 50, 56, 62,70].

Our projection mechanism has commonalities with some of the chronological minimiza-
tion approaches, notably those of Shoham [70], Lifschitz [49], and Kautz [42]. In our ap-
proach, as well as theirs, defaults are applied forward in time, so that earlier events play out
their consequences for later ones. However, these other approaches specialize in forward tem-
poral projection problems and can also handle backward projections, but cannot solve expla-
nation problems or be used by an active agent who may obtain new information while doing
projections. Our projection mechanism provides an active agent with the capability to revise
its conclusions, in light of new observations, to give explanations to previous events, and to
use its predictions in planning.

Ginsberg and Smith [30] present an approach of reasoning about action and change using
possible worlds. The approach involves keeping a single model of the world that is updated
when actions are performed. The update procedure involves constructing the nearest possible
world to the current one in which the consequences of the actions under consideration hold.
There is no explicit notion of time in this approach and the reasoning is done by an 'outside'
reasoner, hence the time of reasoning is not a concern.

Dean and McDermott [ 12] present techniques for temporal database management. They al-
low two types of prediction in their system: projection and refinement. Their system is based
on a temporal map that can be described by a graph in which the nodes are instants of time
associated with the beginning and ending of events, and the arcs connecting these nodes de-
scribe relations between pairs of instants. We use ordered lists as a (simpler) data structure,
and in our framework time is associated with events and predicates, and not the other way
around as in [12];51 however, the projection is done in a similar way.

As in previous systems we discussed, Dean and McDermott describe their mechanism as
'reasoning about time from the outside. It's as though all of what you know about the past,
present and future is laid out in front of you'. We consider reasoning done by an agent in
time. It has only the past and the present in front of it, and it places the passage of time into
its reasoning process.

Amsterdam [3] appears to be the only work other than ours of which we are aware that at-
tempts to discuss the issue of who the reasoner is in a given scenario. Amsterdam highlights
the advantage which a reasoner has when he/she is at the site of the action, namely, that he/she
can observe an action whenever it happens. This allows the agent to utilize the closure prop-
erty - 'if an action is not mentioned then it did not happen'. However, here again, there is a
meta-reasoner doing the inference. Amsterdam's theory's greatest limitation (and this is stated
in [3]) is the rigidity of the above mentioned closure principle. There are scenarios where ac-
tions can be derived from propositions and hence do not have to be explicitly specified.

8 1 Our projection mechanism is similar to thai of [12], but we distinguish the case where a change occurs but it is
not clear when it occurs. In particular, if a,- is of the form X(sj : fj,Args) and a , + i is of the form -i.Y(sj+i :
fj+i,Args) then P r o j | + l p does not speculate over the truth or falsity of X over the interval f} + 1 : »j+i — 1.
The projection rule will smooth over this interval when further information about a possible point of time where the
value of X changes becomes available.
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9.2 Plan interactions and dependencies

The Sussman anomaly [72] showed that certain planning situations are intrinsically non-linear.
Waldinger [76] first suggested the technique of 'goal regression' to tackle the problem of con-
junctive goals. With INTERPLAN [73], Tate suggested recording a link between the effect of
one action and the condition of another. (We have used a similar idea in using the •-¥ sym-
bol to record the need to preserve a certain effect of an action until a later time.) NOAH's
procedural nets, and SOUP (Semantics of User's Problem) [68] used critics which are outside
advisors that perform decision making regarding non-linearity and plan optimization; this was
the first partial-order planning. We have a total-order planner, simply because it turned out to
be the simplest kind to build while we concentrated on the time-related aspects. We commit
to a sequence of actions, but the actual times at which the action must be executed is bound to
Now only at the time of acting. NONLIN [74] can detect interactions and take the necessary
corrective action. DEVISER [75] goes a step further and handles time limits while performing
partial order planning. Planning with conditional operators and iterators has been dealt with
in NOAH [68] and in SIPE [78], among others.

There have been numerous efforts to improve planning by recognizing goal interactions
and dependencies during the planning process, and better representations of actions and plans
(see [34] and [2].) These efforts recognize the need to use features of the plan to reason about
improving the plan, but this is not done by the planner itself. In our work, although we do not
make any attempts to optimize plans, we perform domain-independent meta-level reasoning
within the same framework as the object-level planning; and unlike the 'critics' [68], the meta-
reasoning is an intrinsic part of the planning that also consumes time.

9.3 Meta-planning

One way to implement meta-level decision making is to design two distinct component sys-
tems, one for object-level and one for meta-level reasoning. The other way (which we have
followed here) is to design a uniform meta-level architecture where the meta-level problems
are formulated and treated with the same language, structures, and algorithms as the base-level
problems. This introduces flexible systems, but along with it also introduces the possibility
of infinite regress. This is the meta-reasoning challenge, well described in [66]. An aim of
the model by Russell and Wefald is to establish a methodology for applying rational meta-
reasoning to control any object level decision procedure. We try to provide a more axiomatic
foundation. Also, Russell and Wefald assume the outcome of each external action is known at
the time the agent chooses among them. We, by contrast, make no such assumption; we argue
that in some cases at least, the agent cannot know these outcomes and must instead take note
of how long an action is taking as it is performed. When there is available information for
reliable (or assumed reliable) estimates in advance, our approach can also make use of these.

Reactive systems eschew meta-level planning, and indeed any kind of planning, by con-
sidering all contingencies at design time. Typical of this group is the work of Brooks [6, 7].
Other efforts that obviate the need for explicit reasoning at execution time are [1] and [65]
and [41]. In the problems that we have dealt with in this paper, which fall in the 'unforeseen'
category, the fully reactive approach is often believed to lead to brittle and inflexible systems
if no real-time deliberation is performed [9, 15, 64, 40].52

5 2 Partial reactivity to the environment is achieved in our formalism by taking timely note of changes in the environ-
ment through observations. However, we simply incorporate the observations into the ongoing deliberative process
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At the middle of the deliberation spectrum, many researchers agree that some form of de-
liberation is necessary in planning. We mention a few of these here. SIPE [78] separates ex-
ecution and generation by allowing the user to guide the planning process (perform the meta-
reasoning) during execution. The PRS system [26] uses meta-reasoning to recognize the need
for additional planning. More recently [40] proposed a situated architecture for real-time rea-
soning. Based on PRS, it provides management representation of meta-reasoning strategies
in the form of meta-level plans, and describes an interpreter that selects and executes them.
Their architecture is not fully embedded in real time though, since the time of this interpreter
is not accounted for.

Our fully deadline-coupled planner meets an important criterion that these other efforts fail
to meet: in addition to performing meta-reasoning for determining the current time, estimating
the expected execution time of partially completed plans, and discarding alternatives that are
deadline-infeasible, our system also has a built-in way of accounting for all the time spent
as a deadline approaches. This means not only accounting for the time of various segments
(procedures in die more usual approaches), but also the time for this very accounting for time!
Active logics do this without a vicious circle of 'meta-meta-meta...' hierarchies.

An excellent survey of research in deliberative real-time AI is available in [24]. They cate-
gorize real-time systems into purely reactive (those that hardwire reactions completely), com-
bined response systems (those that have distinct asynchronous components that handle delib-
eration and reaction) and integrated systems (those that have a single architecture that is ca-
pable of a wide range of timely responses depending upon the time criticality requirements).
Those in the last category put the time that is available to the best use. These approaches
have been collectively characterized by terms such as flexible computation [38], deliberation
scheduling [5], and anytime algorithms [13, 79]. They spend the resources available to the
agent in deciding whether to act, how to act, and when to act. The main differences between
our approach and these is the following: (i) they do not account for the time-cost of the deliber-
ation scheduling algorithms themselves, only for the cost of deliberation that they consider;
while our mechanism is completely situated in time; (ii) they require prior complex (meta)
knowledge about their reasoning algorithms or procedures themselves, and their characteris-
tics with respect to time; they also require a great deal of knowledge about the domain in the
form of probabilities of events and expected utilities of actions that the agent must be aware
of; (iii) they usually attempt to solve an optimization problem in a specific domain, whereas
our approach is to come up with a formalism that accounts for all the time spent between Now
and the deadline while attempting to reason about the feasibility of a solution, not to find an
optimal solution. Thus, we note that these approaches are not alternatives to our time-situated
reasoning approach using active logics, but rather that they are suited for a different range of
more informed problem solving.

'Anytime algorithms' is a now widely used term, first coined by Dean and Boddy [13]. It
represents a class of deliberation algorithms which have the following characteristics: (i) They
can be interrupted at any time and will produce some solution to the problem; (ii) given more
time they will produce better solutions; and (iii) the user of the algorithm has some explicit
characterization of the tradeoff between the algorithm's performance and the amount of time
mat is available to compute a solution.

Anytime algorithms are similar in spirit to the notion of "imprecise computation' commonly
used in research in operating systems which divides the task into a mandatory part that gives a
solution and an optionalpait that refines this solution. The problems that have been attempted

of reasoning; they do not trigger any special reactive components.
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using the anytime technique have the flavour of more traditional optimization problems, which
by themselves cannot cover the space of planning problems. The feature of 'interruptibility' of
anytime algorithms is not particularly one of great value in deadline-coupled planning in com-
monsense scenarios involving hard and non-extensible deadlines. We want Dudley to come
up with a feasible solution by the deadline (if possible). We do not care if at any point of
time he has found an approximate solution of an inferior quality. Having that assurance is not
crucial.

Also, in the anytime approach, the time for computation is not accounted for: 'The time
required for deliberation scheduling will not be factored into the overall time allowed for de-
liberation. For the techniques we are concerned with, we will demonstrate that deliberation
scheduling is simple, and, hence, if the number of predicted events is relatively small, the time
required for deliberation can be considered negligible' [13] (page 50). In the model we are
employing, there is also a simple meta-reasoning process (computing WET, deciding among
alternative plans, etc.); but its time is not always precomputed but rather assessed as it occurs;
and our underlying framework provides a general mechanism that measures the time utilized
in any computation whatsoever (even if in future work we employ more complicated metar-
easoning such as utility-calculations, etc.).

Work by Horvitz et al. [35, 36, 38] attacks problems that may be classified as 'high-stakes
decision problems'. A typical example is in the medical domain where the decision making
is complex, but highly informed. Most of the options and quantified information regarding
relationships among decisions and propositions is available in the form of influence diagrams.
Horvitz et al. have also addressed the problem of dividing computational resources between
meta-reasoning and object-level problem solving, particularly in the case when both are being
solved using anytime algorithms [37]. By the use of mathematical functions which assume
particular forms for the various utilities, they manage to keep the meta-reasoning cost quite
small or constant. Our work by contrast makes no assumptions of highly informed domains
or computable utilities. Thus the 'expert' planning of Horvitz et al. allows the possibility of
much greater optimization than does the commonsense 'inexpert' planning of Dudley.

In an approach that is inspired by economics, Etzioni [22] addresses the problem for a time-
constrained agent using special terms commonly used in economics. When a particular re-
source is available in limited quantity, it renders competing actions mutually exclusive. He
defines an opportunity cost for each action, which is the maximum of the utilities of the other
contending actions. He suggests a heuristic to choose the action with the highest marginal
utility, without assuming prior knowledge of the utilities. There is a learning mechanism that
calculates them through repeated executions. It seems that it would be possible in principle
to implement Etzioni's methods within our active-logic framework.

Lastly we mention work in the direction of building systems and architectures that exhibit
desirable real-time behaviours, although not all components of these systems function in the
real-time domain: Guardian [33] Phoenix [39] and PRS [40]. FORBIN [14] which is a plan-
ning architecture that supports hierarchical planning involving reasoning about deadlines,
travel time, and resources are some examples of such systems. TTLEWORLD [64] is a simu-
lated dynamic and unpredictable parametrized agent and environment. It is possible to exper-
iment with the behaviour of the agent and various meta-level strategies by tuning parameters
of the TTLEWORLD system. Once again, although all the reasoning here is not performed in
real time, many of their observations, especially regarding the manifestation of agent attitudes
through the tuning of parameters could be of use in the development of an active logic where
the active logic can self-adjust its parameters to the environment to decide the level of risk or
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deliberation it can perform.

10 Conclusions and future work
We have argued for the need for reasoning about time-of-planning to be included in the plan-
ning activity itself, especially in deadline situations. We then presented an illustrative sce-
nario and a solution using active logics. We also examined a method for addressing space
limitations, by introducing a short-term memory (STM) into the logic, and we showed that
under certain conditions the resulting logic loses no power when so limited. We also discussed
heuristics to improve the performance (but at the possible expense of proof-power).

Our work provides a uniform declarative framework that accounts for the time taken dur-
ing planning and acting as they occur, allowing therefore meta-decisions about the course of
such activity; the time for these meta-decisions is also measured and accounted for, not in
advance but rather on-line. There is no infinite regress of meta-meta-meta-reasoning, since
there is a built-in clock that is both declarative and procedural: the clock-time (Now) auto-
matically updates the declarative belief base at every step, allowing the agent to maintain an
up-to-date assessment of how much time has been taken, how much remains, and where the
planning/acting situation stands. Even time taken to decide whether to refine or freeze (tem-
porarily abandon) a plan-alternative is measured by the same mechanisms.

Among the many things that remain to be investigated, we single out two: (i) The planning
we have considered is of a very elementary sort, compared to the current state of automated
planning research. We have chosen to focus on the total-time-accounting aspect, and that has
presented us with many severe challenges. However, we want to bring this line of work up
to the level of being able to produce plausible plans in the same domains as other automated
planners, with our added feature of total time-accounting, (ii) We want to incorporate our own
related work on other (non-planning) problems involving time-accounting, such as a real-time
version of the Yale shooting problem, to achieve an integrated formal real-time (in our sense
of time-accounting) system for both planning and problem-solving.
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Appendices

A Sample axioms
Relevant to moving:53

• Run(ti :h,y,ll • h) -+ At(t2,y,l2) M = ti + (h - li)/vy
M

• condition(Run(ti : t j , j / , / i • h), At(t\,y,li))

• result(Run(ti :h,y,li : h), At(tj,y, l2))
Relevant to untying and releasing:
• Pull(t :t+l,x,l)-y OutJ}fjianger(t + l , x , / )

• condition(Pull(t : t~+T,x,l)

• result(Pull(t : t + 1, x, /), Out-ofjdanger(t + 1, i , /))

• Pick.up(t : t + l,y,x) ->• Have(t + l ,y,x)

• rcsult(Pick.up(t : t + 1 , y , x ) , Have(t :t+l,y,x))

• condttion(Pick-up(t : t + l , y , x ) ,
At(t : t+ \,x,l)AAt(t : t + l ,y , / ) )

Relevant to telephones and warning:
• condition(Warn(s :t,x,y), Injcontact(s : t,x,y))

• result(RepeatMntii(s :t, Dial,Getjconncction,x,y), Injcontact(x,y))

• c o n d i t i o n ( ( D i a l , A t ( s : t , x , l ) /\ A t ( s : t , p h o n e , I))

B Sample inference rules
This section contains a sample subset of domain-independent inference rules for the active logic for deadline coupled
planning.
1. The agent makes an observation

. a 6 O B S ( i
t + 1 : C S ( t + l ,p , { . . . ,a

An observation is incorporated into the context set of every plan p being processed. In particular the null plan
maintains a context consisting of all observations and the theorems that come to be proven in this context. Note that

6 3 These constitute a part of the current set of axioms and inference rules. [59,45] gives a more comprehensive ini-
tial set Note that we employ a standard quasi-quote notation throughout, allowing a predicate symbol such as Run to
appear also inside other predicates, e.g. condition('Run...'), and then suppress the quotes, yielding condition(Run...).

M v v is y's speed while running.
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this rule is a modified form of the original active logic observation rule which did not have to make the distinction
between contexts. In the absence of any planning or temporal projection, the context of the null plan bears close
resemblance to the belief set of the SLj logics of Elgot-Drapkin.

2. Forms the first partial plan(s) by finding a triplet for the goal

. Now(i) , Goal(t, G(s : / , . . . ) , Deadline.G), Unsolved(», G),
.. .,Reault(Ak,RAlt(sk : fk,...)),Condition(Ak,CAk), A k - + G , . . . } ) . . .

CS(t + l ,p f c ,CS i i n u / , )Proj ( t + l,pk, {})
Feasible(i + l,Pfc)WET(i + l,ph,O)...

i f G g P r o j , | T , u / ( U C S , , n u , , .
When Dudley has a goal that is not currently being planned for, he develops the first partial plan(s) for solving it.
For every available action Ak (or conjunction of actions) that solves the goal he generates a new plan and calls
it by a name pk. In short, corresponding to every axiom with the consequent G he performs backward reasoning
to deduce the actions that must be done to achieve G. The time of the action is linked the deadline by the •-»•
symbol which denotes that the result of the action must be protected until the deadline. We give a simple example
to illustrate this rule.

5 : Now(5), Goal(5, /U(10, dudley, home), 10),
Unsolved(5 , /U(10, dudley, home)),
CS(5, null, {..., Re3ult(Walk(tl : t2, dudley, garden : home, Walkspeed),
At(t + 3, dudley, home)),
Condition(Walk(t : t2, dudley, garden : home, Walk speed),
At(t, dudley, garden)),
Walk{t : t2, dudley, garden : home, Walkspeed) -+ At(t2, dudley, home),...})

6 : Ppl(6, walk.it• { [
At(t, dudley, garden)

Walk(t : t2, dudley, garden : home, Walkjipeed)
At(t2*-y 10, dudley, home)

3. Adds an action to the plan to satisfy a condition

i:Ppl(,., ( [ ' £ ' ] } .
:Pp l ( t

For every condition C in the condition list of an action that is not projected to be true, if there is an axiom for
satisfying it. Dudley adds the corresponding action to the plan. If there is more than one axiom for satisfying the
same condition, Dudley formulates a plan for each possibility, and indexes the name of the partial plan with a new
suffix to distinguish the new plans.

4. Refines a non-primitive action

i : Ppl( i

: Pp!(t

L «Q* J J
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provided every condition CA £ CS, , P U P r o j ; p .

The active-logic planner is hierarchical. Abstraction is embodied in the way the axioms encode the knowledge
about actions. Skeleton plans at upper levels first synthesized by using higher level actions. These are then broken
into more primitive actions by rules such as the action refinement rule described above. As the refinement pro-
gresses, better estimates of the execution time of the plan become available. The context set maintains the actions
reasoned about at all levels. Further, these actions are used to annotate any reasoning based on them. Lower level
actions are annotated by the higher level action that they refine (see the context set rule from Section 6.3). In the
event replanning becomes necessary, this provides the mechanism to revise a plan by substituting an action and all
the actions below it in the hierarchy when required. Our design allows for the concurrent processing of levels, and
for concurrent refinement of multiple partial plans.55

5. Includes a Conditional action in the plan

i : P p l ( t , p ,
{•••,CAt)

A ),CS{i,p,{...,C*Q->CAt})

{c}ucQ
Q

{...,cAk}
A

i f C £ P r o j i p U C S , , p

When an axiom CAQ -> CAk is found to be a way to satisfy a (sub)goal CAk, the action Q itself is not sufficient
for CAk. C has to be true in the projection as well. This is taken care of by adding C in addition to the conditions
for Q in the action triplet introduced in the plan.

6. Executes an action

i:Ppl(itp,
CA

This inference rule executes an action when its start time has been bound to the current Now by the agent. The time
for some actions is decided right when they are inserted into the plan, for others it must be decided by a specific
inference rule. In our present implementation, we execute a primitive action as soon as its conditions arc satisfied.

7. Includes a Rcpeal-unlil action in the plan with signalling-condition SCA

i : Ppl(i-P.

CS(i ,p, {. .., Repeat.until(s : t,A,SCA,...) -> C B , c o n d i t i o n e d ) } )

: Ppl(t
CA(s:t,...)

Repeat-until(s : t,A,SCA,...)
CB

The above inference rule adds a rcpeat-until type of action to the plan. The condition of the repeat-until action is
the condition for the repeated part, but maintained over the entire duration of the outer loop.

5 6 More on restricting parallelism is in Section 8.
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8. Executes a Repeat-until action in the plan

cA
Repeat.until(i : t,A,SCA,. ••)

t + 1 : Ppl(i + l ,p, • Repeat.until(i + 1 : t, A,SCA,...)

i f S C £ C S , , p U P r o j 1 | P .

9. Completes execution of a Repeat-until action when a signalling-condition appears

t:Ppl(i ,p,J Repeat.until(s : t,A,SCA,...) ... \), CS(i,p, {..., SCA})

t + 1 : Ppl(t + l , p , { . . . } )

10. Spawns the generation of multiple plans on encountering a compound condition*6

C'A(R:a,...)AC"A(v:w,...)

A

RA

cs(i,P,{A' ->c; ,A" ->c"})

Ppl(pi,t

Ppl(P2,»

A' A"
'A(P:Q~s) J,_2

*f 1
,-_2 L C'A{P:Q~,) \]_1

This inference rule encodes the linear planning strategy of our planner. Clearly, a total ordering such as this will
cause the generation of non-optimal and sometimes even redundant plans. We have some heuristic inference rules
that identify some obvious redundancies in a planner and identify the presence of loops. In general though, we
have not focused on plan optimization. One heuristic rule that identifies a redundant plan and rejects in favour of
a better one is described below.

11. Freeze a plan when it is found to be inefficient

CAk(v:w,...)

i + 1 : Freeze(i,p)

if P : a and v : w overlap, and RA • and CAk are in direct or uniqueness contradiction.

Received 2 June 1993

^This rule can be easily generalized to more than two conjuncts in a condition.


