
Handling Uncertainty with Active Logic

M. Anderson
�
, M. Bhatia

�
, P. Chi

�
, W. Chong

�
, D. Josyula

�
, Y. Okamoto

���
, D. Perlis

���
, K. Purang

�
a: Institute for Advanced Computer Studies, University of Maryland, College Park MD 20742

b: Department of Computer Science, Bowie State University, Bowie MD 20715
c: Department of Computer Science, University of Maryland, College Park MD 20742

d: Linguistics Department, University of Maryland, College Park MD 20742

Introduction
Reasoning in a complex and dynamic world requires consid-
erable flexibility on the part of the reasoner; flexibility to ap-
ply, in the right circumstances, the right tools (e.g. probabil-
ities, defaults, metareasoning, belief revision, contradiction-
resolution, and so on). A formalism that has been developed
with this purpose in mind is that of active logic. Active logic
combines inference rules with a constantly evolving measure
of time (a ‘now’) that itself can be referenced in those rules.
As an example, ���	��
��� [the time is now 6] is inferred from
������
��� since the fact of such inference implies that (at least
one ‘step’ of) time has passed.

From this feature come others, most notably:
� Ignorance-assessment amounts to a lookup at time � , of

what was known prior to � .
� Contradictory information can (sometimes) be detected

and used to curtail nonsensical inferences as well as to ini-
tiate repairs.

� Default conclusions can be characterized in terms of
lookups to see whether one has information (directly) con-
trary to the default.

� Reasoning can be kept current, i.e., inferences can be trig-
gered to occur when they should, and this itself is done
declaratively so that it is also under control of (easily mod-
ifiable) inferences.

These features of active logic provide mechanisms to deal
with various forms of uncertainties arising in computation.

A computational process P can be said to be uncertain
about a proposition (or datum) � if

(i). it explicitly represents � as in the knowledge base (KB)
but possibly a mistake;

(ii). it represents � as in the KB and initially correct but pos-
sibly no longer correct;

(iii). it is aware of � (and/or ���) – that is, � is a closed subfor-
mula of at least one item in the KB – but � is not present
in the KB as a belief; or

(iv). � is known to be an item it cannot compute or infer. (This
last case is often undecidable in its fullest form; active

Copyright c
�

2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

logic provides a convenient shortcut that we will return to
below.)

Uncertainties of type (i) above lend themselves to repre-
sentation by probabilistic reasoning, which involves the rep-
resentation of explicit confidence levels for beliefs, for ex-
ample, Bayesian Networks; and somewhat less so for type
(ii); and even less for types (iii) and (iv). On the other
hand, a suitably configured default reasoner (non-monotonic
approaches) can represent all of these, and without special
ad hoc tools; that is, active logic already has, in its time-
sensitive inference architecture, the means for performing
default reasoning in an appropriately expressive manner. It
is the purpose of this paper to elaborate on that claim; the
format consists of an initial primer on uncertainty in active
logic, then its current implementation (Alma/Carne), exist-
ing applications, and finally a discussion of potential future
applications.

Probabilistic and Non-monotonic Reasoning
Probabilistic approaches (Pearl 1988;
Ramoni & Riva 1994) are very useful in reasoning with un-
certainty; they can smoothly handle inconsistent inputs, and
model belief change over time as evidence accrues, by ad-
justing the probabilities attached to beliefs and their connec-
tions. However, in a Bayesian net for instance, because the
probabilities have a somewhat holistic character, with the
probability of a given proposition depending not just on di-
rect but indirect connections, it looks like adding new propo-
sitions or rules (connections between nodes) will be expen-
sive and potentially require re-calculation of all connection
weights. If one’s world-model is well specified enough that
reasoning about and interacting with the world is primarily
a matter of coming to trust or distrust propositions already
present in that model, a Bayesian net may provide a good en-
gine for reasoning. However, if one’s world-model is itself
expected to be subject to frequent change, as novel propo-
sitions and rules are added (or removed) from one’s KB, we
think that a reasoning engine based on active logic will prove
a better candidate.

In addition, and partly because a Bayesian net deals so
smoothly with inconsistent incoming data, it can operate on
the assumption that incoming data is accurate and can be
taken at face value. Although of course it is not expected

that all incoming data will be accurate (for instance, it is ex-
pected� to contain noise), it is expected that the system will
get reliable inputs overall. We have two related concerns
about this: first, an abnormally long string of inaccurate data
– as might be expected from a faulty sensor or a deliberate
attempt at deceit – would obviously reduce the probability
of certain beliefs that, were the data known to be inaccurate,
would have retained their original strengths. It has been sug-
gested to us that one could model inaccurate incoming infor-
mation by coding child nodes that would contain information
regarding the expected accuracy of the incoming information
from a given evidence node. This seems adequate when it is
known at the outset that a given sensor operates with a cer-
tain reliability; but it is not clear how one might learn that
an information source is unreliable, as one might wish to be
able to do if a sensor breaks or a source begins lying. Sec-
ond, it seems that in a Bayesian net, all beliefs are similarly
sensitive to incoming data (if they are sensitive to it at all) in
the sense that the net operates by a slow erosion or confirma-
tion of probability. But it is not clear that all beliefs should
fit this model; one can retain full confidence in a given be-
lief for a long time in the face of continuing empirical ev-
idence to the contrary, and then in light of a single further
fact (which alone would not have caused this event) give up
the belief entirely. (See (Bratman 1999) for a discussion of
belief modeling in light of such considerations.)

Further, insofar as a Bayesian net is operating smoothly,
the fact that incoming data contradicts currently held be-
liefs, or other incoming data, need not be explicitly recog-
nized. But we believe that the recognition of contradiction
should be a central and important part of information han-
dling (Perlis 1997). For it seems that there are cases where
one can learn from the fact of a contradiction (where the be-
lief that there has been a contradiction can be useful in the
reasoning process), as for instance in coming to the conclu-
sion that there is a system malfunction. Although it is no
doubt possible to modify a Bayesian net to explicitly encode
the occurrence of a contradiction, it is less clear what use this
information would be within that schema. And this brings us
to our final reason for preferring non-monotonic approaches:
active logic has much greater expressive power, including
not just the ability to encode complex propositions, but also
functions and quantification.

Let us consider the fol-
lowing example: The belief ������� �	�!
#"$�%�&�&"$'(may be based
on theoretical considerations that should not necessarily be
weakened by indirect evidence, e.g.)��*����"$',+.-�/&01
2"3�*����"$'4 ,5�6)��%�&��"3',+7-�/&01
$89&";:<�>=7�?�>��� �	�7
$89 . In such case one will at
least want to consider his reaction to a photograph of a green
Tweety. The complexity of the case is not captured by de-
ciding how to treat the veridicality of photographs in general
(for assigning a lower probability to this sort of evidence just
means it will take longer for photographic content to register
in the KB, and this will not always be appropriate); the is-
sue is one of coming to an intelligent assessment of a given
piece of evidence (photograph or no) in light of current be-
liefs and their parents (if any – without theoretical consider-
ations supporting a given belief we may adopt the new evi-
dence at face value; with very strong empirical evidence, we

might disbelieve the theoretical bases.) It looks as though in
many cases we will want to make decisions about this, rather
than letting things play out according to pre-determined con-
fidence measures. On the other hand, it seems important
that we recognize and remember the (apparent) contradic-
tion, even when we resolve it by distrusting the photographs.
For a system which is fully epistemically open to the world
– that is, which is capable of changing its world model by
adding or deleting rules and facts, and for which every be-
lief in the world model is empirically sensitive (no dogmatic
beliefs) – may encounter evidence that directly contradicts
)��*����"$',+.-�/&01
2"3�*����"$'(. In such case, among the considera-
tions motivating a decision to accept the new evidence may
be the fact that it allows acceptance of the previously dis-
carded photographic evidence of Tweety’s greenness.

Primer on Active Logic and Uncertainty
Currently, active logic does not explicitly represent confi-
dence levels of the KB (although it certainly can be made to
do so). Instead, it has the flexibility to distrust any of its be-
liefs in the presence of suitable counter evidence. In effect,
active logic treats its current beliefs as simply true until such
time as reasons arise for doubting them, and then distrusts
them until such time as they may be reinstated. One can thus
regard (the current version of) active logic as a kind of time-
sensitive nonmonotonic reasoning engine.

Two of the principal mechanisms that provide the flexi-
bility of active logic, especially in regard to uncertainty, are
contradiction-detection and introspection.

Contradiction-detection: If @ and �A@ are both in the KB
at any step, then both become distrusted in the next step and a
repair process is initiated (which may or may not be conclu-
sive). Such a distrust and repair process can occur in cases
(i) and (ii). For instance, if @ is believed originally, but later
�B@ is either derived or observed (this could come about for
various reasons: @ might always have been false, and the be-
lief that @ mistaken; @ might have become false; �A@ could
be false, and this new belief could therefore be a mistake),
then a conflict occurs between @ and �A@ . This would cause
active logic to enter a state of “uncertainty” with respect to @
and �A@ leading to distrust both @ and �B@ and to initiate a
repair process to adjudicate between the ‘old’ @ and ‘new’
�B@ . (Unlike most belief-revision formalisms, active logic
does not automatically assume that the newest data is more
accurate). The repair process involves the identification and
distrust of the parents (and any derived consequences) of the
contradictands; reasoning about the parents; and possible re-
instatement of one or another set of parents, which may allow
one of the original contradictands to be re-derived.

Returning to our �?���C�D�	��
2"3�%�&��"3'E example, in the nor-
mal case such a belief would be taken (and used) simply
at face value, even though it may (unknown to the rea-
soner) be incorrect, until such time as counterevidence ap-
pears (the photo showing a green Tweety). At that time,
a contradiction would occur between �?���C�D�	�!
#"$�%�&�&"$'1 and
�F�?���C�D�	�!
#"$�%�&�&"$'1 (itself derived from G7/��&��=H
2"3�%�&��"3'E and
rules about how colors inhere in objects). Assessment would
discover and distrust the parents of each contradictand, and
attempt to discern which beliefs it ought to reinstate, as for

instance by utilizing preferences for some beliefs over oth-
ers (theI whole set need not be accepted or rejected together).
Thus, assessment may lead to rejection of the initial belief;
or it may lead to its reinstatement, and rejection of the photo
data (not just if it had a preference for the theoretical bases
of �?�>���D���7
2"3�%�&��"3'E , but also, for instance, if it knew that the
photo was developed poorly, or taken in green light). (This
instead of assuming confidences for various of the data items
and combining them into a revised confidence measure for
�?�>���D���7
2"3�%�&��"3'1 .)

Introspection: Another mechanism that provides the
flexibility of active logic is its ability to note that it does
not have a given belief @ , represented as �*JK=L�	��
#MN and
�*JK=L���N
$�*MN . This ability can be applied to encode uncer-
tainties in uncertainties of type (iii) above. Here it is crucial
that O9P�Q	R is interpreted as “currently-in-the-KB”, and not
as (an often undecidable) “possible-to-derive.” Thus an in-
tractable or even uncomputable problem is replaced with a
simple lookup in the (always finite) KB. In the above yellow
bird example, this can be used as part of a default, to wit: “if
something looks yellow and if I (currently) have no knowl-
edge that there is an irregularity about the situation, then I
will conclude that it in fact is yellow.” S Later, if the conclu-
sion that Tweety is yellow is found to be problematic (e.g.,
it conflicts with other data) that conclusion can be retracted
(or precisely, disinherited at subsequent time steps, since the
actual inferential history is preserved).

Alma/Carne
Alma is our current implementation of active logic and Carne
is a process that executes non-logical computations indepen-
dent of Alma steps.

Alma: At each step, Alma applies the rules of inference
to the formulas in the database at that step to produce a set of
new formulas. These are added to the database, and the pro-
cess repeats at each subsequent step. Some characteristics of
Alma are:
� The current step number is represented in the KB as

P�Q	RT
;UN . Formulas can be written using the step number
which makes it possible to reason about the current time.

� Alma maintains information about various properties of
the formulas in the database, including the derivations of
the formulas, their consequences and the time at which
they were derived; indeed, the entire inferential history
is preserved. This information is available for reasoning
through reserved predicates.

� The formulas in the KB have names which allow the user
to assert properties of the formulas and to reason about
these properties. One can for instance, assert that a partic-
ular formula is to be preferred over another; that its prob-
ability is q; etc.

� If V and �AV are present in the KB where V is a literal, this
fact is detected by the contradiction-detection rule. The
W
This formulation comes close, at least intuitively speaking, to

McCarthy’s notion of circumscription with an abnormality predi-
cate; see (McCarthy 1986)

outcomes of a contradiction between formulas V and �AV
named XZY and X9[are: \
– A formula of the form contra(N1, N2, T) is

added to the database where U is the step number at
which the contradiction has been detected.

– The contradictands and their consequences are “dis-
trusted” so that they cannot be used for further inference
but can be reasoned about.

– Formulas of the form distrusted(N) are added to
the database where X is the name of a formula that is
distrusted.

One can specify axioms to reason about the contradic-
tion and decide which of the formulas, if any, to reinstate.
Alma provides the reserved predicate]	^,_`P�a���b���^	
$X9 for
that purpose.

� Some computations that need to be done in the logic may
be more easily, conveniently or efficiently done through
procedures. To enable this, prolog programs can be speci-
fied as inputs to Alma. These can be invoked when needed
through the formulas. An alternative for longer running
procedures is Carne (see below).

� Alma can operate in both the forward and backward chain-
ing modes. The usual mode of operation for Alma is in the
forward direction. Alma also allows one to do backward
chaining to find whether some specific formula is deriv-
able. This is also done in a step by step fashion, just as for
forward chaining.

Carne: Carne is a process that communicates with Alma
but runs independently. The main use of Carne is to run non-
logical computations asynchronous from Alma steps. One of
its roles is to serve as an input-output interface to Alma. In
this case Carne transforms external input to a form suitable
for addition to the Alma KB and conversely.

Alma formulas can request computations to be done by
Carne by asserting c�b1d�d;
;�9e#f*e�g� in the database. This will
trigger the program X in Carne. When the request is sent to
Carne, h(Q	_;P�ij
;�9e#fk is asserted in Alma to record that the ac-
tion has been started. When Carne returns with an answer,
h1Q	_;P�ij
;�9e#fl is deleted and h1Q	P�^	
;�9e#fk is added. If the ac-
tion fails, we have ^�]]	Q]E
;�9e#fk replacing the h1Q	_;P�ij
`�9e2fm .

Carne can add and delete formulas directly in Alma. This
enables external inputs to be added to the Alma database
whenever they become available.

Carne interacts with external processes and with the user
at standard input and output. A KQML parser converts in-
put to a form suitable for further processing in prolog. This
causes a formula to be added to the Alma database. Alma
can then request further processing of the incoming message
based on user-defined message interpretation code.

Existing Applications
As indicated above, active logic provides a framework for
reasoning in presence of uncertainties. Some of the applica-
tion areas of active logic are discussed below.

n
Names for formulas play a technical role that we will not fur-

ther detail here.

Deadline-Coupled Planning

(Nirkhe et al. 1997) addresses the problem of deadline cou-
pled planning in active logic. Deadline coupled planning in-
volves taking into account the uncertainties that could crop
up in the planning process, while at the same time factoring
in the ever decreasing time to deadline.

Consider for example, an agent planning a strategy to
FedEx a hard-copy of a paper before the deadline. While the
agent is planning the strategy to get to the nearest FedEx lo-
cation, the clock is ticking. Therefore the time he has avail-
able to reach the location before it closes is fast decreasing.
While he is trying to reach the nearest FedEx location, time
is still passing and hence many uncertain events could hap-
pen which could mandate more planning. For instance, a
traffic jam could delay the agent and the nearest FedEx lo-
cation might close, so that he will have to go to another loca-
tion which is open later. (This reasoning about the choice of
locations to try next, based on distance and time-to-closing,
is naturally expressible given active logic’s time sensitivity
and representation; further, since the reasoning itself explic-
itly takes place in time, this can be used to give preference for
an easily-computable and workable plan over a more optimal
possibility which might take too much time to compute.)

The time tracking and observation mechanisms of active
logic render it useful in such applications that deal with un-
certainties while trying to meet a deadline.

Common Sense Reasoning

Active logic finds applications from fully-decidable default
reasoning to reasoning in the presence of contradictions.
Some examples are listed below (working examples can be
found at
http://www.cs.umd.edu/ o kpurang/alma/demo/demo.html)

Simple Default Reasoning Given facts Birds generally fly
and Tweety is a bird, active logic can conclude Tweety flies.

Default Reasoning with Preferences In active logic, one
can specify default preferences like “Penguins do not fly is
preferred over Birds generally fly”. Then, if at any instant,
Birds generally fly. Tweety is a bird. Tweety is a penguin.
and Penguins do not fly. are in the database, active logic can
conclude Tweety does not fly.

Maintaining world view An accurate world view cannot
be specified without keeping track of current facts, because
of the associated uncertainty. Current knowledge can have
gaps (e.g., not knowing what constitutes black holes) or it
may even be wrong (e.g., earth is flat). As time evolves, facts
might change or cease to be true (e.g., the current president,
cold war) or even new facts might arise (e.g., existence of the
International Space Station). In order to deal with the ever
changing plethora of facts, active logic has mechanisms to
add, modify or delete facts on the fly.

Reasoning with Contradictions Traditional logics gen-
erate all consequences in the presence of contradictions,
whereas active logic uses contradictions to help in its reason-
ing process. An agent can believe that Tweety flies until he
gets contrary information through observation or reasoning.

In the presence of contradiction, active logic distrusts both
the contradictands (Tweety flies and Tweety does not fly) un-
til it has enough facts to trust one over the other.

Dialog
Active logic has been applied to various dialog problems,
including presupposition failures (Gurney, Perlis, & Purang
1997), cancellation of implicatures (Perlis, Gurney, & Pu-
rang 1996) and dialog management (Perlis et al. 1999). The
following briefs on these issues.

Uncertainty of-
ten arises when Cooperative Principle (Grice 1975) is not ob-
served among the discourse participants. For instance, when
the speaker provides insufficient amount of information, or
when it is false, irrelevant, ambiguous, vague, or when it
lacks adequate evidence, the addressee is uncertain about the
speaker’s intention. Even when the Cooperative Principle
is being followed, uncertainty can just as easily arise; e.g.
if a speaker uses an unknown word or reference, or when
the answer to a question is implicit rather than explicit. In
some cases, conversation or communication just stops there,
maybe because the speaker is infelicitous and the addressee
does not wish to participate in conversation. In most cases,
however, the addressee reasons about the speaker’s intention
and tries to stay in conversation. Despite the fact that there is
a potential risk of misunderstanding that could lead to further
uncertainty, we take advantage of reasoning when it comes to
resolving uncertainty. In the following subsections, we will
discuss how intelligent reasoning can be effectively woven
into uncertainty resolution in the context of dialog applica-
tions.

Assumption In ambiguous cases, people make assump-
tions based on their previous knowledge. Consider the fol-
lowing example:

“Send the Boston Train to New York.” (1)
In this example, the referent of “the Boston Train” may

be ambiguous: It may mean the train currently at Boston,
or the train going to Boston, or the train which left Boston
this morning (and many other things besides). Furthermore,
there may be more than one candidate for each case, as for
instance, if there is more than one train currently in Boston.
Nevertheless, we can deal with this ambiguity by making as-
sumptions based on context.

Relevant context might be the following: The speaker
once used the phrase “the Chicago Train”, and meant the
train currently at Chicago. Hence, we suppose that “the
Boston train” means the train at Boston (although we know
that there are other possibilities); likewise, given several
trains at Boston (e.g. Northstar, Acela, Metroliner) we will
choose one candidate, again with an eye to the overall con-
text of the dialog. For instance, Northstar is leaving soon for
Cleveland; Acela has mechanical problems. Here we would
be led to assume that Metroliner is the train meant.

It is important to note, however, that this reasoning may
be mistaken: for it could be that the speaker wanted to send
Northstar to New York instead of Cleveland. Any reason-
ing system that employs assumptions should be able to repair
false assumptions (see “Repair” below for details).

We have implemented a simplified form of reasoning into
the Rochester

p
TRAINS (Ferguson et al. 1996) system. In

our version of TRAINS, the system makes the assumption
that phrases like “the Boston train” mean “the train currently
at Boston”, and then utilizes context to make a choice among
the trains at Boston. It utilizes context in that it chooses the
first candidate, the choosing of which will not cause a contra-
diction in the KB. (For instance, if the sentence “Do not send
Northstar to New York” is in the KB, interpreting “Send the
Boston train to New York” as “Send the Northstar to New
York” will cause a contradiction.)

If the user denies the system’s choice of train, that denial
becomes part of the relevant context, and will be taken into
account when the system considers the alternative candidates
in its ongoing efforts to interpret and act on the sentence.
Thus our implementation of TRAINS has a rudimentary abil-
ity to repair incorrect assumptions. We are currently working
on ways to expand this ability, as for instance by adding the
capacity to consider other interpretations of phrases like “the
Boston train”.

Implicature Each expression we utter can mean more than
it literally means. Consider the following example:

Q: “Are the roses fresh?”A: “They are in the fridge.” (2)

In this example, the answer “They are in the fridge” ap-
pears to give information about the location of the roses,
rather than their state (which is what was asked about). How-
ever, it is not hard to see, that, given the location, we are
meant to infer that the roses are, indeed, fresh. One way to
handle implicature is to assign a default interpretation to the
expression. The better way, however, is for the system to be
able to reason about the context, and provide an interpreta-
tion that is most fitting for the context. (Perlis, Gurney, &
Purang 1996) describes an active logic implementation of a
reasoner which correctly concludes that the roses are fresh
from a dialog like example 2.

Meta-Dialogue When uncertainty arises, one way to avoid
further uncertainty and potential discourse failure is to ask
for clarification. In natural language discourse, clarification
takes place at all times. In the cases discussed, one might
confirm the notion that the roses are fresh: “Yes, but are
they fresh?”. Likewise one might ask: “By Boston Train do
you mean Northstar?” Our version of TRAINS is currently
equipped with an extremely rudimentary meta-dialog ability,
triggered only when its own reasoning reaches an impasse
(i.e. when it cannot find a candidate which does not cause a
contradiction). In such case it returns a message to the users
which says: Please specify the name of the train.

We are working on a more robust representation of
Question-Answer dialog exchanges that will support a more
impressive range of meta-dialog abilities. There are difficult
issues to be faced even in the simplest of cases, however. For
when the system says: “Please specify the train by name” it
looks as though the system should encode for itself an expec-
tation that some future response of the user will be relevant to
that request. But in determining whether any given response
is relevant, all the same issues of uncertainty in dialog inter-
pretation assert themselves. It seems that all of the following

user responses should be appropriate: “Metroliner”; “I mean
Metroliner”; “Send Metroliner to New York”. However, it
looks like “Send the Yankee Clipper to Philadelphia” should
not be understood as relevant (although we could always tell
a story in which it would be relevant, for it could be an im-
plicit cancellation of the original request, perhaps prompt-
ing the question to the user: “Do you still want me to send
the Boston train to New York?”). Likewise, were the user to
have responded “Send the Yankee Clipper to New York”, this
could be an indication that the Yankee Clipper (which orig-
inated in Boston) was actually the Boston train; and it was
the assumption that “Boston train” meant “train at Boston”
which was incorrect.

The question of determining relevance is a large, diffi-
cult, important open area of research. Our approach, as with
other forms of uncertainty, is to model determinations of rel-
evance with explicit reasoning of the type already described
(although it should be noted that for applications where the
range of choices is circumscribed at the outset, a probabilistic
approach looks promising. See, e.g. (Paek & Horvitz 1999))

Repair When false assumptions are made, it is important
for an intelligent system to be able to repair the mistake as we
do in natural language discourse. In example 2, the answerer
might add: “but they are not fresh.” In this case, the impli-
cation that the roses are fresh would need to be retracted.
(Perlis, Gurney, & Purang 1996) describes an active logic
implementation which can handle such cancellation of im-
plicature.

Likewise, in the TRAINS example, suppose the system
were to choose the Metroliner as the referent of “the Boston
train” through a course of reasoning. It should be open to the
user to say “No”, and have the system retract its assumption
(and remember the retraction, for it will likely be relevant).
As mentioned, our version of TRAINS has this ability to re-
tract the assertion “Send the Metroliner to New York” and
remember that retraction to help in future interpretations of
user utterances. It is worth pointing out however that the sys-
tem has made two assumptions in order to get to its interpre-
tation: first, that the “Boston train” means the train at Boston,
and second, that the Metroliner is the relevant train at Boston.
We are working on refining our representation and use of the
ongoing dialog context to make it possible not just to rea-
son about other interpretations of phrases like “the Boston
Train”, but to be able to choose which of these assumptions
to negate in light of the user’s “No.”

Change in meaning

Active logic has been also used to model changes in the
meaning associated with terms (Miller 1993). The following
is the kind of problem treated in that work.

Imagine an ongoing conversation in which B initially un-
derstands A’s use of Bush to mean George Walker Bush, the
43rd president of the United States. However, A meant his
father George Herbert Walker Bush, the 41st president. A
then tells B that Bush is the ”read my lips” president. Sup-
posing that B does not know anything about the ”read my
lips” speech that the 41st president made, B will understand
the 43rd president to be the ”read my lips” president. Later,

however, when A tells B that Bush is married to Barbara,
B realizesq his misunderstanding. At this point, B has to re-
associate previous information with the appropriate referent;
B then understands that the ”read my lips” president is the
41st president. This is a slightly different sort of repair from
those mentioned in the section above, although obviously re-
lated.

Potential Applications
Time Sensitive Automated Theorem Prover
Can an automated theorem prover function – to its advantage
– more like a (human) mathematician? One way in which
this might be possible is via time-sensitivity. A human is
highly aware of the passage of time, and in particular to time
well-spent as opposed to ill-spent.

Thus a mathematician might, after months (or hours, or
even minutes) of pursuing a particular line of investigation,
decide that it is not paying off, and instead try a different
track. Active logic, with its built-in time-sensitivity, pro-
vides a potential mechanism for exploring this possibility.
The obvious advantage is that, although a computer may not
care that it runs a given program for hundreds of years in a
search for a proof, we certainly care and we will want it to
try a different tack long before many years go by.

There is another likely possible advantage here, something
inherent in the active logic framework: it avoids the KR in-
flexibility of most traditional AI systems. In creative ac-
tivities such as mathematical reasoning, often the introduc-
tion of a key new concept, or even an improved (and possi-
bly inequivalent) reformulation of an old concept, can vastly
shorten the argument or even recast it entirely. But AI sys-
tems typically are stuck in a fixed means of representing their
knowledge and cannot, for instance use Set(X) to refer to fi-
nite sets at one time, and later to sets that are finite or in-
finite. Indeed, such systems cannot easily give up a belief,
and when they do (“belief revision”), it is lost rather than
available for further consideration. This is not to say that ac-
tive logic has a built-in general-purpose concept-formation
mechanism; but it does have the expressive power to rep-
resent and reason with such formations, if they were made
available, perhaps along lines of AM (Lenat 1982; Lenat &
Brown 1984).

Furthermore, as seen earlier, active logic allows for recog-
nition that a given statement is already known, or that it’s
negation is known, or that neither is known, thereby avoid-
ing re-derivation of a theorem. Similarly, if such a purported
human-style-theorem-prover (HSTP) that is allowed to run
in continual mode (rather than started up at a user’s request)
already working on a proof of X, it can respond, if asked
(again) whether X is true, that it is uncertain but that a proof is
already underway and that it has established such-and-such
lemmas, and so on; or that it has given up since the consider-
able time spent has not resulted in results that support further
effort.

Interactive Mathematical Companion - IMC
We envision an active-logic-based interactive system, which,
in conjunction with an appropriate computational mathemat-

ical package (MP) as well as a conventional theorem prover
(TP), can act as a virtual mathematical assistant and/or com-
panion (Benzmüller et al. 1997; Chang & Lee 1973). It may
be used in a variety of modes as illustrated by the following
scenario outline.

A client may wish to use IMC to ask a (mathematical)
question. IMC can try to understand the question on the ba-
sis of its existing KB and quite possibly be able to answer the
query. Or it may not understand some of the terms used by
the client and ask the client to explain them. The desired in-
teractions such as IMC trying to clarify the meaning of terms
can be achieved easily by active logic with its ability of de-
tecting and handling ignorance. Thus a dialog may ensue in
which IMC may take note of the new definitions or facts rel-
evant to the query that the client furnishes in much the same
manner as an interested professional colleague might. After
this preliminary dialog, IMC may find that it is unable to an-
swer the question from its (local) KB (even though it ‘thinks
it understands the question’). At this point, IMC may consult
the TP to see if TP has an answer to the client’s question. If
TP can respond affirmatively (within the time specified by
IMC), IMC can capture the answer, convey the same to the
client and also update its KB. In this way IMC is ‘learning’
from the interaction with the client.

If TP is unable to provide the answer, uncertainty prevails
for the client as well as IMC. TP’s inability to provide the
answer may be because one of the two reasons. Either it is
not given sufficient time, or it may just be unable to prove
it from the hypotheses contained in the query. In any case
IMC can tell the client that it does not know the answer to
the question. Uncertainty persists.

The client may then try to pursue some thought of her
own. She may come to a point where it is necessary to com-
pute something (possibly as an intermediate step). She may
choose to ask IMC to do the computation. IMC interprets
client’s command and formulates the necessary computation
as a request and submits it to the MP. When (and if) it re-
ceives the response from MP it passes it back to the client.
Such an interaction between the client and IMC can con-
tinue indefinitely until the client decides to terminate it. IMC
is thus able to mobilize the mathematical resources for the
client.

At each step, during the course of an interaction such as
outlined above, IMC checks any new facts that are submit-
ted to it by the client, or that are responses it gathers from MP
or TP, against its current KB. If the new facts do not directly
contradict the KB, they are recorded as assertions in its KB
along with the (time) step number when it was entered. If any
fact is in conflict with any existing item in the current KB, the
contradiction is noted and client is made aware of the contra-
dictands. active logic provides a convenient framework in
which IMC can be implemented.

The ability of IMC to keep track of facts as they develop
and to detect contradictions can be put to good use by any
client who might be trying to check the truth of (or construct
a proof of) a proposition.

Continual Computation
A student of AI will soon find out that, almost without excep-
tion, any interesting problem is NP-hard. When a computer
scientist is confronted with a hard problem, there are several
options to deal with it. One is to simplify the problem, or
identify a simpler subproblem so that it can be solved algo-
rithmically and automated, and leave the hard part for the hu-
man. Another option is for the scientist to study the problem
carefully, derive some heuristics, and hope that they will be
adequate most of the time. But none of these is quite satisfy-
ing: ideally, we would like the computer to do as much work
for us as possible, and hopefully, be able to derive the heuris-
tics by itself. A promising approach toward realizing this
ideal is the notion of continual computation (Horvitz 1997).

The main motivation behind continual computation is to
exploit the idle time of a computation system. As exempli-
fied by usage pattern of desktop computers, workstations,
web-servers, etc of today, most computer systems are under
utilized: in typical employments of these systems, relatively
long spans of inactivity are interrupted with bursts of com-
putation intensive tasks, where the systems are taxed to their
limits. How can we make use of the idle time to help improve
performance during critical time?

Continual computation generalizes the definition of a
problem to encompass the uncertain stream of challenges
faced over time. One way to analyze this problem is to put it
into the framework of probability and utility, or more gen-
erally, rational decision making(Horvitz 2001). However,
an implicit assumption of the utility-based work in continual
computation is that the future is somehow predictable. But in
many cases, this cannot be expected. For example, for long
term planning, most statistics will probably lose their signif-
icance. Here is a place where logic-based systems with the
capability to derive or discover theorems by its own (e.g.,
Lenat’s AM system) can play a complementary role, in a sim-
ilar way where mathematics plays a complementary role to
engineering principles. Just as mathematicians usually do
not rely on immediate reward to guide their research (yet dis-
cover theorems of utmost utility), AM can function in a way
independent of the immediate utility of its work.

More precisely, if we adopt logic as our base for computa-
tion and look at problem solving as theorem proving (Bibel
1997), a system capable of discovering new theorems can be-
come a very attractive model of a continual computation sys-
tem. In such a system, every newly discovered theorem has
the potential of simplifying the proof of future theorem; so in
essence, theorem becomes our universal format for caching
the result of precomputation and partial solutions to prob-
lems.

A simplistic embodiment of the model can just be a for-
ward chaining system capable of combining facts in its
database to produce new theorems using modus ponens, for
instance. Such a system is not likely to be very useful, how-
ever, because it will spend most of its time deriving uninter-
esting theorems. So the success of this model of continual
computation will hinge on whether we can find meaningful
criteria for the “interestingness” of a theorem. In the classi-
cal AM (Lenat 1982; 1983; Lenat & Brown 1984), the sys-
tem relies largely on human to provide the judgment of inter-

estingness. In a survey of several automated discovery pro-
grams, (Colton & Bundy 1999) identify several properties
of concepts which seem to be relevant to their interesting-
ness, such as novelty, surprisingness, understandability, ex-
istence of models and possibly true conjectures about them.
Although these properties seem plausible, it is not obvious
they are precise enough to be operational to guide automated
discovery programs toward significant results.

Mathematical concepts are characterized by their abstract-
ness. In fact, it is unclear whether the interestingness prop-
erty of concepts is even meaningful at such abstract level,
where the concepts are stripped to their bare essentials, san-
itized from any domain specificity: in real life, our inter-
ests seem always to be tied to our biological existence in
the physical world. When isolated from all real-world in-
terpretations, is there an objective way to tell one theorem
is more “interesting” than another? Although we don’t have
an answer to this question, we have a reason to be optimistic:
mathematics has worked so well for us.

Seven Days in the Life of Al To put things into perspec-
tive, we will consider Al, a robot powered by active logic.
Al is an “office robot”, who roams the CS office building de-
livering documents, coffee, etc. He was endowed at birth
with the desire to make people happy. We will see how ac-
tive logic enabled Al to develop into an excellent office robot
through his first week of work (?).
� 1st day: The first day Al began his day as the office

robot, he was given a tour of the building. Among other
things, he was shown the power outlets scattered around
the building so that he can recharge himself. Not wanting
to overwhelm Al in the new environment, the supervisor
let Al off early.

� 2nd day: The morning went well: Al delivered everything
on target, making good use of the map he constructed from
the tour given the day before. But a problem occurred dur-
ing the afternoon: Al found himself unable to move! The
problem was soon diagnosed — it was simply low battery.
(Since thinking draws less energy than moving, Al could
still think.) It turned out that although Al knew he needed
power to operate and he could recharge himself to restore
his battery, it had never occurred to him that, “he would
need to reach an outlet before the power went too low for
him to move!” The movement failure triggered Al to de-
rive the above conclusion, but it was too late; Al was stuck,
and could not deliver coffee on request. Caffeine deprived
computer scientists are not happy human beings; Al had a
bad day.

� 3rd day: Al was bailed out of the predicament by his su-
pervisor at the morning. Having learned his lesson, Al de-
cided to find an outlet a few minutes before the battery got
too low. Unfortunate for Al, optimal route planning for
robot navigation is an NP-complete problem. When Al fi-
nally found an optimal path to the nearest power outlet, his
battery level was well below what he needed to move, and
Al was stuck again. Since there was nothing else he could
do, Al decided to surf the web (through the newly installed
wireless network in the building), and came upon an in-

teresting article titled “Deadline-Coupled Real-time Plan-
ning”r (Kraus, Nirkhe, & Perlis 1990).

� 4th day: After reading the paper, Al understood that plan-
ning takes time, and decided to quickly pick the outlet in
sight when his battery was low. Unfortunately, the outlet
happened to be too far away, and Al ran out of power again
before reaching it. Actually, there was a nearer outlet just
around the corner; but since Al used a non-optimal plan-
ning algorithm, he was unable to find it. Again, stuck with
nothing else to do, Al kicked into the “meditation” mode
where he called the Automated Discovery (AD) module
to draw new conclusions and theorems based on the facts
he accumulated these few days. Al made some interest-
ing discoveries: upon inspecting the history of his obser-
vations and reasonings, Al found that there were only a
few places he frequented; he could actually precompute
the optimal routes from those places to the nearest outlets.
Al spent all night computing those routes.

� 5th day: This morning, Al’s AD module derived an in-
teresting theorem: “if the battery power level is above
97% of capacity when Al starts (and nothing bad happened
along the way), he can reach an outlet before the power is
exhausted.” Finally, Al didn’t get stuck that day. But peo-
ple were not quite happy; Al seemed not very responsive.
Later, it was found that Al spent most of his time around
the outlets recharging himself — since Al’s power level
dropped 3% for every 10 minutes, the theorem above led
him to conclude that he needed to go to the outlet every 10
minutes.

� 6th day: After Al’s routine introspection before work, it
was revealed to him that his knowledge base was popu-
lated with millions of theorems similar to the one he found
the day before, but with the power level at 11%, 12%, ...,
and so on. In fact, the theorem is true when the power level
is above 10% of capacity. Luckily, there was a meta-rule
in Al knowledge base saying that “a theorem subsumed by
another was less interesting;” thus all the theorems with
parameter above 10% were discarded. Equipped with this
newer, more accurate information, Al concluded that he
could get away with recharging every 5 hours. Although
this might not be an optimal rule, it seemed to work well:
Al did his job, and people were happy.

� 7th day: That happened to be Sunday. Nobody was com-
ing to the office. Al spent his day contemplating the mean-
ing of life.

We would like to bring to attention several features of ac-
tive logic which helped Al tremendously: time awareness
of active logic enabled Al to realized that optimality is not
necessarily desirable, especially when there is a deadline ap-
proaching; this realization improved his chances of success.
More fundamentally, the time awareness allows Al to keep
track of changes: the battery level is X now does not imply
that is still true 5 hours later. Active logic’s Now(i) predi-
cate provides a natural and efficient way to deal with that.
The history mechanism in active logic gave Al an opportu-
nity to spot certain pattern in his past behavior, which helped
him improve his future behavior. The expressiveness of ac-

tive logic made it possible to store the meta-rules about in-
terestingness of theorems, which gave Al a good “taste” in
evaluating them. Finally, because of the uniformity of the
logic-based system, precomputation is seamlessly integrated
into goal based problem solving through the forward- and
backward-chaining mechanisms of active logic.

The so called No Free Lunch Theorem (Wolpert &
Macready 1997) states that “all algorithms that search for
an extremum of a cost function perform exactly the same,
when averaged over all possible cost functions.” In other
words, without domain specific structural assumptions of
the problem, no algorithm can be expected to perform bet-
ter on average than simple blind search. This result ap-
pears to be a cause for pessimism for researchers hoping
to devise domain-independent methods to improve problem
solving performance. But on the other hand, this theorem
also provides compelling reason for embracing the notion of
continual computation, which can be seen as a way to ex-
ploit domain dependent information in a domain indepen-
dent way. However, to take advantage of continual compu-
tation, we cannot avoid the issue of interestingness. Interest-
ingness touches on the ultimate uncertainty: what to do next?
Although utility theory has its place, we argued that there
are aspects of interestingness not susceptible to utility based
analysis. We believe that a forward and backward chaining
capable logic system such as active logic, with its expressive-
ness,time sensitivity, and reflective ability to reason about
theorems, proofs and derivations, is well-positioned to take
advantage of the opportunity offered by continual computa-
tion and explore the possibilities of interestingness.

Importing Intelligence Into Computation

In this paper we hope to have supported the view that (ex-
plicit, time-sensitive, and flexible) reasoning can be advan-
tageous wherever there is uncertainty. The underlying ar-
chitecture can be thought of as (one or more) procedural al-
gorithms with a suitably attached reasoning component so
the (system of interacting) algorithms becomes capable of
self-monitoring in real time. The reasoning component af-
fords certain protections such as recognizing and repairing
errors, informed guiding of strategies, and incorporation of
new concepts and terminologies.

In our view, reasoning should apply almost across the
board, not only to AI programs, or to automated theorem-
provers, but also, for example, to operating systems. Imag-
ine an OS that had an attached active logic. Such an OS-
Alma pair not only could gather statistics on its ongoing
behavior (this is not new) but could infer and initiate real-
time alterations to its behavior as indicated by the circum-
stances. We envision such an application as largely default-
powered, along the line of error-diagnosis tools such as
(deKleer 1986). But an active logic version has the addi-
tional virtues of accepting dynamically changing observa-
tions, and of having a genuine real-time default capability via
its introspective lookup interpretation of ignorance.

Acknowledgments
We would like to acknowledge support for this research from
AFOSR and ONR.

References
Benzmüller, C.; Cheikhrouhou, L.; Fehrer, D.; Fiedler,
A.; Huang, X.; Kerber, M.; Kohlhase, M.; Konrad, K.;
Meier, A.; Melis, F.; Schaarschmidt, W.; Siekmann, J.; and
Sorge, V. 1997. s MEGA: Towards a mathematical assis-
tant. In McCune, W., ed., Proceedings of the 14th Interna-
tional Conference on Automated deduction, volume 1249
of LNAI, 252–255. Berlin: Springer.
Bibel, W. 1997. Let’s plan it deductively! In IJCAI, 1549–
1562.
Bratman, M. 1999. Faces of Intention. Cambridge, UK:
Cambridge University Press.
Chang, C. L., and Lee, R. C. T. 1973. Symbolic Logic and
Mechanical Theorem Proving. New York, NY: Academic
Press.
Chong, W.; O’Donovan-Anderson, M.; Okamoto, Y.; and
Perlis, D. 2001. Seven days in the life of a robotic agent.
In To be presented at the GSFC/JPL Workshop on Radical
Agent Concepts.
Colton, S., and Bundy, A. 1999. On the notion of inter-
estingness in automated mathematical discovery. In AISB
Symposium on AI and Scientific Discovery.
deKleer, J. 1986. Problem solving with the ATMS. Artifi-
cial Intelligence 28:197–224.
Ferguson, G. M.; Allen, J. F.; Miller, B. W.; and Ring-
ger, E. K. 1996. The design and implementation of the
TRAINS-96 system: A prototype mixed-initiative planning
assistant. TRAINS Technical Note 96-5, University of
Rochester.
Grice, H. P. 1975. Logic and conversation. In Cole, P., and
Morgan, J. L., eds., Syntax and semantics 3: Speech Acts.
Academic Press. 41–58.
Gurney, J.; Perlis, D.; and Purang, K. 1997. Interpreting
presuppositions using active logic: From contexts to utter-
ances. Computational Intelligence 13(3):391–413.
Horvitz, E. 1997. Models of continual computation. In Pro-
ceedings of the 14th National Conference on Artificial Intel-
ligence and 9th Innovative Applications of Artificial Intel-
ligence Conference (AAAI-97/IAAI-97), 286–293. Menlo
Park: AAAI Press.
Horvitz, E. 2001. Principles and applications of continual
computation. Artificial Intelligence 126(1-2):159–196.
Kraus, S.; Nirkhe, M.; and Perlis, D. 1990. Deadline-
coupled real-time planning. In Proceedings of 1990 DARPA
workshop on Innovative Approaches to Planning, Schedul-
ing and Control, 100–108.
Lenat, D. B., and Brown, J. S. 1984. Why AM and EU-
RISKO appear to work. Artificial Intelligence 23(3):269–
294.
Lenat, D. B. 1982. AM: Discovery in Mathematics as
Heuristic Search. New York, NY: McGraw-Hill. 1–225.

Lenat, D. B. 1983. Theory Formation by Heuristic Search.
Artificial Intelligence 21:31–59.
McCarthy, J. 1986. Applications of circumscription to for-
malizing common-sense knowledge. Artificial Intelligence
28(1):89–116.
Miller, M. 1993. A View of One’s Past and Other Aspects
of Reasoned Change in Belief. Ph.D. Dissertation, Depart-
ment of Computer Science, University of Maryland, Col-
lege Park, Maryland.
Nirkhe, M.; Kraus, S.; Miller, M.; and Perlis, D. 1997. How
to (plan to) meet a deadline between now and then. Journal
of logic computation 7(1):109–156.
Paek, T., and Horvitz, E. 1999. Uncertainty, utility
and misunderstanding: A decision-theoretic perspective on
grounding in conversational systems. In Proceedings, AAAI
Fall Symposium on Psychological Models of Communica-
tion in Collaborative Systems.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, Cali-
fornia: Morgan Kaufmann.
Perlis, D.; Purang, K.; Purushothaman, D.; Andersen, C.;
and Traum, D. 1999. Modeling time and meta-reasoning
in dialogue via active logic. In Working notes of AAAI Fall
Symposium on Psychological Models o f Communication.
Perlis, D.; Gurney, J.; and Purang, K. 1996. Active logic
applied to cancellation of Gricean implicature. In Working
notes, AAAI 96 Spring Symposium on Computational Impli-
cature. AAAI.
Perlis, D. 1997. Sources of, and exploiting, inconsis-
tency: Preliminary report. Journal of APPLIED NON-
CLASSICAL LOGICS 7.
Ramoni, M., and Riva, A. 1994. Belief maintenance in
bayesian networks. In Proceedings of UAI 1994.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization. IEEE Transactions on Evolu-
tionary Computation 1(1):67–82.

