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Abstract

In planning situations involving tight deadlines a commonsense reasoner may spend a sub-
stantial amount of the available time in reasoning toward and about the formulation of the
(partial) plan. This reasoning involves, but is not limited to, (partial) plan formulation,
making decisions about available and conceivable alternatives, plan sequencing, and also
plan failure and revision. However, the time taken in reasoning about a plan brings the
deadline closer. The reasoner should therefore take account of the passage of time during
that same reasoning, and this accounting must continuously affect every decision under time-
pressure. Step-logics were introduced as a mechanism for reasoning situated in time. We
employ an extension of them here, called “active logics”, to create a logic-based planner that
lets a time-situated reasoner keep track of an approaching deadline as he/she makes (and
enacts) his/her plan, thereby treating all facets of planning (including plan-formation and
its simultaneous or subsequent execution) as deadline-coupled. While an agent under severe
time-pressure may spend a substantial amount of the available time in reasoning toward and
about a plan of action, in a realistic setting the same agent must also measure up to two
other crucial resource limitations as well, namely space and computation bounds.

We address these concerns and offer some solutions by introducing a limited short-term
memory combined with a primitive relevance mechanism, and a limited-capacity inference
engine. We propose heuristics to maximize an agent’s chances of meeting a deadline within
these additional realistic constraints. We give examples from commonsense planning, includ-
ing ones we have solved and implemented in Prolog.

*Kraus is also affiliated with the Institute for Advanced Computer Studies University of Maryland,
College Park, MD 20742



1 Introduction

Time is the most obvious critical resource in planning with deadline constraints. There
is a given moment d (for deadline) in the future by which a goal G must be achieved,
and the agent’s task is to find a suitable plan to achieve G and enact it before time
d. This means that as time proceeds, at any point of time, both the planning and the
enacting of the resulting plan must take no more than (d — Now) time units, where
Now is the current time.

Proper planning often involves “meta-planning”, in order to adjudicate between
alternative plans, reject infeasible plans, and so on. But that takes time too! Action,
which takes time, occurs in the very process of thinking or reasoning, including such
meta-reasoning. In [63], it is argued that, traditionally, actions in Al are viewed as
separate from the planning process which leads to those actions. Even when the two
are intertwined, as in real-time, dynamic or reactive planning, the planning effort is
treated as a different kind of beast, not an action itself. Just as it is essential to
understand certain features of actions in order to make an intelligent choice of actions
in a plan, it is necessary to reflect upon features of planning to make intelligent
decisions while planning.

When the reasoning is not carried out within but rather only about a deadline
situation the time for meta-planning does not enter the computation. However, in
reality, meta-planning often itself must go on as the deadline approaches. To be sure,
in some commonly encountered situations the time taken for meta-planning may be
very short. But what of highly novel settings in which one cannot a prior: assign
expected utilities to various conceivable options or refinements? Then the planner is
forced to decide on utilities and other factors in real time. In these cases it seems
unlikely that such meta-planning will always have a modest time cost. Clearly, the
emphasis then is not on searching for a theoretically optimal plan, but one which is
speculated to work within the deadline. The reasoner must have the flexibility to
interleave planning and execution, not only because there may not be enough time
to wait until a complete plan is formulated, but because future planning actions may
depend upon the outcomes of earlier executions.

The importance of accounting for time of meta-planning as part of overall time of
planning and acting then is real. But in general it may be impossible to determine
in advance how long meta-planning will take. An alternate perspective, which we
explore here, is to measure how long planning, meta-planning, and acting are in fact
taking, and use this increasing time measure to help decide how to continue in the
planning/meta-planning/acting vis-a-vis the approaching deadline.

Thus our approach is not to provide a special technique for pre-computing time
for meta-reasoning (which we suspect is indeterminate, in general) but rather one in
which the reasoning and meta-reasoning are performed together and the time for each
is fully accounted for as they occur. We don’t pre-compute how long meta-planning
will take; we do some rough estimation of time to perform actions, but chiefly, we
track how long planning, meta-planning and acting are taking in real-time, as they
occur. Simultaneously we compare the evolving time elapsed with the approaching
deadline, and this comparison effects decisions about continued planning and acting.

We revise the mechanism of step-logics [16, 17, 18, 21] into so-called “active log-
ics”, 1n solving the fully deadline-coupled planning problem. In contrast to other



formalisms for commonsense reasoning, step-logics (and active logics) give the rea-
soner the ability to recognize that his/her reasoning takes time. What is of special
interest to us is not an “ultimate” plan computed in a static world, but a plan which
evolves in time in a changing world [57]. Every activity of the reasoner is carried out
in fundamental time units called steps. The reasoner’s thought activity is treated in
the same manner as his/her other activities in the outside world. The two take place
concurrently with each other and with other changes in the world, in particular, with
the ticking of a clock. The active-logic reasoner has a (largely) declarative inference
engine, with some procedural rules.!

It is worth clarifying how we use the notion of logic and inference in this paper:
A formal logic is often taken to be the semantics of a formal language. While we
have done some work on semantical foundations for active logics described below [60]
and [61], this work is preliminary and not the main focus of this paper. Rather, we
focus on the syntactic rules of inference by which a reasoner proceeds to make and
enact plans. Ultimately, of course, one would like a semantics to go with the syntax.
The formalism described below 1s a logic in the sense that we have a precise notion
of axioms and rules of inference, and a largely declarative representation. We believe
that this formalism lends itself to a principled way of incorporating the issues in
deadline coupled planning into the knowledge representation. It is also an inference
engine in the sense that the inference rules are coupled to an external clock that
provides a semantics for the crucial predicate Now.

This paper is organized as follows: First, we present a sample illustration of a
planning problem in which many of the underlying issues we are interested in surface.
Then, in section 3 we present the key technique which allows active logics to “keep
track of time” as reasoning proceeds. In section 4 we apply this technique to deadline
planning. In section 7 we look at the illustrative example from section 1 formally.
In section 8 we take up the issue of resource limitations, and introduce “short-term
memory” to address this issue. (In section 8.3 we prove that under certain strong
conditions this places no real limitation on the proof-power of the formal logic.) In
section 8.4 we address heuristics for planning with deadlines. In section 9 we discuss
related work, and in section 10 we discuss our conclusions and future work.

2 An Illustration

To elaborate on the fully deadline-coupled planning problem, we present an illustrative
domain, which we call the Nell & Dudley Scenario:?

Nell is tied to the railroad tracks as a train approaches. Dudley must
formulate a plan to save her and carry it out before the train reaches her.

Let us suppose Dudley has never rescued anyone before, nor can he rely on having
any very useful assessment in advance, as to what 1s worth trying. He must deliberate

IThe time taken for executing such procedures, however, is itself accounted for and declaratively
represented, and the results of such procedures are also in declarative form. An example is the
calculation of WET (working estimate of time) discussed later.

2This problem was first mentioned in the context of time-dependent reasoning by McDermott
[53], and more recently discussed in [8].



(plan) in order to decide this, yet as he does so the train draws nearer to Nell. Dudley
must not spend so much time seeking a theoretically optimal plan to save Nell that in
the meantime the train has run Nell down. Moreover, Dudley must do this without
much help in the form of expected utilities or other prior computation. Thus, he must
assess and adjust (meta-plan) his on-going deliberations vis-a-vis the passage of time.
His total effort (plan, meta-plan and action) must stay within the deadline. He must,
in short, reason in time about his own reasoning in time.

The above dramatic life-and-death scenario is deliberately chosen to illustrate a
hard deadline setting. Real-life abounds with deadline scenarios. One can envision
the use of automated agents in scenarios such as a pilot trying to rescue a wounded
soldier before an enemy patrol arrives at the spot, a relief squad trying to deliver aid
in the face of an approaching hurricane, or simply planning to catch an airplane flight.
A very familiar and interesting hard deadline scenario is the ezamination problem [63].

A student is taking an exam. Initially she spends time planning (i.e.,
deciding) which problems to attempt first. She may even partially attempt
a problem for better assessment. Although this planning is very useful
toward improving her overall performance on the exam, as time ticks, she
must eventually begin to work on the problems themselves, and write up
her solutions.

Here is the basic trade-off: every second spent thinking about strategy is one less
second for actually working. A particularly bad outcome is a problem completely
worked out in the mind, but no time to write it on paper.

3 How can a logic keep track of time as theorems
are proven?

Step-logics [18, 21, 19]

were introduced to model a commonsense agent’s ongoing process of reasoning in
a changing world.? These logics have been generalized and renamed active logics to
allow several new features, including limited short-term memory, and the introduction
of new expressions into the language over time; only the first of these extensions will
be addressed here.

An active logic is (partially) characterized by a language, an observation function,
and a set of inference rules. A step is defined as a fundamental unit of inference
time. Beliefs (i.e., theorems) are parameterized by the time taken for their inference,
and these time parameters can themselves play a role in the specification of the
inference rules and axioms. The most obvious way time parameters can enter is via
the expression Now(i), indicating the time is now 7. Observations are inputs from
the external world, and may “occur” at any step i. When an observation occurs, it
is considered to be a belief. Each step of reasoning advances i by 1. At each step ¢
the only information available to the agent upon which to base his further reasoning
is a snap-shot of his deduction process completed up to and including step 7 — 1.

3Step-logics have also been used for multi-agent coordination without communication using focal
points [47]. Note that step-logics are not “temporal logics” in the usual sense (e.g., [51, 44]), since
the notion of the present time changes as inferences are drawn.



The agent’s world knowledge is in the form of a database of beliefs. These contain
domain specific “information” (which may be observations). A number of inference
rules constitute the inference engine. Among them may be rules such as Modus
Ponens (MP) and rules to incorporate new observations into the knowledge base as
well as rules specific to deadline-coupled planning such as checking the feasibility of
a partial plan or refining a partial plan. Figure 1, adapted from [18] illustrates four
steps in an active logic with Modus Ponens (i.e., %) as one of its inference rules.
The notation ¢ : ... followed by a set of formulas indicates that among the agent’s
beliefs at time-step ¢ are those beliefs denoted by the given formulas.

0 0

1 «o ... Observation of «

t+1: ... a—=p,F—~v ... Obsofa— fFand g —~
1+2: ... 15 ... MP

i+3: .. v ... MP

Figure 1: Active logic illustration

The following features of this framework relate and contrast it to conventional
commonsense reasoning systems:*

(i) Thinking takes time: Reasoning actions occur concurrently with other phys-
ical actions of the agent and with the ticking of a clock. The agent cannot only keep
track of the approaching deadline as he enacts his plan, but can treat other facets of
planning (including plan formulation and its simultaneous or subsequent execution
and feasibility analysis) as deadline-coupled. Related to this feature of active logics is
the fact that there is no longer one final theorem set. Rather, theorems (beliefs) are
proven (believed) at certain times and sometimes no longer believed at later times.
Provability is time-relative and best thought of in terms of the agent’s ongoing lifetime
of changing views of the world. This leads to the issue of contradictions below.

(i1) Handling contradictions: An agent reasoning with active logic is not om-
niscient, i.e., his conclusions are not the logical closure of his knowledge at any in-
stant, but rather only those consequences that he has been able to draw.® Also,
since commonsense agents have a multitude of defeasible beliefs, they often encounter
contradictions as more knowledge is obtained and default assumptions have to be
withdrawn. While a contradiction completely throws an omniscient agent off track
(the “swamping” problem), the active-logic reasoner is not so affected. The agent

4This description is necessarily very brief; for details see the various papers by Elgot-Drapkin et
al.

5Konolige [43], Levesque [48] and Fagin and Halpern [23] proposed systems in which the agents
also are not omniscient. However, the inference time is not explicitly captured in their systems.



only has a finite set of conclusions from his past computation, hence contradictions
may be detected and resolved in the course of further reasoning.

Inferences are very tightly controlled in active logics. Contradictions are handled
by a general handling rule in active logics and by specific rules that manipulate the
context sets and plans in the planning framework. Also, even when contradictions
do occur, they do not result in all possible beliefs, only ones brought in by active-
logic inferences and these are kept in check and stopped from propagating once the
contradiction is recognized. Contradiction discovery drives the reasoning to eliminate
default conclusions that no longer hold in the face of new evidence, and subsequently
the reasoning ferrets out such inconsistencies.

(iii) Nonmonotonicity: Active logics are inherently nonmonotonic, in that further
reasoning always leads to retraction of some prior beliefs. The most obvious case
is Now(i), which is believed at step i but not at i + 1.5 Tt is widely recognized
that nonmonotonic behavior is fundamental to commonsense reasoning [29], and in
particular to the Frame Problem [52].

We remind the reader that these “logics” are a combination of formal inference
rules and an inference engine and a representational system (a meta interpreter and
a meta language) that can reason about the on-going proof process itself with the
help of an external clock. This in fact is the mechanism that allows the time spent
meta-planning to be factored into the overall approach of deadline reasoning and
planning. While it is true that any logic has to function under space and computation
limitations, our system has the ability to reason about its limitations, or to control its
own heuristics, such as the time taken to make inferences as well as other parameters
such as size of its “memory” (discussed later) and the number of inference rule firings
in each step. Space and computation management is built into the formalism.

Our formal treatment of evolving time makes the knowledge representation issues
challenging and interesting because of the capability to reason about the reasoning
process itself. Another advantage of having as much as possible in declarative form
instead of control procedures is the possibility of dynamically changing the parameters
or the inference rules either as a result of learning or as a function of the context of
reasoning. We note that humans often regard these parameters as dynamic in their
reasoning; e.g., people ask for paper and pencil or seek help from other persons when
it appears that a particular problem has a higher memory requirement and cannot be
“solved in one’s head.”

4 Planning in deadline situations using active log-
ics

In this section we present a formalism for planning in deadline situations. The ap-
proach is deliberately noncommittal with respect to a number of traditional planning
issues, such as total or partial order. Indeed, any planning algorithm can be imple-
mented in the active-logic framework. In our illustrations we use total order planning

6Put another way, the incoming observation Now(i + 1) causes the retraction of Now(s).



to keep the planning as simple as possible while dealing with the temporal aspects.
We have not sought to build an optimal planner, not even a state-of-the-art planner;
there are many ways to make the planner more sophisticated. Our aim has been
first and foremost to couch planning in a fully time-situated framework; further work
will be required to incorporate our findings into state-of-the-art techniques for a truly
efficient planner. However, in our view, evolving-time is a sufficiently critical issue
for real-time deadline coupled planning, that it must be tackled directly (as our effort
attempts) no matter what other desirable features may or may not be included (such
as partial order planning).

We have created a representational language to tackle prototypical variations of
the illustrative Nell & Dudley deadline problem. These have been implemented in
Prolog. A few sample axioms and inference rules can be found in the appendices.
We start by providing a brief description of the syntax used in the deadline-coupled
planning mechanism based on active logics.

A formula X(s : f, Args) consists of a predicate name X which may represent a
fluent or an action predicate, with a list of arguments. The first argument denotes
the time interval s : f over which the predicate holds, where s and f are the interval’s
beginning and ending points, respectively. The other arguments of the predicate follow
and are denoted by Args for easy reference. We often wish to express formulas with
predicates that hold only over the duration of their interval s : f but do not continue
to hold (or, persist) beyond f. Most of the predicates denoting agent actions (e.g.,
Run, Release, etc.) fall into this category. We denote the time intervals in formulas
involving these predicates by s : f. We use the shorthand s for s : s to denote an
instantaneous action over a point time interval. The subscript obs indicates that the
formula it 1s attached to is the result of an observation.

Further, we use four different forms of formulas:

e X (s :1t,Args), which denotes that (the agent believes) X holds over interval
s:1

e = X(s :t, Args), which denotes that (the agent believes) =X holds over interval
s:1

e X.(s:t,Args), which denotes that (the agent believes) X holds over s : ¢, and
also (has reason to believe) that the time point s is a possible point of change
of the predicate from =X to X.

e = X.(s :t, Args), which denotes that (the agent believes) =X holds over s : ¢,
and also (has reason to believe) that the time point s is a possible point of
change of the predicate from X to =X.

For example, On(2 : 4, floor, ball) should be read as “the ball was on the floor
during the time interval 2 : 4,” and On.(2 : 4, floor, ball) is read “the ball was on the
floor during the time interval 2 : 4 and possibly was not there before time 2.”

We define three types of contradictions: direct, uniqueness, and du: (1) Each of
X(s: f, Args) and X (s : f, Args) are defined to be in direct contradiction with each of
-X(s: f,Args) and =X (s : f, Args). (ii) A uniqueness contradiction exists between
formulas X (s : f, Argsl,U, Args2) and X (s : f, Argsl,V, Args2) if both U # V and
X(s: f,Argsl,U, Args2) — —=X(s : f, Argsl,V, Args2) are beliefs of the reasoner.



(E.g., the beliefs At(5, Dudley, home) and At(5, Dudley, railroad)” would normally
be in uniqueness contradiction.) (iii) A formula a du-contradicts a formula 6, if it is
in direct or uniqueness contradiction with §. (The same definitions of contradiction
extend to X, and to the negated versions.)

We use annotated formulas such as X (s : f, Args)[f1, ..., O] to denote a formula
that is derived using the default formulas (projections) f1, ..., B in its proof. Such
an annotated formula itself has the status of a default and is as feasible as the weakest
default in the annotation, as explained in Sections 6.1 and 6.3.

An action triplet, denoted by [C'a, A, R4], consists of an action, A, preceded and
followed, respectively, by a list of conditions, C'4, and results, R4. A is a formula
containing an action predicate and C'4 and R4 are lists of formulas.® The conditions
may need to be true over all or some of the time interval required for execution of the
action. An action may be complex or primitive (atomic). The firing of an inference
rule corresponds to a think action. Dudley’s non-defeasible beliefs are treated as
facts.® Observations are incorporated as beliefs at the same time step that they are
“observed.” Theorems whose premises consist of facts alone are also regarded as facts.

Now(i) denotes Dudley’s belief that the time is currently i. A partial plan is a
belief Ppl(i, p, Triplet_List) denoting a partial plan at step i with the name p. The
Triplet_List is an ordered list of action triplets. We will sometimes use Ppli,p to
denote the Triplet_List with respect to ¢ and p.

A special plan with the name null is a plan with no actions in it. Dudley simul-
taneously develops alternative plans towards attaining his goals or subgoals. Each of
these partial plans (including the null plan) defines a context within which reasoning
can be done about the expected state of the world if the plan were to be carried to
completion.

The agent maintains a belief CS(7, p, Context_List) denoting the context set for
each plan p at each step i. The list Context_List consists of quoted formulas (we omit
the quotes for readability), and includes all of the facts (observations),'® formulas
corresponding to actions in the plan, and formulas that the agent deduces to be true
in the state of the world resulting from the successful execution of plan p. We will
often use Csi,p to denote the list Context_List. The context set changes with time
as the plan undergoes modification and as inferences are made in the context of the
plan.

At each step i, the belief Proj(i,p, Proj_List) denotes the projection that is
formed in the context of each partial plan p in progress, based on the default of
persistence.’™  The i denotes the step number, and Proj_List is a list of quoted
formulas. We will often use Projiyp to denote the list Proj_List with respect to ¢

"Recall that we use 5 here as a shorthand for 5:5.

8Whenever formulas appear in lists such as C 4 or R4 and later in beliefs CS, Proj and Ppl,
they are in fact treated as if they are “quoted.” We omit the quotes to keep the long strings readable.
Thus the beliefs of the agent that we will describe shortly are still first order formulas.

9Strictly speaking though, the agent only has beliefs, never facts, since even observations are not
etched in stone, and may very well change over time. In all the problems that we tackle though, we
will treat observations and facts synonymously.

10 Actually it only consists of the subset of facts that is relevant to the particular partial plan.
Section 8 deals with space bounds on the reasoning and proposes a relevance mechanism to keep the
reasoning directed to a particular partial plan for a duration of time.

1 Projections (and persistences) have been studied by numerous authors; see e.g., [77, 42, 54]. Our
treatment is along the lines of time-maps of [12].



and p.

The belief WET(4, p, n) denotes the working estimate of time for the plan p com-
puted as of step 7 of reasoning is n. WET computation is revised at each step by an
inference rule and the feasibility of the plan p is continuously checked by making sure
that the sum of n and 7 does not exceed the deadline.

The belief Goal(p, g, d) denotes that the plan p is being developed to meet a goal
g by deadline d.

5 How long will it take?

A truly time-situated planner must be able to keep track of every unit of time spent,
whether it is spent in inferential or physical activity. This also includes the time spent
in making estimates of how much time will be spent. Thus, first of all, we need a
time-situated estimation mechanism. The next subsection deals with this, followed by
further details related to differences among types of actions with regard to time; we
outline various categories of actions relevant to our main example concerning Dudley

and Nell.

5.1 Estimation the WET of a plan

The WET (working estimate of time) of a plan is a rough estimate of the total time
that the plan will consume. Tt consists of two parts. The PET (planning estimate of
time) is the (estimated) time to be spent in reasoning about the plan. This includes
plan formulation, refinement, temporal projection and context-based reasoning. The
EET (ezecution estimate of time) of the plan is the (estimated) time required to
actually execute the actions that have been identified in the plan. Thus, WET =
EET 4+ PET. We estimate the WET of a plan based on the estimates of the WET’s
of the actions that are already part of the plan. We do not have a mechanism to
estimate the WET of the unknown portion of a partial plan except for the sliding
Now which accounts for the time taken to identify the remaining portion of the plan.
The PET of an action A is computed based on these considerations:

(1) Whether A is an action that needs refinement.

(2) Whether A has any unbound time variables (whether or not the exact start and
finish time of the action is known).

(3) Whether A has any other unbound variables in its description.

(4) Whether A is the first of a sequence of actions or whether its time variables will
be bound automatically when the time for a previous action is decided upon.

For a non-primitive action, i.e., when (1) is true, we account for at least one
time step in the PET to refine it to the level of primitive actions. If (2) is true, we
estimate that it will take at least one time step to bind the time variables. If (3) is
true, we add another step to the PET since there is at least one step necessary for
instantiating the other unbound variables. If according to (4) the action is one of
a sequence such that its time variables will be bound whenever those of an earlier



action are bound, we subtract one from the PET.!?2 The examples will illustrate the
PET estimation for various actions. We estimate the PET only by a small factor
that is an estimate of how long it will take to refine the current action to the level of
primitive actions. Basically, for each action that is non-primitive, this adds a constant
number of time steps (default is two) that are required to firstly refine the action,
and secondly to bind the time variables for actual execution of the action. Thus, we
add at least 2n to the WET of the plan if there are n non-primitive actions currently
in the plan. If a measure of the level of abstraction of an action is available (such as
in the representation in the ABSTRIPS planner [67]) that number would reflect the
number of steps required to refine the action into primitive level actions, and could be
substituted as an estimate in place of the default one step that we currently account
for.

An agent may have a specific belief about the EET of an action. For example, in
a plan to do laundry, one may know that the dryer cycle takes 45 minutes, even if the
actual start and finish times are not known. If there is not an explicit belief about
the EET for a particular action then the EET for the action is the difference between
the start and finish times for the action, when known.

In our design, the decision not to include an estimate of the (future) meta-planning
time'? into the WET was taken to avoid recursion of meta-meta-meta ... levels of
estimation. Time must be spent to choose between alternatives or to adjust the plan
to ensure that it does not violate other goals [77]. Inferencing such as this constitutes
the meta-planning that Dudley performs. We do account for the time spent in making
these inferences, as they are made. But the WET is restricted to a calculation based
on actions in the plan, namely object level actions. This is not a serious disadvantage.
We have a uniform approach to treating planning and meta-planning. A meta-level
plan will eventually be translated into an object level plan that satisfies the meta-goal.
Once at this level, the WET will accommodate the execution time of the meta-plan
into the new WET. We give a brief example to illustrate this.'*

Suppose Dudley has a plan to go out and fetch the newspaper in the morning.
However, on a particular morning, it is raining outside. The plan being developed
to fetch the newspaper has the ramification that it will cause Dudley to get soaked,
and violate the sustenance goal'® to keep himself dry. He must then (meta-) plan to
try to keep himself dry. The meta-reasoning results in an object level plan to wear
a raincoat, which must be merged with the plan to fetch the newspaper. The new
WET will continue to reflect only the execution time of the plan to walk outside
and fetch the newspaper while the meta-planning proceeds in time. But once the
object level plan to wear the raincoat begins to be synthesized, the WET reflects this
additional time to look for a raincoat and put it on. As the meta-planning proceeds,
time 1s consumed and is accounted for by the sliding Now. In this sense, we have
a commonsense formalism for a fully deadline-coupled estimation of the WET. One
may argue that the planning time may be too high, and if the WET cannot factor

12The various components, viz. refinement, binding, etc. that constitute the PET of a particular
action may be concurrent with those of another action in the plan due to the assumption of unlimited
parallelism. In this case, the WET may be estimated to be higher.

13 Current and past meta-planning time is fully accounted for in the sliding Now predicate and is
factored already into the feasibility analysis.

14This example is mentioned in [77].

15 A sustenance goal is one which must be preserved during the entire planning process.
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that into the computation the estimates will be too low to be useful! That may
very well happen if planning continues to introduce only inferential actions into the
plan for which no object level estimate is available. With human reasoners, in case
the problem involves very complex deliberations that are all inferential, they may
not have an idea of how long their reasoning may take. So long as the agent can
switch to reasoning about object level actions after a certain amount of thinking,
the estimates will not be too low. Between these estimates and the accounting for
how much Now has changed while making them, we feel that we have a reasonable
estimation method for the WET. It has the advantage that it is a simple computation
that does not require too much prior knowledge or tedious processing.

Note that the WET is only a rough estimate and hence feasibility conjectures based
on it are at best approximate. The agent tries to estimate an upper bound on the
WET, so as to make sure deadlines are met. Deadlines may still be missed because:
(i) The WET estimate was not accurate as individual components took longer to
execute than expected, (ii) the agent experienced sudden unexpected changes that
rendered the planning obsolete, or (iii) actions in the plan took their estimated time
too execute, but, these actions failed and did not yield the expected results.

The following rule computes the WET of a plan at every step in the reasoning.!®

e Computing the WET

Ca, Ca,
i: Ppl(s, p, Ar(si:fr,oo) | oo | Ar(skt fry-..) ), .-
Ra, Ra,

i+1: WET(i,p,Y.\_, EET(A;) + PET(A,))

where the EET and PET for each action A; is computed based on the criteria de-
scribed above. The EET = (f; — s;) if known, or otherwise is obtained from a belief
that the agent has at step i regarding the execution time. These beliefs are axioms
of the form:

estimate((action), (time_to_complete_action))

As partial plans develop estimates of the amount of time needed to carry the
plan to completion are refined.’” In the beginning phase of plan generation, actions
are more complex and abstract. Estimates for the execution time for these actions
are based on prior experiences with the action or with similar actions, or may be
acquired as a result of observation. As Now changes, and time is spent in planning,
the agent substitutes lower-level actions into the plan for which closer estimates may
be available, up until the level of primitive actions where the estimate is simply the
anticipated interval for executing the low level task. In general, the estimate may or
may not be separable into individual constituents.

16In active logics all rules that are applicable at any step ¢ are in fact applied to draw inferences
forming beliefs at step ¢ + 1. This presupposes unlimited parallelism and is an idealization that is
formally convenient, but clearly unrealistic for an implemented agent. In section 8, we describe work
on limited time and space that addresses this problem. Nevertheless, even the idealized version does
account for the fact that time is taken in applying inference rules such as calculating WET.

17The WET estimate is one of our concessions to procedural methods: we do not require Dudley
to figure out how to do arithmetic but rather allow that he already knows. But we do require him
to note the passage of time during the execution of the procedure.
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The PET is computed depending upon the primitiveness and level of instantiation
of action Aj;, taking into account any abstraction level information known about A;
at step i. The WET is Dudley’s calculation of how long his partial plan (formed as
of the previous step) will take to refine and execute. This he adds to the current time
and compares the result to the deadline to make sure the plan is not hopeless.

As long as the sum of a (partial) plan’s WET + Now is within the deadline,
Dudley declares the plan Feasible using the following rule, and continues refining
and/or putting the partial plan into execution.

e Marking a plan “feasible”

i:Ppl(p,i,{...}),Goal(p,g,d), WET(i — 1,p,w)
i+ 1: Feasible(i, p)

if w+i<d

If the WET computation indicates the plan is not feasible, the plan is frozen (no
longer refined for the time being), but may be used in the future.'®

5.2 Categories of actions and time estimates for plans

Dudley’s database of axioms and rules contains knowledge about actions and their
(intended) effects. However, not all actions are the same from the perspective of
planning. Especially with regard to planning under time pressure, Dudley may have
to estimate differently the time interval for the duration of each action in the plan,
depending on the type of the action. We attempt here to formalize some categories
of commonly encountered actions from the standpoint of planning.

e The Repeat_until category

(Repeat{action)until)signaling_condition))

is the form of an action that needs to be performed in a loop. In order to
achieve a particular goal, the only known procedure may be to repeat a certain
action or sequence of actions. Very often, there is an observation that signals the
successful completion of the task. This observation (signaling_condition) may or
may not coincide with the goal. For example, dialing the telephone repeatedly
until a connection is obtained, is a means for establishing contact with someone.
Similarly, beating egg whites until stiff peaks appear [28] is a means for beating
eggs to the right consistency. An agent must incorporate repeated actions into
plans in many day-to-day situations. The signaling_condition is often known to
the agent. The inference rules for plan formulation enable the agent to formulate
a plan with a Repeai_until action, and guide the actual execution of this type
of action. A primitive action can be directly acted upon, and is removed from
the plan upon its execution. A Repeat_until action is a non-primitive action

180ur focus here is not to find an optimal heuristic for producing the best plans, but rather to
develop the underlying framework for incorporating passage of time into an inference based approach
to planning. Within such a framework, numerous experiments contrasting various heuristics can now
be undertaken; this is a direction for our future work.
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which can be executed, i.e. the repetitive part of it can be executed, but is not
removed from the plan unless the signaling_condition is observed.

For most actions that fall in this category, the agent may have an estimate
of how long it may take until the signaling_condition typically appears. The
agent knows what sequence to repeat, but does not know the exact number
of times that it must be carried out. For example, in the case of beating egg
whites, Dudley may know that this typically takes 3 minutes. If 6 minutes
go by and stiff peaks do not appear, it signals a possibility of failure of the
Repeat_until action.'® The planning process as well as execution is incremental;
the actual number of times the repeat is executed is determined in real-time
through execution combined with observation.

There is a difference in the two examples of Repeat_until actions described
above. In the case of the egg whites, it is necessary to repeat the action, not
because it fails to give the intended result, but more because it i1s part of a
sequence of actions that must be performed in order to achieve the goal. Here,
the cumulative effect of the repeated action marks the end of the loop. In
the example of dialing until a connection is obtained, the agent keeps redialing
because the earlier dialings fail. The first successful action marks the end of
the loop. However, we will omit this distinction here, and put both examples
in the Repeat_until category, since, from the planning agent’s point of view the
plan has the same structure and monitoring must be done to watch out for the

signaling_condition.?®

The Conditional_effect type actions

Axioms for Conditional_effect type actions are often of the form
CNA—R

i.e., (if{condition(s))and{action)then(result)), where R is a (sub-)goal, and
is the result of performing action A, given that condition C' is satisfied. The
condition C' must be true in addition to the list of conditions C'4 which are seen
as necessary by the agent in order to be able to perform A.

There are two possibilities here: (a) C is doable under the agent’s domain of

control, and (b) C' is not doable, but merely observable.

(a) C is doable under the agent’s domain of “control”, i.e. the agent has an
axiom of the form

B—C

The inference rule for planning for this type of axiom is:

19This paper does not offer a formal treatment of plan failure and recovery. An alarm mechanism

can be built that signals a potential failure to Dudley in the event that he overshoots his estimate

for a Repeat_until action by a substantial margin.

20 Another real-time scenario which illustrates the use of a Repeat_until action, is one in which

Dudley chases a bad guy in real-time. As the target object moves, Dudley must perform the action

of taking one pace in the direction of the current position of the target. At every step, Now and Here

must be used as parameters to create a new instance of a pace in the dynamic plan. Dudley may

be able to estimate the time required to reach the bad guy from the differential in their respective

speeds, and can use it to tailor his plan vis-a-vis the approaching deadline; but the actual number

and specification of the paces must match the uncertainties in the changing environment.
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To make a plan to achieve R, insert A into the plan, and add C
along with C'4 as the conditions in the triplet corresponding to
result R.

In our formalism, once inserted, C' will also be continuously checked at
each step, so that the plan may be altered in the event that C' ceases to
hold. Further,

(i) Tf C is already true in the context of the plan, the agent does not have
to plan additionally for it. The estimate of the time for achieving R
in this case 1s not affected by the presence of C'.

(i1) If C is not already in the context of the plan, it will be necessary to
add action B to the plan to first achieve C' and then proceed with A.
In this case the estimate should include along with the estimate of A,
at least two additional time steps: one is estimated for the addition of
B to the plan, and at least one other for executing it. In this case, the
estimate is ' + 2, where Estimate(A, E). In subsequent steps, as B
1s added and refined, a more accurate estimate can be obtained.

As an example of this category, consider this axiom from the Yale Shooting
Problem([31]:
Loaded(t) A Shoot(t) — —Alive(t + 1)

If the goal is to kill Fred and Load(t) — Loaded(t + 1) is known, a plan for
killing must include along with the conditions for shoot, the condition that the
gun must be loaded. Further, in the event that the gun is not already loaded,
the Load(t) — Loaded(t + 1) axiom suggests additional planning to this end.

(b) C'is not doable, but is merely observable, i.e. it is not under the “control”
of the agent. Here there are also two cases to consider:

(i) If C has already been observed and is projected to remain true, plan-
ning and time estimation can proceed as in case (a)(i) above.

(ii) C is an observable condition, but it is not known Now whether or
not C' is true. Here the agent must insert into his plan an action to
observe whether C' is true, and depending on the conclusion, insert A
into the plan, in the event that C' is indeed true. If several alternatives
exist, based on several observable conditions, each suggesting different
actions to be undertaken, he must postpone deciding between them
for the present. However, he can use the possible list of alternatives
to obtain a bound on the estimate, taking the alternative that has the
maximum estimate into account.

As an example of (b)(ii) above consider: Dudley can see that Nell is tied to the
tracks, but cannot tell from the distance what kinds of knots the bad guy has
used 1n tying the ropes. He knows of the following common kinds of knots from
his boy scout days and of particular procedures employed in tying and untying
them.

Clove_hitch A Untie_clove_hitch(t : t + 2) — —Tied(t + 2)
Timber_hitch A Untie_timber_hitch(t : t + 2) — —Tied(t + 2)
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Unknown_knot A Cut_ropes(t : t + 8) — —Tied(t + 8)
Estimate(Untie_clove_hitch, 2),
Estimate(Untie_timber_hitch,2),
Estimate(Cut_ropes, 8)

Since Dudley has no control over which knot he will encounter upon arriving
at the tracks, he must plan for all contingencies. The decision regarding which
action to insert into the plan must wait until the appropriate observation. He
could plan to cut the ropes regardless, but that will take the longest time.
Thus, by postponing his decision until run-time, Dudley may save time. He
must, however, make sure that the conditions corresponding to all the above
alternatives will be satisfied at that point in time, if he wishes to keep the choices
to the very end. He must therefore bring a knife to the tracks in case he will
have to resort to cutting. He thus creates at this point a kind of pseudo-action
(or meta-action) to insert into the plan. This action is the disjunct of all the
alternatives. To supplement the plan to take that decision, Dudley inserts an
Observe action into the plan,?! which will itself take a time step. The estimate
of the pseudo-action is taken to be the maximum of all its disjuncts. The result
of the Observe action is unknown at the time of planning. At execution time,
more will be known, and the pseudo-action can be substituted for the actual
action applicable in that context.??

e Actions with a simple formula for an estimate

These are the kind of actions for which the agent can determine a time estimate
instantly, if an estimate for the rate of the action is known, and if an estimate for
the amount of work to be done is also known. The Run action is in this category.
Knowing the distance to Nell and his speed of running, Dudley can estimate
how long his Run will take. But, it is possible that one or both of the distance
or the speed may not be known. Dudley must carry out a deliberate observation
or calibration to obtain these. E.g., Dudley looks out of the window and sees
Nell tied to the rail tracks. He may not know the distance between his house
and the tracks. Either he must look 1t up, ask someone, or do some calibration,
such as simple trigonometry. His own running speed, he may know from past
experience, or he may need to figure that out too, by running the length of
his living room and timing himself as he does so. Such methods for obtaining
estimates for actions in this category may be undertaken in circumstances where
it is very crucial to obtain these estimates, and further decision making hinges
on them. The cost of the more refined methods is obviously the time spent in
obtaining them. In our simplified scenario, Dudley knows the distance to the
rail track and his speed of running.

e An action with a fixed interval between its start and finish times

21This ties to spatial reasoning, and to aspects of a plan that involve getting more information;
for instance Dudley may have to move in order to see whether Nell is tied. This in turn relates to
existing work ([46], [10]) on ignorance and perception.

22This is also linked to the notion of plan commitment. This is a strategy to delay commitment
until the last possible instant to allow for more flexibility in planning, of course at the cost of planning
for all contingencies and allowing for the time in the on-the-spot decision-making.
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This is the simplest category, and includes the kinds of actions which are rela-
tively simple. These actions have a fixed duration. The estimate for an action
in this category is the difference between its start and finish times where known.
An example of this category of action is Pull. It takes one step to Pull Nell
from the tracks once she is untied.

For each category of actions described , we have described the inference rules for
planning for the actions and for the estimate of the time required to carry them to
completion. In most cases some form of a time estimate is either known from prior
experience, or acquired from observation. In those cases where no known estimates are
available to the agent, the unknown estimates are a measure of how much knowledge
the agent has regarding the WET of the plan. The currently unknown estimates may
potentially be a big drain on time. Dudley keeps a count of how many such unknown
estimates exist in each plan. In ongoing work on this front, we are looking at ‘agent
attitudes’ to characterize agents who can use this and other uncertainty information
along with perhaps some on-line utility computation, to perform a primitive risk
analysis as a basis of choosing between plans which have the same time estimates.
An agent who is risk averse may choose to go with a plan that is better known even

if it has a large WET.

6 Temporal reasoning aspects

This section describes Dudley’s inference mechanism for temporal reasoning. We
describe three inference rules that are crucial for this: (i) the temporal projection
rule (TP), (ii) the context set revision rule (CSR), and (iii) the restructured modus
ponens rule (RMP). In all the active-logic scenarios we have underlined new formulas
in the context sets or projections, to highlight the differences with the corresponding
beliefs at the previous step. In each step the TP rule derives a new projection in the
current context and the RMP and CSR rules together deduce a new context set.

6.1 The temporal projection rule (TP)

The temporal projection rule (TP) effectively smooths beliefs over time intervals which
present gaps in the agent’s knowledge. At each step, Projip holds the results of

the temporal projection rule applied to the context set CS of the previous step.

i-1,
Our approach is best described by the term parallel projection. Ii-lere the entire known
state of the world at one moment is used to determine the (expected) state at the
next moment. Since active logics are built around the idea of specifying what is
known (e.g., proven) so far, all predicates, and all context sets can be simultaneously
reconsidered at each new time step.

We now describe the TP rule applied to atomic formulas corresponding to a given

predicate X in the context set at step ¢ in order to constitute P1‘0ji+1p for the

partial plan p. Note that formulas of the form X (s : f, Args) are not projected, since
they are intended to represent mostly agent actions that do not persist. Formulas
X(s : f, Args) for each predicate X are kept sorted in Csip with (s : f) as the

key. Only predicates corresponding to fluents (i.e. those formulas without the bar
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on top as in s : 7) are eligible for projection. The formulas in Proji+1 p are strictly
those that are obtained by persistence of those in CS; ;. Let a; and a; 41 denote

consecutive formulas in sorted order in CS: .. and let &1 denote the last formula in

1.p
this order. The TP rule can then be described as follows:??

1. If a; is of the form X (s; : f;, Args) and «j 4 is of one of the forms:

() X(sj41: fy41, Args)
(b) Xc(sj41 : fj41,Args), or

() ~Xe(sj41 ¢ fj41, Args)

then Proji+1,p contains X (f; +1:sj41 — 1, Args) whenever f; < sj41.

2. If «; is of the form X(s; : fj, Args) and aji1 is of the form —X(sj;1
fi+1,Args) then Proji+1,p does not speculate over the truth or falsity of X
over f; +1:s;41 — 1. The projection rule will smooth over this interval when
further information about a possible point of time where the value of X changes
becomes available.

3. If a; (with the latest interval in CS; p corresponding to the predicate X is of
the form X (s; : fi, Args) or X.(s1 : fi, Args) then P1‘0ji+1 p contains X (fi+1:
0o, Args).

Figure 2 shows a pictorial description of the TP rule, with the dashed lines denot-
ing the intervals that are filled with the projection, with rules numbered as above.
Example
Consider a scenario with a bucket filled with water and a ball lying on the floor.
This example simply illustrates an application of the TP rule to CSl57p to yield

P1'0j16,p~ (Shortly we will give two more extended examples in this domain.)

15 ...,CS(15,p,{..., Filled(0), Filled(4), ~Filled.(T), Filled(10),
On(0, floor, ball), ~On.(5, floor,ball), .. .}),...

16: ..., Proj(16,p, {..., Filled(1 : 3), Filled(5 : 6), Filled(11 : c0),
On(1 : 4, floor, ball), —=On(6 : oo, floor,ball),...}), ...

Notice that (i) Filled is projected in three disjoint intervals; 1 : 3, 5 : 6, and
11 : oo, (ii) On is projected in one interval; 1 : 4, and (iii) =On is projected in one
interval 6 : co, all as expected.

23For brevity, we only describe the rule for aj = X(s; : fj,Args). The same applies to a; =
Xec(sj : fj, Args). The dual form involving =X is similar.
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Figure 2: Pictorial description of the TP rule

If any of o; and arj 41 in the context set du-contradict, the projection is “frozen”
for the interval in dispute, and the TP rule itself does not decide on which of the
contradicting formulas to project.?* Sometimes it be necessary to break up the for-
mulas into two or more parts to identify the extent of the contradiction over some sub
interval. E.g., when X (5)[Y (4)] and =X (1 : 6) are in a context set, the latter must be
split into {=X(1:4),-X(5),-X(6)} to identify the range of the contradiction; 5 : 5,
or simply 5, is the range of contradiction in this example.

6.2 A restructured modus ponens (resolution) rule (RMP)

Instead of applying modus ponens (MP) in its familiar form: viz. from a and o — 3
deduce 3, we use a restructured MP rule (RMP) in accordance with our philosophy
to let earlier defaults play out their effects completely to result in an anticipated state
of the world to which later defaults may be applied if necessary. (RMP depends on
a clause form representation of data.) A formula which is a fact has no justification
attached to it. All axioms are treated as facts. A formula o which was derived using
one or more projections 1, s ... 1s only as feasible as the weakest projection, and is

24Various heuristics which may be applied to help try to resolve contradictions. One that we have
used in the event that one of the contradictands is a fact and the other comes via projection is to
freeze the projection and let the fact persist.



itself classified as a default. Such a formula is annotated with the projections used in
its derivation and is written as a[fB1, fa, ...].

Let =a1 V —as V...V —a, V G be the expression in clause form that appears in
the context set Csi,p of a plan p at step ¢. This may either be an axiom or an
observation. We formulate a rule that adds new atomic formulas (with or without
justifications) derived within a context to Csi+1,p' We use the terms, finished and
unfinished to describe a resolution where the results are atomic and non-atomic for-
mulas respectively. The rule only carries over the result of a finished resolution to the
context set at the next step.25

Our use of resolution can be outlined as follows:

o All the o; from Csi, which are facts are first used to resolve. If there are
no facts that are eligible for resolution, the resolution is not carried out at all.
There must be at least one fact among the resolvents for the RMP to fire.6

e Subsequently, if the resolution is unfinished, members from Csi,p U Projiyp
which are themselves defaults are next tried. All formulas from Proji’p as
well as those formulas in Csi,p that are annotated with projections qualify as
defaults. From among those in Projiyp, those with earlier time parameters are
used before the ones with later parameters. For the annotated formulas, the
annotation with the latest time parameter that was used in the derivation is
used to decide the priority.?”

o The result of the resolution, namely 3, is then annotated with all the projections
used, either directly, or in the annotation of resolving formulas from the context
set. The annotations are attached in square brackets to the formulas. This
provides the basis for a real-time truth maintenance mechanism which is useful
in resolving contradictions.

o If a projection a with a later time than the time of / is used in the RMP
application, £ is not added to the context set, instead it is discarded. Thus
the axioms are used to derive future conjectures based on projections of current

25Since we have the luxury of applying all rules simultaneously to all formulas at every step, not
much is to be gained by adding the results of an unfinished resolution to the context set. We wait to
get more information later such as from observations or from further deductions so that an atomic
formula can be derived. This serves the purpose of limiting the size of the context set. It is possible
to write a version of the RMP that will also add the results of unfinished formulas to the context
set, and would effectively function the same but use more space.

26 The motivation behind this is to reduce the large number of formulas resulting from applying
RMP to projections alone, since what can be derived thus is also obtained by the combined effect
of RMP and TP. This reduces the actual number of formulas in the context set without loss of any
meaningful commonsense conclusions. As an example, consider the axioms Alive(T) — —Dead(t);
i.e. —Alive(t) V ~Dead(t). Suppose Alive(0) is the only formula in the context set. By TP, the
agent would add Alive(l : o) to the projection. and by RMP, —Dead(0) to the context-set. Note
that " Dead(1 : co) will subsequently be in the projection, and there is no need to additionally have
—Dead(1 : co)[Alive(l : c0)] in the context set. Hence this is a reasonable way to curtail the size of
the context set.

27In case of a tie, we draw all the conclusions resulting from the use of the projections with identical
time intervals, one at a time. This may result in implicit contradictions. In this situation, what the
system deduces is an expected contradiction.
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beliefs, but prevented from using future projections to derive past conclusions
and from jumping to extreme conclusions.

o If 3=X(s: f,...) such that s is later than the time intervals of all the a; used
in the resolution, then it is marked as X.(s : f,...) in the context set to denote
that it could be a potential point of change in the truth value of the predicate
X .28 This marking is of help in deciding whether to project X, such as via the
TP rule above.

Example This exampleillustrates two applications of RMP (in steps 4 — 6) following
Dudley’s observation of someone dropping a ball into a full bucket of water. Given
the axioms that a ball dropped into a full bucket results in a spill, Dudley concludes
that the floor will no longer be dry.?°

Axioms (These are part of the Context_List of every context set)

= Filled(t) V = Drop(, ball) V Spill(t + 1)
=Spill(t) V = Dry(t + 1, floor)

4: CS(4,null, {. .., Dry(0, floor), Filled(0), Drop(4, ball)}),
Proj(4,null,{..., Dry(1 : oo, floor), Filled(1 : c0)})

5: CS(5,null, {...,Spill . (5)[Filled(4)], Dry(0, floor), Filled(0), Drop(4, ball)}),
Proj(5,null,{..., Dry(1 : oo, floor), Filled(1 : c0)})

6: CS(6,null, {..., Spill(5)[Filled(4)], Dry(0, floor),
=Dry.(6, floor)[Filled(4)], Filled(0), Drop(4, ball)}),
Proj(6,null, {..., Dry(1 : 00), Filled(1 : 00)})3°

The RMP rule is used in extending the context set. This allows Dudley to compute
the extended effects of actions. It also allows him to deduce the future consequences
of his planning as it interacts—possibly with the actions of other agents or with events
observed in the world. It allows for reasoning with the current projection by letting
earlier events play out their consequences in an anticipated future before later events.
Just as in the Yale Shooting Problem there is in principle an un-intuitive outcome,
such as that someone emptied the bucket unknown to the Dudley, exactly before the
ball was dropped. However, the RMP rule excludes this and other similar outcomes,

28 There is an implicit causality assumption here; earlier events are potential causes in axioms for
changes but later events are useful only in explanations of past values, not responsible for changing
the past values. Note that we say a potential point of change.

29This is an extended effect of the spill; we will elaborate later on the significance of this type of
reasoning.
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by not allowing later defaults to serve as justifications to form earlier beliefs [58]. Thus
the conclusions = Filled.(4)[Dry(6, floor)] will not be drawn because Dry(6, floor)
is a default with a later time then the potential belief = Filled.(4).

6.3 Context set extension and revision rule (CSR)

The CSR rule ensures that the context set is always kept updated to match the
most current projection, and the state of the world in which the agent is situated.
As explained before, formulas are annotated by the projections which are used to
support them in future conjectures. In the event that the projections cease to hold as
of “now,” the formulas that are supported by them are dropped from the context set
in the revision process. The revision is a kind of real-time truth maintenance. The
CSR rule also plays the important role of resolving contradictions in a time situated
manner.

Following is a description of the rule used in deciding the contents of CSl+1 p
based on the contents of CS; ip o PIOle and Ppl . In Part T we decide a set
Candid; ip selected from CS; J which are formulas to be considered as candidates
for retention. Part II decides Wthh members of Candld wﬂl make it to CSI+1 p-
Part I: (Select candidate formulas to inherit)

1. If two formulas a and § in CS- du-contradict each other, then the following

criteria are used in deciding Wthh of them go to Candid; p

(a) If « is a fact, while § is a default (is annotated with a projection), select «
and reject & to go into Candid; p

(b) If o and & are both defaults, select neither to go into Candid; p 32

2. Formulas that are not part of a contradiction go into Candid; P

Part II: (Choose among candidate formulas)

1. A formula o from Candidi which is a fact 1s inherited to CSI+1 P’

2. A formula «[fB1, Ba, .. ., Bk] which is a default is inherited unless for some 1 <
Jj <k, B; € Proj; P Also, if any of 31, ..., 8r now appear as facts in CSlp,
they are removed from the annotation.

3. Formulas corresponding to actions that are added to the plan in the previous

step are added to the CSI+1 P 33

31Note that we do not encounter situations in which facts (direct or indirect descendents of obser-
vations alone) contradict each other. Observations with different time intervals involving the same
predicate may well disagree, but these are not contradictory.

32Where both are defeasible beliefs, a working strategy is to not inherit either of them, and to
continue the reasoning to see if one of them will reappear in the face of stronger evidence.

33Formulas in the context set are in fact, doubly annotated in the implementation, with (i) the
projections, if any, used in their derivation, and (ii) the action(s) in the plan that are used in their
derivation. Should the plan get revised to no longer require any of these actions, the corresponding
formula is not inherited in the CS.
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There are two other rules which fire to add formulas to CS: which we mention

i+1p
only briefly here. One is called OBS, which adds observations which are made at step

i+1to CS; 4 p The other is RMP, which was described in detail earlier.

Example As in the previous example, Dudley again concludes at step 5 that there
must have been a spill at step 5 based on the projection that the bucket was still filled
at step 4. At the same moment, however, he is told by a reliable observer that the
bucket was in fact not filled at step 4 and adopts it as a fact.

The projection catches up at step 6 to no longer believe Filled(4). As a result
of CSR, Spill(5)[Filled(4)] and = Dry.(6, floor)[Filled(4)] are no longer inherited to
the context set at step 7. Note that the projection at step 7 already reflects a wet
floor. This will also be subsequently revised in step 8 by an application of the TP
rule, since ~Dry.(6, floor)[Filled(4)] is no longer in CSy ;1)

4: CS(4,null, {. .., Dry(0, floor), Filled(0), Drop(4, ball)}),
Proj(4,null,{..., Dry(1 : oo, floor), Filled(1 : c0)})

5: CS(5,null, {...,Spill(5)[Filled(4)], Dry(0, floor), Filled(0), ~Filled(4)ops,
Drop(4, ball)}),
Proj(5,null,{..., Dry(1 : oo, floor), Filled(1 : c0)})

6: CS(6,null, {...,Spill(5)[Filled(4)], Dry(0, floor), Filled(0), ~Filled(4)ps,
=Dry.(6, floor)[Filled(4)], Drop(4, ball)}),
Proj(6,null,{..., Dry(1 : oo, floor), ~Filled(5 : 00)})

7 CS(7,null, {..., Dry(0, floor), Filled(0), ~Filled(4),s5, Drop(4, ball)}),
Proj(7,null,{..., Dry(1 : 5, floor),~Dry(7 : co, floor),~Filled(5 : 00)})

8: CS(8,null, {. .., Dry(0, floor), Filled(0), = Filled(4) s, Drop(4, ball)}),
Proj(8,null,{..., Dry(1l : oo, floor), ~Filled(5 : c0)})

This again illustrates behavior reminiscent of Yale-Shooting-Problem-like scenar-
ios (e.g., Fred is found alive after the shooting).

7 Examples: Dudley, Nell and the rushing train

In this section we present several examples, starting with a very simple one, to illus-
trate the notation and operation of inference rules applied to the Nell and Dudley
scenario from section 1. After that, we consider slightly more complex versions of this
scenario.
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7.1 A simple case

To give a flavor of the deadline-coupled reasoning, we first consider a very simple
scenario and show some steps from Dudley’s real-time reasoning.* Here Dudley
knows that Nell is a distance of 30 ‘paces’ from him when he first realizes (at step 0)
that the train will reach her in 50 time units. He begins to form a plan, seen below in
step 1 as Ppl (partial plan), and refines the plan in subsequent steps. The deadline is
50 in this example, d 1s Dudley, n is Nell, & denotes home and r the railroad track. We
use the shorthand r— h to denote the distance between the railroad track (r) and home
(h). Subscripted #’s indicate times (step numbers). The term save, which appears
as an argument to Ppl, Proj, Goal, and Feasible in step 1, is a label naming the
plan he is forming. The symbol e—, as it appears in X(s : te—~ R,...), denotes that
X is intended to hold beyond s : ¢, and up to R (by default). Tts use in a result of an
action indicates that the result must be preserved for use in a later segment of the
plan. The number at the right bottom corner of a triplet denotes that triplet’s order
in the plan sequence. The subscript obs on a formula indicates that that formula has
come in as an observation and thus is not based on a projection.

Below we indicate the steps of Dudley’s reasoning, beginning at step 0, and con-
tinuing to step 42, when Dudley has both formed and enacted a plan to save Nell.
Only a few of Dudley’s beliefs are shown below. For additional axioms see Appendix

A.

Step 0:

CS(0, null, {..., At(0,d, h)ops, 7 — b = 30055, Tied(0, n, T)obs, }),
Proj(0, null{}),

Goal(save, Out_of_danger(50, n, r), 50),

Unsolved(0, Out_o f _danger(50, n,r)), ...

(Step 0 represents Dudley’s state of mind before planning had begun, but after he learned
that Nell is tied to the tracks.)

Step 1:

CS(1,null, {..., At(0,d, h)ops,r — b = 3005, T1ed(0, 0, T)0ps, t1 = 2 + 1}),
Proj(1, null, {At(1: co,d, h),Tied(1 : co,n,1)}),
CS(1, save, {..., At(0,d, h)ops, T2ed (0, n,7)0bs }),
—Tied(t1,n, )
Ppl(1, save, Pull(ty : 12,d,n, 1) ),
Out_of danger(tze+ 50,n,7) |,
Proj(1, save, {}),
WET(1, save, 0),
Feasible(1, save), ...

34For fuller details see [45, 59].
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(A new plan called save is begun and is initially declared to be feasible.)

Step 2:
CS(2, save, {..., At(0,d, h)ops, Tied(0, n, T)obs, Pull(ts : t2,d,n,7),7 — b = 300ps, t2 < 50,
th=ty— 1,13 =ts — 3,14 < 1, }),

At(ts : tq,d, 1) —Tied(t1,n,r)
Ppl(2, save, Release(ts : ta,d,n, 1) Pull(ty : t2,d,n, ) ),
—Tied(tyo~ t1,n,r) L Out_of_danger(tze— 50, n,1) )

Proj(2, save, {At(1 : 0o, d, h),Tied(1 : 0o, n,1)}),
WET(2, save, 2),
Feasible(2, save), ...

(Plan refinements begin, and now for the first time WET and feasibility are actually com-
puted. The plan in Step 1 includes only one action, namely Pull. The PET for Pull is the
time required to bind its time variables. There are no other un-instantiated variables, and
it is not part of a sequence. Pwull is primitive action which does not need further refinement.
Since it takes one time step, EET for Pull is 1. Thus WET for Pullis 2, which is also the
WET for the partial plan save. For brevity we suppressed the null plan. The pull action in
the partial plan of step 1, is added to the CS of step 2, indicating that the pull action will
occur in the context of the plan save.)

Step 3:
CS(3,save, {..., Al(0,d, k)ops, 7 — b = 300ps, T1ed(0, n, T)ovs, Pull(ts : 12,d, n, 1),
Out_of dangerc(t2,n, 1), Release(ts : ta,d,n 1), t2 < 50,41 =t — 1,
i3 = 14 — 3,t4 S t1,le < t7 S tg}),

At(te, d, l) At(tg i3+ 1, d, T)

Run(te : 17,d,1: 1) ] l Releasei(ts : 13 +1,d,n,7)
At(tre= ts,d,r) —Tied(ts + 1e— t1,n,71)
At(t3+2 Zt4,d,T) ]
4

Ppl(3, save,

Releases(ts +2 : ts,d,n,7)
—Tied(tyo~ t1,n, 1)

Proj(3, save, {At(1 : 0o, d, h),Tied(1 : 0o, n,1)}),

WET(3, save, 7),

Feasible(3, save),

(Since the consequence of the pull action is that Nell will be out of danger, this is added to
the CS of step 3 as a result of applying RMP to the appropriate axiom. The WET for Pull
is 2 as explained in step 2, that does not change. The PET for Release is 2 (one to bind
the time variables, and another to refine it into primitive actions) and its EET is 3. Thus
the WET for Release sums to 5, and the WET for the plan (as of the previous step) is 7,
as reflected in the WET belief.)

Step 4:
CS(4, save, {..., At(0,d, h)obs, ™ — b = 300ps, T1ed(0, n, T)ovs, Pull(ts : 12,d,n, 1),
Out_of dangerc(t2,n, 1), Releasei(ts : t3 + 1,d,n,7),..., Run(te : t7,d,1: v), ~Tiedc(ts, n, 1),
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to <50, =t — 1,83 =t — 3,1a < 11,16 < t7 < tg}),
At(t6,d,h) At(tg 1 i3 —|—1,d,T)
Ppl(4, save, Run(te : t7,d,h : 1) ] Releasey(ts 183 +1,d,n, 1) a2,
At(tre— ts, d,r) L —Tied(ts + 1o~ t1,n, 1) )
Proj(4, save, {At(1 : 0o, d, h),Tied(1 : 0o, n,r), Out_of _danger(tz + 1 : oo, n, r)}),
WET(4, save, 9),
Feasible(4, save),

(Planning continues as above. The plan in Step 3 consists of three new primitive actions
obtained by refining Release into its three components: Releasei, Releases, and Releases.
Of these, Release; has a PET of 1, which is the step required to bind the time variables,
since it is the first of the sequence of the three actions that constitute the Release. Once
this is bound, the times of the other two are decided automatically. Thus PET for Releasex
and Releases are subsequently zero. The EET for each of them is 1. The Run action has a
PET of 3 (one to bind the time variables, 1 to refine it, and 1 to bind the other variables).
Thus the WET of the plan is now 9. Also, notice that in this step, the variable [ in the Run
action has been bound to & by looking it up in the projection.)

Step 5:
CS(5, save, {..., Al(0,d, k)ops, Atc(tr,d, ), Run(te : tr,d, b : 7), 71—k = 3005, Tied(0, 1, T)ops,
Pull(ty : t2,d,n,7), Out_of_dangerc(t2,n,r), Releaser(ts : ts + 1,d, n, ), = Tiedc(ts, n, 1),
1y <50, =1y — 1,ta =ty — 3,44 < 1,6 = 17 — 30,17 < 1a}),
Al(ts, d, h)
Pace(te : t6 +1,d,h : h + 1)
At(te +1,d, h + 1)
At(te +1,d,h + 1)
Pace(te +1:t6+2,d,h +1:h+2)
At(te + 2t3,d, h + 2) )
At(te +29,d, b + 29) ]
30 7

N

1

Ppl(5, save,

Pace(te +29 : t6 +30,d, h +29 : 1)
At(tre= ta,d, 1)

Proj(5, save, {At(1 : 0o, d, k), Out_of_danger(t; + 1 : oo, n, 1),

Tied(1:t4 —1,n,r),~Tied(ts +1: 00,n,1)}),

WET(5, save, 38),

Feasible(5, save),

(Because in step 4 it was deduced that Nell will be untied by time ¢4, in step 5 the projection
is revised so that Nell is tied only until £ — 1 instead of oo as before. The WET now takes
on significance (becomes large), at last, since the 30 steps that Dudley must run have been
included in its calculation, as the difference between the start and finish times of Run is
known. The PET of Run, with [ instantiated, is now 2, but its EET is 30. This takes the
combined WET to 38. The partial plan is significantly refined in this step to include the
paces that he will run. )

Step 6:
CS(6, save, {..., Al(0,d, k)ops, Atc(tr,d, ), Run(te : tr,d, b : ), 71—k = 3005, Tied(0, 1, T)ops,
—Tiedc(ts,n,r), Pull(ts : t2,d,n, ), Out_of danger.(t2, n, 1),
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Pace(te : t6¢ +1,d,h : h+1),..., Pace(te + 29 : t¢ +30,d, h : ), Release1 (3 : ts + 1,d,n, 1),
ta <50, =1ty — 1t =ty — 3,44 < 1,16 = 6,16 = 17 — 30,17 < ta}),

AL(6,d, h) \
Pace(6:7,d,h: h+1)
AU(T,d, b+ 1)

AU(T,d, b+ 1)
Pace(7:§,d,h+l:h+2)
AL(8,d, b+ 2) ,

AL(35,d, h + 29) ]
30 7

Ppl(6, save,

Pace(35:36,d,h +29 : 1)
At(360—> i3, d, T)
Proj(6, save, {At(1 : t¢ —1,d,h),..., At(ts + 1 : 00,d, 1), Out_of_danger(t; + 1 : oo, n, 1),
Tied(1:t4 —1,n,r),~Tied(ts +1: 00,n,1)}),

WET(6, save, 37),
Feasible(6, save),

(The start and finish times of the Paces have been bound using Now in this step, since
the first action in the plan is a primitive action that can actually be acted upon. The WET
estimate is done similarly, it is 2 for the first Pace (PET is 1 for binding the time variables,
and EET is 1), and 1 for each of the subsequent Paces. Thus the WET is 31 for the Pace

actions, 4 for the Release, and 2 for Pull, totaling to 37.)

Step 7:
CS(7,save, {..., Al(0,d, k)ops, Atc(tr,d, ), Run(6 : tr,d, h : 7), 71—k = 300bs, Tied(0, 1, 7)ops,
—Tiedc(ts,n, 1), Pull(ty : t2,d, n, 1), Out_o f danger.(t2, n, 1),
Pace(6:7,d,h+1:h+2),... Pace(35:36,d,h + 29 : r), Release1(t3 : ta + 1,d,n, 1),
1y < 50,1 =1y — 1,ta =g — 3,44 < 1,16 = 6,16 = 17 — 30,17 < 13)}),
r AT, d, b+ 1) )

Pace(7:§,d,h+l :h+2)

AL(8,d, b+ 2)

Ppl(7, save, ),

Pace(35:36,d,h +29 : 1)
At(360—> tg,d,'r) 30 )

Proj(7, save, {At(1:5,d,h),..., At(37 : 00,d, 1), Out_of_danger(t2 + 1 : 0o, n, ),

Tied(1:t4 —1,n,r),~Tied(ts +1: 00,n,1)}),

WET(7, save, 36),

Feasible(7, save),

r At(35,d, h + 29) ]

(The time variables in the partial plan at step 5 have become bound to constants in step
6. Consequently, the WET of the first Pace was decreased by 1, reducing the WET for the
plan to 36. Dudley also performs the first Pace action.)

The following chart summarizes the remainder of Dudley’s time-situated reasoning and act-
ing, until he has saved Nell:
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Step number First action in Ppl WET

Step 8: Pace(8:9,d,h+2: h+3) W ET(8, save, 35)
Step 9: Pace(9:10,d,h+3: h+4) WET(9, save, 34)
Step 34: Pace(34 :35,d,h+ 28 : h+29) WET(34, save,9)
Step 35: Pace(35:36,d,h+29 : 1) W ET(35, save, 8)
Step 36: Releaseq(ts 1 t3+1,d,n,71) W ET(36, save, 7)
Step 37: Releaseq (37 : 38,d,n,T) W ET(37, save, 6)
Step 38: Releasez(38 : 39,d,n,T) W ET(38, save, 5)
Step 39: Releases(39 : 40,d,n, ) W ET(39, save, 4)
Step 40: Pull(ty : t1 +1,d,n,r) W ET(40, save, 3)
Step 41: Pull(41 : 42,d, n, 1) W ET(41, save, 2)
Step 42: Null W ET(42, save, 1)

In the next two sections we consider more complex scenarios from which we have
been able to identify more critical issues and enhance the framework with additional
time-situated planning capability.

7.2 The knots may be too tight, a knife may be needed

Frequently in planning, a given action has more than one pre-condition that must be
satisfied. Each precondition may be satisfied by performing other actions. In such a
case the order in which those actions should be performed becomes an issue.

Suppose that Dudley thinks that a knife may be required to cut the difficult knots
around Nell, and plans for that contingency. He knows of a knife in the house, he
projects it to still be there when he needs to use it. Requiring a knife corresponds
to a compound condition for the action Cut_ropes(s : f,...), namely, At(s : f, d,r) A
Have(s : f,d, knife). The inference rule whereby Dudley can subsequently formulate
two plans, one in which he plans to satisfy Have(...) before A#¢(...) and the other
in which this order is reversed, fires. Both conditions must, however, hold up to the
time they are needed for the C'ut_ropes action. This is where e~ comes into use. It
enables Dudley to notice that when the result of an action is expected to be preserved
up to the time when it is to be used, a plan in which it must be undone in order to
satisfy the condition for a subsequent action, is in fact inefficient, and can be frozen
in favor of another plan.

This inferencing, though domain independent, does not necessarily handle every
situation involving conjunctive goals. It can be thought of as a heuristic aid for com-
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monsense reasoning in deadline situations to help in plan selection. In the second
plan, picking up the knife requires Dudley to be at home (the same location as the
knife) which interferes with his attempt to preserve At(¢11,d,r) until time t4 when
he will finish untying Nell. Dudley chooses to proceed with the first plan, not the
second. Below are a few key steps in this reasoning.

Step 3:
CS(3, save, {At(0,d, h)obs, At(0, knife, h), Tred(0, n, 1)obs, b3 = t4 — 3, ...}),
At(ts 1 ta,d,r) A Have(ts : ta,d, knife)
Ppl(3, save, Cut_ropes(ts : ta,d,n,7) ] ),
—Tied(tyo~ t1,n, 1) L

Proj(3, save, {At(1 : 0o, d, h), At(1: co,knife, h), Tied(1 :ts —1,n, 1), ...})...

Step 5:
CS(5,savel, {...,t6 =t — 1,...})
At(t6, d, 11) N At(te, knife, 11)
Pick_up(te : 17,d, knife) ]
Have(tro— t4,d, knife) L
At(ts, d, 1) ] )
2

Ppl(5, savel,

Run(ts : 1g,d, 1> : 1)
At(t90—> ta, d, T)

CS(S, saveZ, { . .,t4 Z t13,t12 = t13 — l,tll S t12 .. })

At(tio, d, ls)
Run(t10 : fll,d, l4 : T)
1

At(tllH t4, d, T)
At(t12, d, 13) A At(te, knife, 13 )
Pick_up(tiz : Tz, d, knife)
Have(tise— t4,d, knife) )
Proj(5, save2, {At(1: co,d, k), At(1 : co,knife, h),Tied(1: t4 — 1,n,r), ...}),...

Ppl(5, save2,

(Here Dudley has formed two alternative plans, corresponding to two orders: (i) plan savel;
first satisfy At and then Have, and (ii) plan save2; first satisfy Have and then At.)

Step 6:

Pick_up(te : tr,d, knife)
Have(tre= t4,d, knife) .
At(ts, d, h) ] )
2

At(te, d, h) A At(te, knife, h) ]
1

Ppl(6, savel,
Run(ts : o, d,h: 1)
At(t90—> ta4, d, 7‘)

CS(6, savel, {...,t6 =t —1,...})




Run(tio : ti1,d, b 1)

At(tio,d, h) ]
1

At(ti1e= ta,d,r) ’
Ppl(6, save2, At(tra, d, h) A At(te, knife, b) )s
Pick_up(tiz : t1s,d, knife)
Have(tize= t4,d, knife) )

CS(6,save2, {... ,tia = t13 — 1,84 > t13,t11 < t12...}),...

(Refinement of the two alternative plans continues.)

Step 7:
Freeze(7, save2), ...

(Since in plan save2 t12 < t4 and At(ti2,d, h) du-contradicts At(t11,...) this plan is judged
to be nonpromising and is frozen (see rule 12 in Appendix B).)

7.3 Another alternative: stop the train!

Here we indulge in a more speculative example (not yet implemented) that further
illustrates the power that is inherent in our approach. Suppose we enhance Dudley’s
set of axioms so that he knows about stopping trains, warning drivers and making
telephone calls. Then, as he synthesizes the above obvious plan to run to Nell and
untie her, he can simultaneously plan for another alternative — he could get the driver
to stop the train in time! He believes it will take the driver 2 steps to stop the train,
once alerted. But how does he establish contact with the driver? One way is to
go to the nearest telephone and call the train station. Dudley knows that it is 50
time steps until the deadline. Where is the nearest telephone? His neighbor has one,
and the neighbor lives only 5 paces away. How long will it take Dudley until he can
get the connection? We assume his previous experience with telephones tells him
he must allow 5 steps; he possibly may have to redial several times, i.e., perform a
Repeat _until type of action.?® We assume it will take him additional 5 steps to warn
the train driver. Thus, overall, he will eventually allow 15 steps, but it takes him time
to realize this. Dudley can plan for this stop the train alternative in parallel with the
run to Nell and untie her plan, but we do not illustrate the parallel “untie” version
here (see above).

This plan involves a dimension that we have not alluded to before; it involves
the action of another agent. Unlike the earlier plans, where all actions were under
Dudley’s control, this plan depends on an action Stop_train which has to be performed
by an agent other than Dudley, in this case, the train driver (denoted dr). How can
Dudley plan for this? Dudley has the following two axioms:

t <48 A Stop_train(t:t+ 2,dr) — Out_of danger(t +2,n,r)

35Recall this type of action from Section 77.
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Warn(s : t,d,dr) — Stop_train(t : t + 2,dr)

The second axiom hints at an unknown in the plan: Can Dudley trust the driver to
stop the train? What if a villain is driving the train? Suppose that Dudley does be-
lieve, that by warning the driver he can get him to stop the train, then his plan must
include the action Warn, and his total time estimate must allow for the time taken
by the driver in performing the stop. He cannot attempt to satisfy the conditions for
Stop_train since they are not within his control, but he must proceed with his bit of
the plan, i.e., with warning the driver. The following steps illustrate his formulation
of this plan.

Step 0:
CS(0, null, {At(0,d, k)obs, Tied(0, 1, T)obs }),
Goal(stop, Out_of_danger(50, n,r),50), ...

Step 1:
CS(1, null, { At(0,d, h)ops, Tied(0, n, T)ops, t2 < 50,1 = t2 — 2}),
Goal(stop, Out_of_danger(50, n,r), 50),

Ppl(1, stop, Stop_train(ty : tz,dr) ),
Out_of_danger(tz e~ 50, n,r) L

WET(0, stop, 0),

Feasible(1, stop), ...

(Dudley is forming a plan that includes an action, namely Stop_train, which must be per-
formed by someone else, the train driver dr.)

Step 2:
CS(Z, null, { . ,t2 S 50,t1 =12 — 2, t3 = &4 — 5,t4 S tl}),
In_contact(ts : ta,d,dr)
Warn(ts : ta,d, dr)
Ppl(2, stop, Knows_about(tye— t1,n,dr) . )
Stop_train(ty : t2,dr) ]
Out_of danger(tze= 50,n,7) |,

WET(2, stop, 2),
Feasible(2, stop), ...

(Since Stop_train is not Dudley’s action to perform, he does not refine it; but rather he
adds an action Warn to the plan, which (according to one of his axioms) will cause the
driver to perform the Stop_train action, by means of the result Knows_about which can be
one of the preconditions to Stop-the-train. Dudley now estimates that 5 steps are required to
perform the warning, but has not yet included this into the WE'T, nor has he yet considered
the time it will take to get to the neighbor’s house to use a phone, nor to establish a phone
connection.)
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Step 3:
CS(3,null,{...,t2 S 50,t1 :tQ — 1, t3 :t4 — 3,t4 § t1t7 S t3,t7 -1 Z 16 2 t7 —5}),
At(te : t7, phone, l1) N At(te : t7,d, 1)
Repeat_until(ts : t7, Dial, Get_connection,d, dr) ]
In_contact(t7e~ tq,d,dr .
Ppl(4, stop, ]n-contact(gg ity d,dr) : ' );
Warn(ts : ts,d,dr) ]
2

Knows_about(tse— t1,n,dr)

WET(3, stop, 7),
Feasible(3, stop), ...

(Dudley adds the Repeat-until action to his plan, in order to make phone contact with
train driver. The WET is now 7 (5+2). The 5-step estimate for making phone contact has
not yet been added to the WET, nor have the 5 steps required for 5 paces to the neighbor’s
house (phone). These (additions) would occur in subsequent steps.)

8 Towards realism: Limited space and computa-
tion capacity

We have thus far sketched our original formalism and shown how it is used to tackle
the fully deadline-coupled reasoning problem, further details of which can be found
in [45, 59]. The system described thus far has been implemented in Prolog.?® The
implementation serves two purposes: In addition to confirming that the inference
engine indeed performs the desired sequence of deliberation and “execution,” it also
has brought to our attention the need to address other problems that we had set aside
in the interest of providing a basic treatment of deadlines. We address these other
problems in this section.

The space problem: As time advances, more knowledge is gathered as a result
of observations from the agent’s environment and as a result of the deduction pro-
cesses within. The knowledge base which is expanding can potentially become so
formidable that it would be unrealistic to assume that the agent could possibly ap-
ply all the inferences to all the beliefs in the knowledge base. Usually, most of the
information contained in the knowledge base is not directly relevant to the develop-
ment of the agent’s current thread of reasoning. Active logics, and our treatment of
deadline-coupled planning in the previous sections, have disregarded the space prob-
lem in preference to dealing with time-related issues. The space issue deserves serious
attention as well.

Unrealistic parallelism: A step is defined as the time required by the agent to
perform one inference or one primitive physical action in the world. Actions can be

36Except for Section 7.3 .

31



carried out in parallel if the sensors and effectors permit. For example, an agent
can walk and eat simultaneously. Active-logic planners treat ‘think’ actions within
the agent in the same spirit as physical actions. The original active-logic inference
system assumed that during a given step ¢ the agent can apply all available inference
rules in parallel, to the beliefs at step ¢ — 1. There are two problems with this. One
is the unrealistic amount of parallelism needed to allow the agent to draw a large
number of inferences in one time step. The Second problem is that it is unreasonable
to expect that all inference rules have the same time granularity. For example, it is
unlikely that a simple application of Modus Ponens will take just as long to fire as an
inference rule to refine a plan or check for plan feasibility, especially as plans become
very large. While the representation is uniformly declarative, some rules have more
procedural flavor than others, and thus those rules can be imagined to require more
implementation “time steps” than less procedural rules. Just as there is a limit on
the physical capabilities of the agent as to how many physical actions can be done in
parallel in the same time step, there is a limit to the parallel capacity of the inference
engine as well.

A claim towards fully deadline-coupled reasoning would be a tall one if the model
depicts an agent with an infinite attention span and infinite think capacity. In this
section we propose an “active logic” extension of the original step-logic formalism
to take into consideration computational space and time constraints. We revisit the
fully deadline-coupled planning problem in the light of this new framework. For each
component that is needed to handle the time and space limitation, we present one
possible heuristic. The effectiveness of these heuristics can be questioned, but as
mentioned earlier, our concern here is not with optimality, but rather with a time
situated framework in which computational limitations can be reasoned about. (In
future work we will consider alternative heuristics aimed at improve performance.)

8.1 A limited span of attention

We propose a tentative solution to the space problem partially based on [20] as follows.
The agent’s current focus of attention is limited to a small fixed number of beliefs
forming the STM (short term memory), while the complete belief set is archived away
in a bigger associative store, namely, LTM (long term memory). In addition, we use
what we call QTM, which is a technical device to hold the conclusions that result at
each step, for “meta processing” before the next time step. The size of STM is a fixed
number K .37 In general, inferences are drawn based on beliefs in STM, rather than
LTM as a whole.

In the simplest model, STM can be represented as a queue, in which case the
inference/retrieval algorithm reduces to a simple depth-first or breadth-first strategy
depending upon whether new observations and deductions are added to the head or
tail of the queue respectively. Choosing STM elements without consideration of focus
leads the reasoning astray quite easily, and also leads to incomplete reasoning due
to thrashing. We propose to maintain a predicate called Focus which keeps track of
the current line of reasoning. This is dynamically changed by the agent’s inference

37What is a realistic K for a commonsense reasoner? There is psychological evidence that suggests
that human short-term memory holds seven-plus-or-minus-two ‘chunks’ of data at one time [55].
What relation, if any, the data in our model has to a ‘chunk’ requires further investigation.
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mechanism and is responsible for steering the reasoning along a particular thread even
when a large number of seemingly irrelevant inferences are drawn. Among the agent’s
inference rules is a set of focus changing rules, which when fired alter the focus. Those
K beliefs from the associative LTM which are most3® relevant to the current focus
are highlighted to form STM.

In short, the framework can be described as follows. QT'M; ;4 is an intermediate
store of formulas that are theorems derived through the application of inference rules
to the formulas in STM; (STM at step i). They are candidates for STM at step i+ 1,
although only K among them will be selected. Thus the results of the inference rules
fall into QT'M;;;41, and are available for selection via a meta-rule to form STM at the
next step. Focus and Now, which are crucial to time-situated reasoning, are always
accessible to the agent for inference. LT M;yy is LT'M; appended with QT M; ;4.

The main problem in limiting the space of reasoning is to decide what should be
in the focus. In our planning framework, we have developed a mechanism that is
at work to limit the focus to a single feasible plan at a given time step. A list of
actions, conditions, and results from the plan that need further processing form a list
of keywords in the focus. Heuristic rules are proposed to maximize the probability
of finding a solution within the deadline. This would correspond to a sort of a best-
first strategy or a beam-search of width K in the general framework. Although these
heuristic rules are independent of the instance of the problem in question, they are
likely to differ depending upon the category of the problem being solved. A deadline-
coupled actor-planner is likely to maintain a much narrower focus than a long-range
‘armchair’ planner. In section 8.4, we outline some of the specific heuristic strategies
employed for the tightly time-constrained planner.

8.2 A limited think capacity

Next, we address the bounded computation resource problem. An intelligent agent
can be expected to have a sizable reservoir of inference rules acquired during its
lifetime. Firing of an inference rule corresponds to a ‘think’ action. Without a bound
on its inferencing power, the agent could fire all the inference rules applicable (termed
in conventional production systems as the conflict set) simultaneously during a time
step. We limit the inference capacity of the engine to I. Each inference rule j is
assigned a drain factor d;. This is a measure of the drain incurred by the inference
engine while firing an instance of this rule. For instance, Modus Ponens and the more
elaborate inference rule for plan refinement, would be given different drain factors to
reflect this difference in granularity, i.e., to reflect how much work is required to apply
the rule.3°

Our limited-capacity inference engine fires only a subset of the applicable rules in
each time step. Among the various alternatives, it is possible to pick the inference

38 There is then a ranking among the relevant formulas and the K formulas with the highest ranking
are picked. In our current implementation however, we select the K formulas at random from among
the candidate formulas.

3%9How to calibrate the inference rules for the assignment of these drain factors is a separate and
interesting issue, but we will not address it presently. Also, how thinking actions compare with
physical actions is a technical issue that could be resolved by trying to calibrate the system to
check on the relative speed of its inference cycle with that of its sensors and motors. We skip this
implementation sensitive issue for the present.
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rules either completely nondeterministically up to the engine capacity 7, or one could
again apply some heuristics to improve the agent’s chances. Several parameters, such
as agent attitudes, the uncertainty of the environment, or the urgency to act could
dictate this choice.

Thus, in effect, during each step, K beliefs are highlighted from the knowledge
base (LTM) to constitute STM. From among the rules applicable to these K beliefs,
a subset of rules is chosen such that sum of the drain factors does not exceed the
engine’s inference capacity I. The results of the inferencing are put in QTM. Finally,
the contents of QTM are copied to LTM.*°

8.3 On the adequacy of the limited memory model

Let SL(OBS,IN F') denote an active logic with an inference function INF, an observa-
tion function O BS, and unlimited memory as described in [21].*! Let SLEET(OBS, INF)
denote the corresponding active logic with a limited short-term memory of size K and
an algorithm, called F'ET, describing the strategy for fetching elements into STM.

The following theorem demonstrates that under appropriate conditions, any in-
ference derivable in an active logic with no memory limitation, can also be derived
in a memory limited active logic. The size of STM (i.e., K) can be as small as two
beliefs. One might expect that for larger K’s a given inference will occur more quickly.
However, this is true up to a certain point only. We discuss this further at the end of
the proof.

Theorem 1 Let K > 2. If all the inference rules in I N F' are monotonic then it is pos-
sible to describe a (simple) algorithm F ET such that any theorem of SL(OBS,INF')
will eventually appear as a theorem of SLEFT(OBS,INF). Le. ifb; ain SL (a was
proven at step i) then 3j such that ; a in SLEET(OBS,INF).

Note: the requirement of monotonicity in particular entails that the “clock”-rule
for Now is left out. Thus the result applies only to Now-free inferences. We also
assume that new observations are consistent with previous facts and derivations.

Proof We begin by showing that the following dovetailing transformation on IN F
into Dove[IN F] yields an equivalent active logic with unbounded memory in terms of
the final theorem set.*?> We then show that SL(OBS, Dove[IN F]) and SLEFT(OBS, Dove[IN F])
have the same final set of theorems, where the algorithm F'ET is described below.
Let all the rules in Dove[IN F] have at most two antecedent formulas. This is
achieved by transforming every rule in /N F' which is of the form:

i Al,Ag,...,An
1+ 1: w

ito n rules of the form:

40L,TM is of unbounded size, however it will grow more or less linearly given that STM has a fixed
upper bound, K. Without the mechanisms of the section (i.e., STM, K, LTM, and QTM) the belief
set in general can grow exponentially.

*1Tn this section, familiarity with the notation in [21] is assumed.

42Note that since all rules in IN F are monotonic, the logic itself is monotonic. Thus every theorem
proven before the step of this “final theorem set” also appears in the final theorem set.
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i Al,Az

14 1: Ps
i A3,P3

1+1: Py
i1: A, P,

t+1: W

This, of course, can make the number of rules very large, but it allows us to have
a very simple algorithm F ET to show that there is no net loss of theorems caused
by limiting the size of STM. Let InfCh, denote the inference chain used to derive a
theorem «. The algorithm F'ET proposed uses dovetailing to ensure that STM cycles
through all possible combinations of beliefs, so that eventually whatever formulas are
used in InfCh, also occur in STM.

We want, first, to ensure that the algorithm has access to all logical axioms, so
we feed them in lexicographically. At each step, some more (finitely many) logical
axioms are added to the LTM; we feed in all formulas of length < i at step 7, that
use only the first ¢ symbols of the language. F'ET forces STM to cycle through all
combinations of beliefs in LTM, all combinations of two at a time, to allow every rule
that could fire to actually fire.

As time goes on, more and more logical axioms are fed into LTM, and also new
inference results are being produced and going into LTM. F ET is an algorithm that
gets every combination of two formulas, including new ones that come in by either
inference or feeding. We can conceptualize all formulas (in the entire language) to
be already in LTM but only those that occur in InfCh, to be marked red. As time
goes on, more and more become red, due to inference and feeding. We also mark each
formula with an index (a unique natural number), and bring into STM two at a time,
and never repeat a pair already brought in; we can imagine each pair of formulas has
a link that become blue when it is brought into STM; so we never bring a blue-linked
pair in again. At each step we bring in a non-blue pair and apply all applicable rules
to 1t. One could either bring in the pair with the smallest index-sum, the pair with
the largest index sum or pick a pair at random, among many alternatives.

FET performs all possible inferences, including those in InfCh,, eventually de-
riving «, although after many more time steps.

We can see now that even for very small K (such as 2) there are in the worst case
many combinations of beliefs (e.g., in pairs) to be brought in turn into STM; this is
slow. As K increases, the number of combinations gets larger up to a point (the point
where K is roughly half the size of LTM)—the number of such combinations is simply
the relevant coefficient of the binomial expansion. Beyond that point as K approaches
the size of LTM, the number of combinations reduces and is even better than for very
small K; and on average it will also be better in terms of the likelihood of finding an
appropriate combination (useful for inference) sooner. These are time-advantages of
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large K; however, large K has the space-limitation that we addressed above. A not
implausible suggestion to keep the worst case of inference-time small and also address
the space problem might be to choose K to be the maximal number of antecedents
in any inference rule.3

In SL(OBS,INF) where there is no limit on memory, partial plans get refined
whenever possible, and the context set is revised at every time step. Also, the projec-
tion in the latest context is recomputed at every time step. With SLEFT(OBS,INF)
however, the order in which these rules will fire depends upon the simultaneous occur-
rence of the matching formulas in STM. If the refinement of the partial plan proceeds
before the context set revision, it is possible that redundant plans will be developed
before the context set and the projection will catch up to let the planner know that
something is already true and does not need to be planned for. As an example, con-
sider a plan in which a condition for a certain action requires that a certain high-rise
building be pink. Dudley may have an axiom which says that all high-rises are pink,
but has not had a chance to apply it to the context set in question to conclude that
the high-rise building in question is pink. Hence he formulates a (redundant) plan to
paint the high-rise pink. Subsequently, as the context set is revised this condition is
already true in the projection and an inference rule needs to be fired to identify and
eliminate this portion of the plan.

We note here that redundant plans of this nature may be generated even in the
case of unlimited memory, if there is a long inference chain based on the facts required
to derive the condition in question. For example, if Dudley does not directly know
that all high-rises are pink, but infers it from the fact that all high-rises are tall
structures, that all tall structures are made of concrete, and that anything made of
concrete is pink. Since bringing in all these axioms and revising the context set may
take quite a few steps, it is likely that redundant plans are generated even in the case
of unlimited memory. A rule that corrects this situation is useful in both cases.

Lemma 2 If the inference rules for plan refinement, context set revision, and com-
puting projection compute all possible instances of PPl CS and Proj, instead of
working on the latest instances alone, then all the partial plans generated by the un-
limited active logic will also be generated by the bounded active logic where K > 2.

Proof When each instance of the partial plan, context set and projection is kept
active, the same combinations that occur in the unlimited active logic will eventually
cycle through STM, giving the same partial plans, in addition to several other plans
generated.

In some cases, where context-set revision precedes planning, in fact efficient plans
may be generated since the planner is in fact more informed about extended effects
and side effects prior to the planning.**

43We do not yet have an optimal choice for K. This is left for future work.

44Tn the FET algorithm, bringing the lowest sum of indices corresponds to a breadth-first strategy.
Using highest sum of indices would correspond to a depth-first strategy. The former will ensure that
partial plan refinement will not get too far ahead of the context-set revision. Once the partial plan is
refined, a context set revision rule must fire since its antecedents were already present in LTM. In the
depth-first method, you will refine a plan as far as possible, then revise CS as much as possible, then
project as much as possible, and then alternate. It is interesting to explore how these will interact.
In a random strategy that exhaustively brings in all pairs, arbitrary speeds of the three chains need
to be considered to see its effects on the planning.
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8.4 Heuristic strategies for deadline-coupled planning

In the previous section we presented some formal results on the adequacy of an active
logic to generate the required plans even when there is a bound on the size of STM.
The algorithm F'ET used to demonstrate this uses a simple breadth-first strategy. In
this section we present other algorithms to be used in place of FET to improve the
chances that the formulas used in the derivation of the plan will appear sooner in

STM.

8.4.1 Focus and keywords

As a general approach to limiting space, we proposed that beliefs be organized in
LTM by association with some topics or keywords. When one or more of these topics
are in focus, the related beliefs become candidates for retrieval into STM, as a result
of a retrieval rule. Formulas in STM are not automatically inherited from one step
to the next. Only when they are still relevant to the current focus do they become
candidates and must compete with other relevant formulas to fit into the limited size
STM.

The focus holds the keywords of current interest.*> Beliefs related to high priority
topics are given preference for being brought into STM. As mentioned before, for our
actor-planner Dudley we restrict the focus to equal priority keywords related to a
single plan at a given time step. Non-primitive actions that appear in the triplets of
a given plan, that still need to be refined, are appropriate keywords for goal-directed
retrieval. Also, the results that appear in these triplets serve as keywords to deduce the
effects of the plan. These are kept in focus as the formula plan_in_focus(p, PKWL)
where p is the name of the partial plan and PKW L is the list of keywords for p.

Observations are put into the current focus at least for a few time steps, since
it is possible that they may be important, and may trigger some new threads of
reasoning.*® Current observations are kept in the focus as the formula obs_in_focus(OBL)
where OBL is the list of observations that serve as keywords. Thus, we treat the focus
as a predicate

Focus(i, plan_in_focus(p, PKW L), obs_in_focus(OBL))

When there are multiple options in STM for achieving a goal, more than one
partial plan is spawned. All plans for achieving a certain goal may be given equal
priority at first, allowing them to continue to develop in a time-shared manner and
then to be brought into focus sequentially. However, in a deadline situation, it may
be advisable to commit to a plan (i.e., to put it in focus and to hold others in a

45Tt has similarities to RTM, proposed in [20]. We imagine that in a more general framework the
focus would contain keywords arranged in a partial order according to priorities.

The main question is how to choose the “keywords” that are in the focus at a given time, and how
to assign priorities to them. Our ideas presented here are aimed at a commonsense agent engaged
in deadline-coupled planning.

4How to in fact select some crucial observations from all the stray input to the sensors remain
unaddressed, but it is not among the problems we will solve at present. A tutor’s or a human'’s hint
to the automated agent that some observations are worthy of more consideration is one possibility. In
our example, Dudley may first start to think about running to Nell to rescue her, when he suddenly
sees a telephone. This brings ‘calling’, and subsequently the related axiom of calling the driver to
stop the train into focus. This spawns the generation of a second plan.
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background queue for backtracking if necessary) and continue with it unless it seems
infeasible.

The development of an appropriate plan depends on three aspects: (i) satisfying
(pre-) conditions, (ii) refinement of general actions into more detailed ones, and (iii)
using the result of the plan for finding its effects. To illustrate, given a triplet in the
Ppl[C4, A, R4], the following are used to compute the extended effects: axioms that
produce Cy4 (i.e. Cy4 appears in the axioms’ conclusions), axioms that are used for
refinement of A (i.e., A appears in the axioms’ conclusions), and axioms in which R4
appears in the antecedent (i.e., R4 — ¢€), to compute the extended effects. If these
three types of axioms are brought into STM, the probability that a plan will be found
is likely to be increased.

8.4.2 Some inference rules for resource limited reasoning

At each step, the agent reflects on its long term memory reservoir to pick out for-
mulas that are relevant to its current focus of reasoning using a retrieval rule. LTM
is an associative store and hence this retrieval is fast.*” The focus-directed retrieval
meta-rule (FDRR) is as follows.

i:.., LTM{...,p,..}, Focus(s, Plan_in_Focus(p, PKW L), Obs_in_Focus(OBL)), ..
Z-|— 1: QTMi/i+1 {...,ﬁ, }

where 3 is relevant to either p or to a keyword either in PKW L or OBL.

In our work on planning, the Focus includes keywords related to a feasible plan.
A (partial) plan is feasible if the sum of Now and the plan’s working estimate of time
is still within the deadline. A list of feasible partial plans is maintained. From among
these a subset of plans is selected to work on and is called the interleaving list (IL).
Dudley works on each plan in the interleaving list for a fixed period number of steps,
then goes on to the next plan in the IL in round robin fashion. The interleaving rule
(ILR) serves this purpose by periodically selecting the next plan in the IL to put into
the focus. This is one of the focus changing rules in Dudley’s inference engine.*® This
rule time-shares between plans and always fires. A separate rule controls the contents
of IL.
The Interleaving Rule (ILR) is

i: Now(2), IL([pjy,--s Pjn])s ---
i+1:Focus(i+ 1,plan_in_focus(p;,,...), ), LL([Ps2, s Pyn,pjy 1)

When there are two or more plans in the IL and it is time to choose between them,
a rule fires to narrow the focus to only one plan. We hypothesize that the difficult
problem of “when to decide to choose” depends on mental states and attitudes of
agents [T1]. A more “cautious” type of agent will skeptically continue to process two
alternatives, perhaps risking overshooting the deadline, but a more “daring” type
of agent will take the risk to pursue just one plan. We have developed a heuristic
rule under the following commonsense observation: An agent can continue to work

if ¢ mod period = 0

47The retrieval rule is a weak parallel of the inheritance rule in Elgot-Drapkin’s step logics, in the
sense that formulas in STM at the previous step reappear in STM at the current step provided they
are still relevant.

48Other scheduling procedures that were developed by operating systems researchers such as swap-
ping, time-sharing, etc. might be useful here, but this is beyond the scope of our paper. We only
demonstrate how such procedures can be used in time.



on several plans provided there is ample time ahead to try to pursue them one after
another in the interest of fault tolerance. For example, even after calling the driver
to stop the train, Dudley may want to run to the railroad track and attempt the
rescue Nell nevertheless, if there is enough remaining time. An agent may do so as
a guard against possible failure of his own or other agents’ plans, or perhaps as an
extra precaution when the plans are not recognized to be mutually exclusive. We look
then at the sum of the WETs of all the plans in the IL as a measure of the overhead
planning time. When the sum of the WETs plus Now exceeds the deadline, a plan is
dropped from the IL. We currently use the simple heuristic of dropping the plan with
the largest WET, but recognize that this may very well be the most refined plan as
well.*® The Reduce-IL rule (RILR) achieves this:

i: Now(1),IL(L), Wet_Ordering([pj,, --.]), ---
i+1:1L(L —pj)

if ZZGL WETsz + Now > Deadline

An agent may be forced into a decision if two or more plans are ripe for action
and the actions are mutually exclusive. The agent must evaluate the relative merits
of the plans before making a decision if acting on one will commit the agent to one
plan. Although we do allow planning and acting to be interleaved, we allow the agent
to act on a plan if it is the only one in IL. This is to avoid the complex interactions
between plans as the result of the changed state of the world following the execution
of one plan. We continue to examine this issue in ongoing work.

8.4.3 Capacity of the inference engine

As mentioned earlier, we suggested a limited capacity inference engine that would fire
a cumulative set of inference rules in order to not exceed its inference capacity in each
time step. In the simplistic examples that we present, there are a limited number
of rules firing at each step. Furthermore, if the plan length is within a reasonable
bound, drain factors of the rules are also quite small and as a first approximation
we postulate them to each take roughly the same time and fire in parallel in a single
step whenever applicable. It should be noted that the meta rules for resource limited
reasoning which were described above fire alongside the other object level inferencing
at each step as part of a uniform framework. If we limit the capacity of the engine,
the meta rules that are fired will limit the number of planning rules that are fired in
each step.

8.4.4 Some illustrations from two plans

Dudley begins to formulate a plan save to get Nell Qut_of-danger. Initially, the focus
consists of Focus(j, plan_in_focus(save, [Out_of -danger(...)]), ...), and the interleav-
ing list is I L([save]). Here, save is the name of the partial plan and is used to retrieve
formulas related to the plan such as its WET, its context set, projection, etc. The list

49Tf one can find a way to include a good estimate of planning time (and probably decision time)
into the WET it seems that more refined plans will require less planning time than other plans.
Maybe, the three parts of the WET should not be combined and the decision whether to knock out
a plan from the IL should be made using some sort of multi-attribute decision rule (i.e., based on
executing time, planning time and decision time).

Additional bookkeeping is necessary to ensure that two rules do not alter the IL or the focus
simultaneously. We skip these implementation details in this description.
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At(t16,d, home) )
Run(tis : t17,d, home : r)

At(t170—> t14, d, 7“)

At(tlg : t14, d, T’)

Ppl(10, savey, Release(tys : t1a,d,n,7) )
_|Ti€d(t140—> tll, n, 7“)
-Tied(t11,n,7)

Pull(t11 : f12, d, n, 7")

Out_of _danger(t120~ Deadline, n,r)

At(tgg, d, nh)
Run(tag : tag,d,nh : r)
At(thH t27, d, nh)
At(t26 . t27, d, nh)
Ppl(10, saves, Dial(tse : ta7,d, dr) )
In_contact(taze— ta4,d, dr)
In_contact(tas : taa,d, dr)
Warn(tas : t24,d, dr,n)
Knows_about(tage— ta1,n, dr)

7/

Figure 3: Pursuing two alternatives within space limitations. Dudley develops two
alternative plans in a time-shared fashion until there comes a time when the sum of
their WETs plus Now is no longer within the deadline. The figure shows a snapshot
of the two plans at such a time step. Dudley exercises a choice through the rule
RILR which reduces the interleaving list to the plan to call the driver of the train.
Abbreviations used are: n = nell, d = dudley, » = the railroad track, nh = the
neighbor’s house, and dr = the driver of the train.

of keywords for this plan contains Out_of _danger. It is used to retrieve axioms from
LTM whose right hand side matches the keyword. Thus, the plan save bifurcates into
save; and savey based on the following axioms which are retrieved from LTM:

Pull(t :t+ 1,y,z,1) — Out_of danger(t + 1,z,1)

Stop_train(t : t + 2, driver) — Out_of _danger(t + 2, nell, r)

Plan 1: Pull Nell away from the tracks
—Tied(t11,n,r)
Ppl(11, savel, { Pull(t11 : tia,d,n, 1) ] }), {t12 < Deadline, t11 = t12 —
Out_of_danger(ti2e~ Deadline,n,r)

1}

Plan 2: Stop the train
Knows_about(tz1, n,dr)
Ppl(11, saves, { Stop_train(ta; : t22,dr) ] }), {t22 < Deadline, t21 = t22 —
Out_of_danger(tzz e~ Deadline,n,r)
2}
The interleaving list is expanded to contain both save; and savey, and Dudley
continues to work on both feasible plans in a time-shared fashion. The focus thus

contains save; for an interleaving period during which axioms for untying Nell and
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running to her are progressively retrieved from LTM. Other facts of no relevance to
the plan, such as color_of _eyes(...), or that are relevant to the other plan, such as
the axioms about dialing to get a connection are left alone in LTM. After the period
expires, saves 1s brought into focus and worked on in a similar fashion. It is not until
much later that Dudley realizes that the sum of the WET’s of both plans plus Now
is going to overshoot the deadline, and he must restrict the IL using the RILR rule.
We show a snapshot of the two plans when this happens in Figure 3, in which we
have made the simplifying assumption that dialing will always result in establishing
contact.

Using this heuristic, Dudley gives up the plan with the higher WET, which in this
case happens to be the one to run to Nell, and executes the plan to go to the neighbor’s
house to call the driver to stop the train instead. (The run to the railroad tracks is
longer than the run to the neighbor’s house.) The sum of the WET’s exceeding the
deadline, Dudley starts to run in the direction of the neighbor’s house and removes
savey from the IL, still retaining it in the list of feasible plans to be available in case
of unanticipated run-time failure.

9 Related work

Here we briefly summarize related planning and reasoning research and contrast it
with our approach. A recent issue of Artificial Intelligence (vol. 76, nos. 1-2) is de-
voted to the topic of planning and scheduling; two papers there bear at least some
general relationship to our concerns here: [11] specifically addresses the issue of plan-
ning under time constraints, but oriented to stochastic domains and not particularly
concerned with deadlines. [69] is a logic-based approach to planning, but with a very
different emphasis, where multivalued logic is used to represent graded preferences
rather than time. There is howver, an extensive related literature, which we summa-
rize below. treating in turn the areas of (i) temporal projection, (ii) plan interaction,
and (iii) meta-planning.

9.1 Temporal projection

The issue of temporal projection has been extensively studied in the Al literature. In
particular, much of effort was devoted to the problem of forward temporal projections,
or predictions that are necessary for planning. This is the problem of determining all
the facts that will be true during a future time period, given a partial description of
the facts that are known. Numerous solutions have been proposed to the temporal
projection problem including [25, 27, 32, 42, 50, 49, 56, 62, 70, 4].

Our projection mechanism has commonalities with some of the chronological min-
imization approaches, notably those of Shoham [70], Lifschitz [49], and Kautz [42]. In
our approach, as well as theirs, defaults are applied forward in time, so that earlier
events play out their consequences for later ones. However, these other approaches
specialize in forward temporal projection problems and can also handle backward
projections, but cannot solve explanation problems or be used by an active agent
who may obtain new information while doing projections. Qur projection mechanism
provides an active agent with the capability to revise its conclusions, in light of new
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observations, to give explanations to previous events, and to use its predictions in
planning.

Ginsberg and Smith [30] present an approach of reasoning about action and change
using possible worlds. The approach involves keeping a single model of the world that
is updated when actions are performed. The update procedure involves constructing
the nearest possible world to the current one in which the consequences of the actions
under consideration hold. There is no explicit notion of time in this approach and
the reasoning is done by an “outside” reasoner, hence the time of reasoning is not a
concern.

Dean and McDermott [12] present techniques for temporal database management.
They allow two types of prediction in their system: projection and refinement. Their
system 1s based on a temporal map that can be described by a graph in which the
nodes are instants of time associated with the beginning and ending of events, and
the arcs connecting these nodes describe relations between pairs of instants. We use
ordered lists as a (simpler) data structure, and in our framework time is associated
with events and predicates, and not the other way around as in [12];*® however, the
projection i1s done in a similar way.

As in previous systems we discussed, Dean and McDermott describe their mecha-
nism as “reasoning about time from the outside. It’s as though all of what you know
about the past, present and future is laid out in front of you.” We consider reasoning
done by an agent in tzme. It has only the past and the present in front of it, and it
places the passage of time into its reasoning process.

Amsterdam [3] appears to be the only work other than ours or which we are
aware that attempts to discuss the issue of who the reasoner is in a given scenario.
Amsterdam highlights the advantage which a reasoner has when he/she is at the site
of the action, namely, that he/she can observe an action whenever it happens. This
allows the agent to utilize the closure property — “if an action is not mentioned then it
did not happen.” However, here again, there is a meta-reasoner doing the inference.
Amsterdam’s theory’s greatest limitation (and this is stated in [3]) is the rigidity
of the above mentioned closure principle. There are scenarios where actions can be
derived from propositions and hence do not have to be explicitly specified.

9.2 Plan interactions and dependencies

The Sussman anomaly [72] showed that certain planning situations are intrinsically
non-linear. Waldinger [76] first suggested the technique of “goal regression” to tackle
the problem of conjunctive goals. With INTERPLAN [73], Tate suggested recording
a link between the effect of one action and the condition of another. (We have used
a similar idea in using the e— symbol to record the need to preserve a certain effect
of an action until a later time). NOAH’s procedural nets, and SOUP (Semantics of
User’s Problem) [68] used critics which are outside advisors that perform decision
making regarding non-linearity and plan optimization; this was the first partial-order
planning. We have a total-order planner, simply because it turned out to be the

500ur projection mechanism is similar to that of [12], but we distinguish the case where a change
occurs but it is not clear when it occurs. In particular, if o is of the form X (s; : f;, Args) and o 41
is of the form =X (sj41 : fj41,Args) then Proji+17p does not speculate over the truth or falsity of
X over the interval f; +1 : s;41 — 1. The projection rule will smooth over this interval when further
information about a possible point of time where the value of X changes becomes available.
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simplest kind to build while we concentrated on the time-related aspects. We commit
to a sequence of actions, but the actual times at which the action must be executed
is bound to Now only at the time of acting. NONLIN [74] can detect interactions
and take the necessary corrective action. DEVISER [75] goes a step further and han-
dles time limits while performing partial order planning. Planning with conditional
operators and iterators has been dealt with in NOAH [68] and in SIPE [78], among
others.

There have been numerous efforts to improve planning by recognizing goal inter-
actions and dependencies during the planning process, and better representations of
actions and plans (see [34] and [2].) These efforts recognize the need to use features
of the plan to reason about improving the plan, but this is not done by the planner
itself. In our work, although we do not make any attempts to optimize plans, we
perform domain-independent meta-level reasoning within the same framework as the
object-level planning; and unlike the “critics” [68], the meta-reasoning is an intrinsic
part of the planning that also consumes time.

9.3 Meta-planning

One way to implement meta-level decision making is to design two distinct component
systems, one for object-level and one for meta-level reasoning. The other way (which
we have followed here) is to design a uniform meta-level architecture where the meta-
level problems are formulated and treated with the same language, structures, and
algorithms as the base-level problems. This introduces flexible systems, but along
with it also introduces the possibility of infinite regress. This is the metareasoning
challenge, well-described in [66]. An aim of the model by Russell and Wefald is to
establish a methodology for applying rational metareasoning to control any object
level decision procedure. We try to provide a more axiomatic foundation. Also,
Russell and Wefald assume the outcome of each external action is known at the time
the agent chooses among them. We, by contrast, make no such assumption; we argue
that in some cases at least, the agent cannot know these outcomes and must instead
take note of how long an action is taking as it is performed. When there is available
information for reliable (or assumed reliable) estimates in advance, our approach can
also make use of these.

Reactive systems eschew meta-level planning, and indeed any kind of planning,
by considering all contingencies at design time. Typical of this group is the work of
Brooks [6, 7]. Other efforts that obviate the need for explicit reasoning at execution
time are [1] and [65] and [41]. In the problems that we have dealt with in this paper,
which fall in the “unforeseen” category, the fully reactive approach is often believed
to lead to brittle and inflexible systems if no real-time deliberation is performed
[9, 15, 64, 40].51

At the middle of the deliberation spectrum, many researchers agree that some form
of deliberation is necessary in planning. We mention a few of these here. SIPE [78]
separates execution and generation by allowing the user to guide the planning process

51Partial reactivity to the environment is achieved in our formalism by taking timely note of
changes in the environment through observations. However, we simply incorporate the observa-
tions into the ongoing deliberative process of reasoning; they do not trigger any special reactive
components.
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(perform the meta-reasoning) during execution. The PRS system [26] uses metarea-
soning to recognize the need for additional planning. More recently [40] proposed a
situated architecture for real-time reasoning. Based on PRS;, it provides management
representation of metareasoning strategies in the form of metalevel plans, and de-
scribes an interpreter that selects and executes them. Their architecture is not fully
embedded in real-time though, since the time of this interpreter is not accounted for.

Our fully deadline-coupled planner meets an important criterion that these other
efforts fail to meet: in addition to performing metareasoning for determining the
current time, estimating the expected execution time of partially completed plans,
and discarding alternatives that are deadline-infeasible, our system also has a built-
in way of accounting for all the time spent as a deadline approaches. This means
not only accounting for the time of various segments (procedures in the more usual
approaches), but also the time for this very accounting for time! Active logics do this
without a vicious circle of “meta-meta-meta...” hierarchies.

An excellent survey of research in deliberative real-time Al is available in [24].
They categorize real-time systems into purely reactive (those that hardwire reactions
completely), combined response systems (those that have distinct asynchronous com-
ponents that handle deliberation and reaction) and integraied systems (those that
have a single architecture that is capable of a wide range of timely responses de-
pending upon the time criticality requirements). Those in the last category put the
time that is available to the best use. These approaches have been collectively char-
acterized by terms such as flezible computation [38], deliberation scheduling [5], and
anytime algorithms [13, 79]. They spend the resources available to the agent in de-
ciding whether to act, how to act, and when to act. The main differences between
our approach and these is the following: (i) they do not account for the time-cost
of the deliberation scheduling algorithms themselves, only for the cost of deliberation
that they consider; while our mechanism is completely situated in time; (ii) they re-
quire prior complex (meta) knowledge about their reasoning algorithms or procedures
themselves, and their characteristics with respect to time; they also require a great
deal of knowledge about the domain in the form of probabilities of events and ex-
pected utilities of actions that the agent must be aware of; (iii) they usually attempt
to solve an optimization problem in a specific domain, whereas our approach is to
come up with a formalism that accounts for all the time spent between Now and the
deadline while attempting to reason about the feasibility of a solution, not to find an
optimal solution. Thus, we note that these approaches are not alternatives to our
time-situated reasoning approach using active logics, but rather that they are suited
for a different range of more informed problem solving.

“Anytime algorithms” is a now widely used term, first coined by Dean and Boddy
[13]. Tt represents a class of deliberation algorithms which have the following char-
acteristics: (1) They can be interrupted at any time and will produce some solution
to the problem; (ii) given more time they will produce better solutions; and (iii)
the user of the algorithm has some explicit characterization of the tradeoff between
the algorithm’s performance and the amount of time that is available to compute a
solution.

Anytime algorithms are similar in spirit to the notion of “imprecise computation”
commonly used in research in operating systems which divides the task into a manda-
tory part that gives a solution and an optional part that refines this solution. The
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problems that have been attempted using the anytime technique have the flavor of
more traditional optimization problems, which by themselves cannot cover the space
of planning problems. The feature of “interruptibility” of anytime algorithms is not
particularly one of great value in deadline-coupled planning in commonsense scenar-
ios involving hard and non-extensible deadlines. We want Dudley to come up with a
feasible solution by the deadline (if possible). We do not care if at any point of time
he has found an approximate solution of an inferior quality. Having that assurance is
not crucial.

Also, in the anytime approach, the time for computation is not accounted for:
“The time required for deliberation scheduling will not be factored into the overall
time allowed for deliberation. For the techniques we are concerned with, we will
demonstrate that deliberation scheduling is simple, and, hence, if the number of pre-
dicted events is relatively small, the time required for deliberation can be considered
negligible,” [13] (page 50). In the model we are employing, there is also a simple
metareasoning process (computing WET, deciding among alternative plans, etc); but
its time is not always precomputed but rather assessed as it occurs; and our under-
lying framework provides a general mechanism that measures the time utilized in
any computation whatsoever (even if in future work we employ more complicated
metareasoning such as utility-calculations, etc.).

Work by Horvitz et al [35, 36, 38] attacks problems that may be classified as
“high-stakes decision problems.” A typical example is in the medical domain where
the decision making is complex, but highly informed. Most of the options and quanti-
fied information regarding relationships among decisions and propositions is available
in the form of influence diagrams. Horvitz et al have also addressed the problem of
dividing computational resources between meta-reasoning and object-level problem
solving, particularly in the case when both are being solved using anytime algorithms
[37]. By the use of mathematical functions which assume particular forms for the
various utilities, they manage to keep the meta-reasoning cost quite small or con-
stant. Our work by contrast makes no assumptions of highly informed domains or
computable utilities. Thus the “expert” planning of Horvitz et al allows the possibil-
ity of much greater optimization than does the commonsense “inexpert” planning of
Dudley.

In an approach that is inspired by economics, Etzioni [22] addresses the problem
for a time-constrained agent using special terms commonly used in economics. When
a particular resource is available in limited quantity, it renders competing actions
mutually exclusive. He defines an opportunity cost for each action, which is the
maximum of the utilities of the other contending actions. He suggests a heuristic to
choose the action with the highest marginal utility, without assuming prior knowledge
of the utilities. There is a learning mechanism that calculates them through repeated
executions. It seems that it would be possible in principle to implement Etzioni’s
methods within our active-logic framework.

Lastly we mention work in the direction of building systems and architectures that
exhibit desirable real-time behaviors, although not all components of these systems
function in the real-time domain: Guardian [33] Phoenix [39] and PRS [40]. FORBIN
[14] which is a planning architecture that supports hierarchical planning involving
reasoning about deadlines, travel time, and resources are some examples of such
systems. TILEWORLD [64] is a simulated dynamic and unpredictable parametrized
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agent and environment. It is possible to experiment with the behavior of the agent
and various meta-level strategies by tuning parameters of the TILEWORLD system.
Once again, although all the reasoning here is not performed in real-time, many of
their observations, especially regarding the manifestation of agent attitudes through
the tuning of parameters could be of use in the development of an active logic where
the active logic can self-adjust its parameters to the environment to decide the level
of risk or deliberation it can perform.

10 Conclusions and future work

We have argued for the need for reasoning about time-of-planning to be included in
the planning activity itself, especially in deadline situations. We then presented an
illustrative scenario and a solution using active logics. We also examined a method
for addressing space limitations, by introducing a short-term memory (STM) into the
logic, and we showed that under certain conditions the resulting logic loses no power
when so limited. We also discussed heuristics to improve the performance (but at the
possible expense of proof-power).

Our work provides a uniform declarative framework that accounts for the time
taken during planning and acting as they occur, allowing therefore meta-decisions
about the course of such activity; the time for these meta-decisions is also measured
and accounted for, not in advance but rather on-line. There is no infinite regress of
meta-meta-meta-reasoning, since there is a built-in clock that is both declarative and
procedural: the clock-time (Now) automatically updates the declarative belief base
at every step, allowing the agent to maintain an up-to-date assessment of how much
time has been taken, how much remains, and where the planning/acting situation
stands. Even time taken to decide whether to refine or freeze (temporarily abandon)
a plan-alternative is measured by the same mechanisms.

Among the many things that remain to be investigated, we single out two: (i) The
planning we have considered is of a very elementary sort, compared to the current
state of automated planning research. We have chosen to focus on the total-time-
accounting aspect, and that has presented us with many severe challenges. However,
we want to bring this line of work up to the level of being able to produce plausible
plans in the same domains as other automated planners, with our added feature of
total time-accounting. (ii) We want to incorporate our own related work on other
(non-planning) problems involving time-accounting, such as a real-time version of the
Yale shooting problem, to achieve an integrated formal real-time (in our sense of
time-accounting) system for both planning and problem-solving.
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A Sample Axioms

Relevant to moving:°?
o Run(ty :la,y,l1 : o) — At(t2,y,l2) to = t1 + (I — 1) /1,3
o condition(Run(ty : t2,y, 11 : 12), At(t1,y,11))
o result(Run(ty :12,y,01 : I2), At(t2,y,12))
Relevant to untying and releasing:
o Pull(t :t+1,2,1) — Out_of danger(t + 1,z,1)
)
t+1,2,1)

o condition(Pull(t : t + 1, z,1), ~Tied(t, z,1)
o result(Pull(t : t +1,z,1), Out_of danger(
o Pickup(t:t+1,y,z) — Have(t + 1,y,z)
o result(Pick_up(t:t+ 1,y,z), Have(t : t + 1,y,z))

o condition(Pick_up(t :t+ 1,y,z),
Attt + 1z, DA ALt -t 4+ 1, y,1)

Relevant to telephones and warning:
o condition(Warn(s : 1, z,y), Incontact(s : t,z,y))
o result(Repeat_Until(s : T, Dial, Get_connection, z,y), In_contact(z,y))

o condition((Dial, At(s : t,z,l) A At(s : t, phone,l))

B Sample Inference Rules

This section contains a sample subset of domain-independent inference rules for the
active logic for deadline coupled planning.

1. The agent makes an observation

1: CS(i,p, {...})...
1+1:C8(e+1,p,{...,a})..

;a0 € OBS(i+ 1)

An observation is incorporated into the context set of every plan p being pro-
cessed. In particular the null plan maintains a context consisting of all observa-
tions and the theorems that come to be proven in this context. Note that this

52These constitute a part of the current set of axioms and inference rules. [59, 45] gives a more
comprehensive initial set. Note that we employ a standard quasi-quote notation throughout, allowing
a predicate symbol such as Run to appear also inside other predicates, e.g, condition(“Run...”), and
then suppress the quotes, yielding condition(Run...).

53119 is y’s speed while running.
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rule is a modified form of the original active logic observation rule which did not
have to make the distinction between contexts. In the absence of any planning
or temporal projection, the context of the null plan bears close resemblance to
the belief set of the SL7 logics of Elgot-Drapkin.

2. Forms the first partial plan(s) by finding a triplet for the goal

Now(z), Goal(:,G(s: f,...), Deadline_G), Unsolved(z, G),
CS(t, null, {. .., Result(Ax, Ra, (sk : fr,...)),Condition(Ax,Ca, ), Ar — G,...})...

1!

Ca,
})a

Ppl(i + 1, px, { A
RAk(Sk : fk0—> f, .. )
CS(i +1,px, CSi nutt)Proj(i + 1, px, {})
Feasible(i + 1, px)WET(¢ + 1, px,0) . ..

When Dudley has a goal that is not currently being planned for, he develops the
first partial plan(s) for solving it. For every available action Ay, (or conjunction
of actions) that solves the goal he generates a new plan and calls it by a name
pr- In short, corresponding to every axiom with the consequent G he performs
backward reasoning to deduce the actions that must be done to achieve GG. The
time of the action is linked the deadline by the e— symbol which denotes that
the result of the action must be protected until the deadline. We give a simple
example to illustrate this rule.

5: Now(5), Goal(5, At(10, dudley, home), 10),

Unsolved(5, At(10, dudley, home)),

CS(5,null, {..., Result(Walk(t1 : t2,dudley, garden : home, Walk_speed),

At(t + 3, dudley, home)),

Condition(Walk(t : 12, dudley, garden : home, Walk_speed),

At(t,dudley, garden)),

Walk(t : t2, dudley, garden : home, Walk_speed) — At(t2, dudley, home),...})

141

if G ¢ Proj, yuy U CSi it

At(t,dudley, garden)
6 : Ppl(6, walk_it, Walk(t : £2, dudley, garden : home, Walk_speed) ),
At(t2e~ 10, dudley, home)

3. Adds an action to the plan to satisfy a condition

{ [{...,C}
1: Ppl(z,p,< ... A
Ra

...}),csu,p,{...,Qﬁ )

Cq {...,C} |
i+1:Ppl(i+1,p4...| @ A %)
Rg R4

if C ¢ Proj, ,UCS,,



For every condition C' in the condition list of an action that is not projected to
be true, if there is an axiom for satisfying it, Dudley adds the corresponding
action to the plan. If there is more than one axiom for satisfying the same
condition, Dudley formulates a plan for each possibility, and indexes the name
of the partial plan with a new suffix to distinguish the new plans.

4. Refines a non-primitive action

i:Ppl(i,p,{...

i+1:Pp1(i+1,,p,{...

Ca
A
Ra

...}),CS(i,p,{...,Ql/\.../\Qk—>A})
CQk
RQk

The active-logic planner is hierarchical. Abstraction is embodied in the way
the axioms encode the knowledge about actions. Skeleton plans at upper levels
first synthesized by using higher level actions. These are then broken into more
primitive actions by rules such as the action refinement rule described above.
As the refinement progresses, better estimates of the execution time of the plan
become available. The context set maintains the actions reasoned about at
all levels. Further, these actions are used to annotate any reasoning based on
them. Lower level actions are annotated by the higher level action that they
refine (see the context set rule from Chapter 6.3). In the event replanning
becomes necessary, this provides the mechanism to revise a plan by substituting
an action and all the actions below it in the hierarchy when required. Our design
allows for the concurrent processing of levels, and for concurrent refinement of

multiple partial plans®®.

CQ1

Q1
RQl

provided every condition C4 € CS; , U Projl-yp.

5. Includes a Conditional action in the plan

{...,Ca,}
i: Ppl(i,p, < ... A

Ra

...}),CS(i,p,{...,C/\Q%C’Ak})

{C}UCQ {"'7CAk} ‘
i+1:Ppl(i4+1,p,<... A o p)
RQ RA

if C ¢ Proj, ,UCS,,

When an axiom C' A Q — Cj, is found to be a way to satisfy a (sub)goal Ca,,
the action @ itself is not sufficient for Cy4,, C has to be true in the projection
as well. This is taken care of by adding C' in addition to the conditions for @
in the action triplet introduced in the plan.

54More on restricting parallelism is in Section 8.
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6. Executes an action

Ca
A(i:t,...)
Rp L

i+1:Ppl(i+1,p{...})

1 : Ppl(s, p, ),CS(i,p,{...,Ca})

This inference rule executes an action when its start time has been bound to the
current Now by the agent. The time for some actions is decided right when they
are inserted into the plan, for others it must be decided by a specific inference
rule. In our present implementation, we execute a primitive action as soon as
its conditions are satisfied.

7. Includes a Repeat-until action in the plan with signaling-condition SC's

Cp
Ppl(s, p, B ),
Rp
CS(i,p, {..., Repeat_until(s : t,A,SC4,...) — Cp, condition(A, C)})
Ca(s:t,...)
i+1:Ppl(i+1,p,< ... | Repeat_until(s:t, A, SCa,...) co?)
Cp

7—1

The above inference rule adds a repeat-until type of action to the plan. The
condition of the repeat-until action is the condition for the repeated part, but
maintained over the entire duration of the outer loop.

8. Executes a Repeat-until action in the plan

1:Ppl(z,p, < ...

Ca
Repeat_until(i: t, A, SCa,...) cop)
Cp y

i+1:Ppli+1,p,

Ca
Repeat_until(14+1:¢,A,5Ca4,...) ceop)
Cp §

if SC4 ¢ CSipUProj, ,

9. Completes execution of a Repeat-until action when a signaling-condition appears

Ca
Repeat_until(s : t, A, SCa,...) ] ... 2),C8(4,p,{...,5C4})
Cp 1

i+1:Ppli+1,p{...})

i: Ppl(z, p,
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10. Spawns the generation of multiple plans on encountering a compound condition®

5

C'A(R:s8,.. )ANC"a(v:w,...)
Ppl(i, p, A ),
Ra i
CS(1,p,{A" — O}, A" — C4})
Ppl(p1,i+ 1, A’ A" ] S
i1 Cu(P: Qe s) oo Ch(t:Ue= w) i
Ppl(p,i + 1, l A" ] A’ ] S
Ch(t:Ues w) oo C(P: Qe s) i

This inference rule encodes the linear planning strategy of our planner. Clearly,
a total ordering such as this will cause the generation of non-optimal and some-
times even redundant plans. We have some heuristic inference rules that identify
some obvious redundancies in a planner and identify the presence of loops. In
general though, we have not focussed on plan optimization. One heuristic rule
that identifies a redundant plan and rejects in favor of a better one is described
below.

11. Freeze a plan when it is found to be inefficient
Ca(v:w,...)
i: Ppl(i,p, < ... Aj Ay ceep)
Ra;(P:Qe=s)
i+ 1: Freeze(z,p)
if P:sand v:woverlap, and R4; and Cy, are in direct or uniqueness contradiction
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