Handling Uncertainty with Active Logic

M. Anderson?, M. Bhatia®, P. Chi®, W. Chong¢, D. Josyula®, Y. Okamoto®?, D. Perlis*®, K. Purang®
a Institute for Advanced Computer Studies, University of Maryland, College Park MD 20742
b: Department of Computer Science, Bowie State University, Bowie MD 20715
c¢: Department of Computer Science, University of Maryland, College Park MD 20742
d: Linguistics Department, University of Maryland, College Park MD 20742

I ntroduction

Reasoning in acomplex and dynamic world requires consid-
erableflexibility on the part of the reasoner; flexibility to ap-
ply, in the right circumstances, the right tools (e.g. probabil-
ities, defaults, metareasoning, belief revision, contradiction-
resolution, and so on). A formalism that has been devel oped
with this purposein mind isthat of activelogic. Activelogic
combinesinference ruleswith aconstantly evolving measure
of time (a‘now’) that itself can be referenced in those rules.
Asan example, Now(6) [thetimeisnow 6] isinferred from
Now(5) sincethefact of such inferenceimpliesthat (at least
one ‘step’ of) time has passed.
From this feature come others, most notably:

¢ Ignorance-assessment amounts to a lookup at time ¢, of
what was known prior to ¢.

e Contradictory information can (sometimes) be detected
and used to curtail nonsensical inferencesaswell asto ini-
tiate repairs.

o Default conclusions can be characterized in terms of
lookupsto see whether one hasinformation (directly) con-
trary to the default.

¢ Reasoning can be kept current, i.e., inferences can betrig-
gered to occur when they should, and this itself is done
declaratively sothat it isal so under control of (easily mod-
ifiable) inferences.

These features of activelogic provide mechanismsto deal
with various forms of uncertainties arising in computation.

A computational process P can be said to be uncertain
about a proposition (or datum) X if

(i). it explicitly represents X asin the knowledge base (KB)
but possibly a mistake;

(if). it represents X asin the KB and initially correct but pos-
sibly no longer correct;

(iii). itisawareof X (and/or —X)—thatis, X isaclosed subfor-

mulaof at least oneiteminthe KB —but X is not present
inthe KB asabélief; or

(iv). X isknowntobeanitemit cannot computeor infer. (This

last case is often undecidable in its fullest form; active

Copyright © 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

logic provides a convenient shortcut that we will return to
below.)

Uncertainties of type (i) above lend themselves to repre-
sentation by probabilistic reasoning, which involvesthe rep-
resentation of explicit confidence levels for beliefs, for ex-
ample, Bayesian Networks; and somewhat less so for type
(i); and even less for types (iii) and (iv). On the other
hand, a suitably configured default reasoner (non-monotonic
approaches) can represent all of these, and without special
ad hoc tools; that is, active logic aready has, in its time-
sensitive inference architecture, the means for performing
default reasoning in an appropriately expressive manner. It
is the purpose of this paper to elaborate on that claim; the
format consists of aninitia primer on uncertainty in active
logic, then its current implementation (Alma/Carne), exist-
ing applications, and finally a discussion of potentia future
applications.

Probabilistic and Non-monotonic Reasoning

Probabilistic approaches (Pearl 1988;
Ramoni & Riva 1994) are very useful in reasoning with un-
certainty; they can smoothly handle inconsistent inputs, and
model belief change over time as evidence accrues, by ad-
justing the probabilities attached to beliefs and their connec-
tions. However, in a Bayesian net for instance, because the
probabilities have a somewhat holistic character, with the
probability of a given proposition depending not just on di-
rect but indirect connections, it lookslike adding new propo-
sitions or rules (connections between nodes) will be expen-
sive and potentially require re-calculation of al connection
weights. If one’sworld-model iswell specified enough that
reasoning about and interacting with the world is primarily
a matter of coming to trust or distrust propositions already
present in that model, a Bayesian net may provide agood en-
gine for reasoning. However, if one’s world-model is itself
expected to be subject to frequent change, as novel propo-
sitions and rules are added (or removed) from one'sKB, we
think that areasoning engine based on activelogic will prove
a better candidate.

In addition, and partly because a Bayesian net deals so
smoothly with inconsistent incoming data, it can operate on
the assumption that incoming data is accurate and can be
taken at face value. Although of course it is not expected

that all incoming datawill be accurate (for instance, it is ex-
pected to contain noise), it is expected that the system will
get reliable inputs overall. We have two related concerns
about this: first, an abnormally long string of inaccurate data
— as might be expected from a faulty sensor or a deliberate
attempt at deceit — would obviously reduce the probability
of certain beliefsthat, were the data known to be inaccurate,
would haveretained their original strengths. It has been sug-
gested to us that one could model inaccurateincoming infor-
mation by coding child nodesthat would containinformation
regarding the expected accuracy of theincominginformation
from agiven evidence node. This seems adequatewhenitis
known at the outset that a given sensor operates with a cer-
tain reliability; but it is not clear how one might learn that
an information source is unreliable, as one might wish to be
ableto do if a sensor breaks or a source begins lying. Sec-
ond, it seemsthat in a Bayesian net, all beliefs are similarly
sensitiveto incoming data (if they are sensitivetoit at all) in
the sense that the net operates by aslow erosion or confirma:
tion of probability. But it is not clear that all beliefs should
fit this model; one can retain full confidence in a given be-
lief for along time in the face of continuing empirical ev-
idence to the contrary, and then in light of a single further
fact (which alone would not have caused this event) give up
the belief entirely. (See (Bratman 1999) for a discussion of
belief modeling in light of such considerations.)

Further, insofar as a Bayesian net is operating smoothly,
the fact that incoming data contradicts currently held be-
liefs, or other incoming data, need not be explicitly recog-
nized. But we believe that the recognition of contradiction
should be a central and important part of information han-
dling (Perlis 1997). For it seems that there are cases where
one can learn from the fact of a contradiction (where the be-
lief that there has been a contradiction can be useful in the
reasoning process), as for instance in coming to the conclu-
sion that there is a system malfunction. Although it is no
doubt possible to modify aBayesian net to explicitly encode
the occurrence of acontradiction, it islessclear what usethis
information would be withinthat schema. And thisbringsus
to our final reason for preferring non-monotonic approaches:
active logic has much greater expressive power, including
not just the ability to encode complex propositions, but also
functions and quantification.

Let us consider the fol-
lowing example: The belief Yellow(tweety) may be based
on theoretical considerations that should not necessarily be
weakened by indirect evidence, e.g. TweelyBird(tweety),
If TweetyBird(X)then Yellow(X). Insuch case onewill at
least want to consider hisreaction to aphotograph of agreen
Tweety. The complexity of the case is not captured by de-
ciding how to treat the veridicality of photographsin general
(for assigning alower praobability to this sort of evidencejust
meansit will take longer for photographic content to register
in the KB, and this will not always be appropriate); the is-
sue is one of coming to an intelligent assessment of a given
piece of evidence (photograph or no) in light of current be-
liefs and their parents (if any —without theoretical consider-
ations supporting a given belief we may adopt the new evi-
dence at face value; with very strong empirical evidence, we

might disbelieve the theoretical bases.) It looks asthoughin
many caseswe will want to make decisionsabout this, rather
than letting thingsplay out according to pre-determined con-
fidence measures. On the other hand, it seems important
that we recognize and remember the (apparent) contradic-
tion, even when weresolveit by distrusting the photographs.
For a system which is fully epistemically open to the world
—that is, which is capable of changing its world model by
adding or deleting rules and facts, and for which every be-
lief in theworld model is empirically sensitive (no dogmatic
beliefs) — may encounter evidence that directly contradicts
TweetyBird({weety). In such case, among the considera-
tions motivating a decision to accept the new evidence may
be the fact that it allows acceptance of the previoudly dis-
carded photographic evidence of Tweety’s greenness.

Primer on Active Logic and Uncertainty

Currently, active logic does not explicitly represent confi-
dencelevels of the KB (although it certainly can be madeto
do s0). Instead, it hasthe flexibility to distrust any of its be-
liefs in the presence of suitable counter evidence. In effect,
activelogic treatsits current beliefs assimply true until such
time as reasons arise for doubting them, and then distrusts
them until such time asthey may bereinstated. One can thus
regard (the current version of) active logic as akind of time-
sensitive nonmonotonic reasoning engine.

Two of the principal mechanisms that provide the flexi-
bility of active logic, especially in regard to uncertainty, are
contradiction-detection and introspection.

Contradiction-detection: If P and—P arebothintheKB
at any step, then both become distrusted inthe next stepand a
repair processis initiated (which may or may not be conclu-
sive). Such adistrust and repair process can occur in cases
(i) and (ii). For instance, if P isbelieved originally, but later
— P iseither derived or observed (this could come about for
variousreasons. P might alwayshavebeenfalse, and the be-
lief that P mistaken; P might have becomefalse; — P could
be false, and this new belief could therefore be a mistake),
then a conflict occurs between P and —P. Thiswould cause
activelogicto enter astate of “uncertainty” with respectto P
and — P leading to distrust both P and —P and to initiate a
repair process to adjudicate between the ‘old’ P and ‘new’
= P. (Unlike most belief-revision formalisms, active logic
does not automatically assume that the newest data is more
accurate). The repair process involves the identification and
distrust of the parents (and any derived consequences) of the
contradictands; reasoning about the parents; and possiblere-
instatement of one or another set of parents, which may allow
one of the original contradictands to be re-derived.

Returning to our Yellow(tweety) example, in the nor-
mal case such a belief would be taken (and used) simply
at face value, even though it may (unknown to the rea-
soner) be incorrect, until such time as counterevidence ap-
pears (the photo showing a green Tweety). At that time,
a contradiction would occur between Yellow(tweety) and
= Yellow(tweety) (itself derived from Green(tweety) and
rules about how colorsinherein objects). Assessment would
discover and distrust the parents of each contradictand, and
attempt to discern which beliefs it ought to reinstate, as for

instance by utilizing preferences for some beliefs over oth-
ers (the whole set need not be accepted or rejected together).
Thus, assessment may lead to rejection of the initial belief;
or it may lead to its reinstatement, and rejection of the photo
data (not just if it had a preference for the theoretical bases
of Yellow(tweety), but also, for instance, if it knew that the
photo was developed poorly, or taken in green light). (This
instead of assuming confidencesfor various of thedataitems
and combining them into a revised confidence measure for
Yellow(tweety).)

Introspection: Another mechanism that provides the
flexibility of active logic is its ability to note that it does
not have a given belief P, represented as — Know(P) and
- Know(—P). This ability can be applied to encode uncer-
taintiesin uncertainties of type (iii) above. Hereit is crucial
that Know isinterpreted as “ currently-in-the-KB”, and not
as (an often undecidable) “possible-to-derive.” Thus an in-
tractable or even uncomputable problem is replaced with a
simplelookup in the (always finite) KB. In the above yellow
bird example, this can be used as part of adefault, towit: “if
something looks yellow and if | (currently) have no knowl-
edge that there is an irregularity about the situation, then |
will concludethat itin factisyellow.”! Later, if the conclu-
sion that Tweety isyellow isfound to be problematic (e.g.,
it conflicts with other data) that conclusion can be retracted
(or precisely, disinherited at subsequent time steps, sincethe
actual inferential history is preserved).

Alma/Carne

Almaisour current implementation of activelogicand Carne
isaprocessthat executes non-logical computationsindepen-
dent of Alma steps.

Alma: At each step, Alma applies the rules of inference
to theformulasin the database at that step to produce a set of
new formulas. These are added to the database, and the pro-
cess repeats at each subsequent step. Some characteristics of
Almaare:

e The current step number is represented in the KB as
now(T'). Formulas can be written using the step number
which makes it possible to reason about the current time.

¢ Alma maintains information about various properties of
the formulas in the database, including the derivations of
the formulas, their consequences and the time at which
they were derived; indeed, the entire inferential history
is preserved. Thisinformation is available for reasoning
through reserved predicates.

e Theformulasin the KB have nameswhich allow the user
to assert properties of the formulas and to reason about
these properties. One can for instance, assert that apartic-
ular formulaisto be preferred over another; that its prob-
ability isq; etc.

o If ¢ and —¢ are present in the KB where ¢ isaliteral, this
fact is detected by the contradiction-detection rule. The

! This formulation comes close, at least intuitively speaking, to
McCarthy’s notion of circumscription with an abnormality predi-
cate; see (McCarthy 1986)

outcomes of a contradiction between formulas ¢ and —¢
named N1 and N2 are:?

— A formula of the form contra(NL, N2, T) is
added to the database where 7' is the step number at
which the contradiction has been detected.

— The contradictands and their consequences are “dis-
trusted” sothat they cannot be used for further inference
but can be reasoned about.

— Formulas of the form di st rust ed(N) are added to
the database where NV is the name of aformulathat is
distrusted.

One can specify axioms to reason about the contradic-
tion and decide which of the formulas, if any, to reinstate.
Alma provides the reserved predicate reinstate(N) for
that purpose.

e Some computations that need to be done in the logic may
be more easily, conveniently or efficiently done through
procedures. To enablethis, prolog programs can be speci-
fied asinputsto Alma. Thesecan beinvoked when needed
through the formulas. An alternative for longer running
proceduresis Carne (see below).

o Almacan operatein both theforward and backward chain-
ing modes. Theusual mode of operation for Almaisinthe
forward direction. Alma also allows one to do backward
chaining to find whether some specific formula is deriv-
able. Thisisalso doneinastep by step fashion, just asfor
forward chaining.

Carne: Carneis aprocess that communicates with Alma
but runsindependently. The main use of Carneisto run non-
logical computationsasynchronousfrom Almasteps. Oneof
itsrolesis to serve as an input-output interface to Alma. In
this case Carne transforms external input to a form suitable
for addition to the Alma KB and conversely.

Alma formulas can request computations to be done by
Carne by asserting call(X,Y, Z) in the database. Thiswill
trigger the program X in Carne. When the request is sent to
Carne, doing(X,Y) isassertedin Almato record that the ac-
tion has been started. When Carne returns with an answer,
doing(X,Y) isdeleted and done(X,Y') isadded. If the ac-
tionfails, we have error(X,Y) replacing the doing(X,Y).

Carne can add and delete formulas directly in Alma. This
enables external inputs to be added to the Alma database
whenever they become available.

Carne interacts with external processes and with the user
at standard input and output. A KQML parser converts in-
put to aform suitable for further processing in prolog. This
causes a formula to be added to the Alma database. Alma
can then request further processing of the incoming message
based on user-defined message interpretation code.

Existing Applications
As indicated above, active logic provides a framework for

reasoning in presence of uncertainties. Some of the applica-
tion areas of active logic are discussed below.

2Names for formulas play atechnical role that we will not fur-
ther detail here.

Deadline-Coupled Planning

(Nirkhe et al. 1997) addresses the problem of deadline cou-
pled planning in active logic. Deadline coupled planning in-
volves taking into account the uncertainties that could crop
up in the planning process, while at the same time factoring
in the ever decreasing time to deadline.

Consider for example, an agent planning a strategy to
FedEx ahard-copy of a paper before the deadline. Whilethe
agent is planning the strategy to get to the nearest FedEx lo-
cation, the clock isticking. Therefore the time he has avail-
able to reach the location before it closes is fast decreasing.
While he istrying to reach the nearest FedEx location, time
is still passing and hence many uncertain events could hap-
pen which could mandate more planning. For instance, a
traffic jam could delay the agent and the nearest FedEx lo-
cation might close, so that he will haveto go to another loca-
tion which is open later. (This reasoning about the choice of
locations to try next, based on distance and time-to-closing,
is naturally expressible given active logic’s time sensitivity
and representation; further, since the reasoning itself explic-
itly takesplaceintime, thiscan be usedto give preferencefor
an easily-computabl eand workable plan over amore optimal
possibility which might take too much time to compute.)

The time tracking and observation mechanisms of active
logic render it useful in such applications that deal with un-
certainties while trying to meet a deadline.

Common Sense Reasoning

Active logic finds applications from fully-decidable default
reasoning to reasoning in the presence of contradictions.
Some examples are listed below (working examples can be
found at
http://www.cs.umd.edu/~kpurang/alma/demo/demo.html)

Simple Default Reasoning Given facts Birdsgenerally fly
and Tweety isa bird, active logic can conclude Tweety flies.

Default Reasoning with Preferences In active logic, one
can specify default preferences like “Penguins do not fly is
preferred over Birds generally fly”. Then, if at any instant,
Birds generally fly. Tweety is a bird. Tweety is a penguin.
and Penguinsdo not fly. arein the database, activelogic can
conclude Tweety does not fly.

Maintaining world view An accurate world view cannot
be specified without keeping track of current facts, because
of the associated uncertainty. Current knowledge can have
gaps (e.g., not knowing what constitutes black holes) or it
may even bewrong (e.g., earthisflat). Astimeevolves, facts
might change or cease to be true (e.g., the current president,
cold war) or even new factsmight arise (e.g., existence of the
International Space Station). In order to deal with the ever
changing plethora of facts, active logic has mechanisms to
add, modify or delete facts on the fly.

Reasoning with Contradictions Traditional logics gen-
erate all consequences in the presence of contradictions,
whereas activelogic uses contradictionsto helpinitsreason-
ing process. An agent can believe that Tweety flies until he
gets contrary information through observation or reasoning.

In the presence of contradiction, active logic distrusts both
the contradictands (Tweety fliesand Tweety doesnot fly) un-
til it has enough factsto trust one over the other.

Dialog

Active logic has been applied to various dialog problems,
including presupposition failures (Gurney, Perlis, & Purang
1997), cancellation of implicatures (Perlis, Gurney, & Pu-
rang 1996) and dialog management (Perliset al. 1999). The
following briefs on these issues.

Uncertainty of -
ten ariseswhen Cooperative Principle (Grice 1975) isnot ob-
served among the discourse participants. For instance, when
the speaker provides insufficient amount of information, or
when it is false, irrelevant, ambiguous, vague, or when it
lacks adequate evidence, the addresseeis uncertain about the
speaker’s intention. Even when the Cooperative Principle
is being followed, uncertainty can just as easily arise; e.g.
if a speaker uses an unknown word or reference, or when
the answer to a question is implicit rather than explicit. In
some cases, conversation or communication just stopsthere,
maybe because the speaker isinfelicitous and the addressee
does not wish to participate in conversation. In most cases,
however, the addressee reasons about the speaker’ sintention
andtriesto stay in conversation. Despitethefact that thereis
apotential risk of misunderstandingthat could lead to further
uncertainty, wetake advantage of reasoning when it comesto
resolving uncertainty. In the following subsections, we will
discuss how intelligent reasoning can be effectively woven
into uncertainty resolution in the context of dialog applica-
tions.

Assumption In ambiguous cases, people make assump-
tions based on their previous knowledge. Consider the fol-
lowing example:

“Send the Boston Train to New York.” (@0}

In this example, the referent of “the Boston Train” may
be ambiguous: It may mean the train currently at Boston,
or the train going to Boston, or the train which left Boston
this morning (and many other things besides). Furthermore,
there may be more than one candidate for each case, as for
instance, if there is more than onetrain currently in Boston.
Nevertheless, we can deal with thisambiguity by making as-
sumptions based on context.

Relevant context might be the following: The speaker
once used the phrase “the Chicago Train”, and meant the
train currently at Chicago. Hence, we suppose that “the
Boston train” means the train at Boston (although we know
that there are other possibilities); likewise, given several
trains at Boston (e.g. Northstar, Acela, Metroliner) we will
choose one candidate, again with an eye to the overall con-
text of thedialog. For instance, Northstar is |eaving soon for
Cleveland; Acelahas mechanical problems. Here we would
be led to assume that Metroliner is the train meant.

It is important to note, however, that this reasoning may
be mistaken: for it could be that the speaker wanted to send
Northstar to New York instead of Cleveland. Any reason-
ing system that employsassumptionsshould beableto repair
false assumptions (see “ Repair” below for details).

We have implemented a simplified form of reasoning into
the Rochester TRAINS (Ferguson et al. 1996) system. In
our version of TRAINS, the system makes the assumption
that phraseslike“the Bostontrain” mean “thetrain currently
at Boston”, and then utilizes context to make a choice among
thetrains at Boston. It utilizes context in that it chooses the
first candidate, the choosing of whichwill not cause acontra-
dictioninthe KB. (For instance, if the sentence“Do not send
Northstar to New York” isinthe KB, interpreting “ Send the
Boston train to New York” as “Send the Northstar to New
York” will cause a contradiction.)

If the user denies the system’s choice of train, that denial
becomes part of the relevant context, and will be taken into
account when the system considersthe alternative candidates
in its ongoing efforts to interpret and act on the sentence.
Thusour implementation of TRAINS hasarudimentary abil-
ity to repair incorrect assumptions. We are currently working
on ways to expand this ability, as for instance by adding the
capacity to consider other interpretationsof phraseslike*“the
Boston train”.

Implicature Eachexpressionwe utter can mean morethan
it literally means. Consider the following example:

Q: “Aretherosesfresh?’A: “They arein thefridge.” (2)

In this example, the answer “They are in the fridge” ap-
pears to give information about the location of the roses,
rather than their state (which iswhat was asked about). How-
ever, it is not hard to see, that, given the location, we are
meant to infer that the roses are, indeed, fresh. One way to
handle implicatureisto assign a default interpretation to the
expression. The better way, however, isfor the system to be
able to reason about the context, and provide an interpreta-
tion that is most fitting for the context. (Perlis, Gurney, &
Purang 1996) describes an active logic implementation of a
reasoner which correctly concludes that the roses are fresh
from adialog like example 2.

Meta-Dialogue When uncertainty arises, oneway to avoid
further uncertainty and potential discourse failure is to ask
for clarification. In natural language discourse, clarification
takes place at al times. In the cases discussed, one might
confirm the notion that the roses are fresh: “Yes, but are
they fresh?’. Likewise one might ask: “By Boston Train do
you mean Northstar?’ Our version of TRAINS is currently
equipped with an extremely rudimentary meta-dial og ability,
triggered only when its own reasoning reaches an impasse
(i.e. when it cannot find a candidate which does not cause a
contradiction). In such case it returns a message to the users
which says: Please specify the name of the train.

We are working on a more robust representation of
Question-Answer dialog exchanges that will support amore
impressive range of meta-dialog abilities. There are difficult
issuesto befaced eveninthe simplest of cases, however. For
when the system says: “Please specify the train by name” it
looks asthough the system should encodefor itself an expec-
tation that somefuture response of the user will berelevant to
that request. But in determining whether any given response
isrelevant, all the sameissues of uncertainty in dialog inter-
pretation assert themselves. It seemsthat al of thefollowing

user responses should be appropriate: “Metroliner”; “1 mean
Metroliner”; “Send Metroliner to New York”. However, it
lookslike " Send the Yankee Clipper to Philadel phia’ should
not be understood asrelevant (although we could alwaystell
astory in which it would be relevant, for it could be an im-
plicit cancellation of the original request, perhaps prompt-
ing the question to the user: “Do you still want me to send
the Boston train to New York?’). Likewise, were the user to
have responded“ Send the Yankee Clipper to New York”, this
could be an indication that the Yankee Clipper (which orig-
inated in Boston) was actually the Boston train; and it was
the assumption that “Boston train” meant “train at Boston”
which was incorrect.

The question of determining relevance is a large, diffi-
cult, important open area of research. Our approach, aswith
other forms of uncertainty, isto model determinations of rel-
evance with explicit reasoning of the type already described
(although it should be noted that for applications where the
range of choicesiscircumscribed at the outset, aprobabilistic
approach looks promising. See, e.g. (Paek & Horvitz 1999))

Repair When false assumptions are made, it is important
for anintelligent systemto be abletorepair the mistakeaswe
doin natural language discourse. In example 2, the answerer
might add: “but they are not fresh.” In this case, the impli-
cation that the roses are fresh would need to be retracted.
(Perlis, Gurney, & Purang 1996) describes an active logic
implementation which can handle such cancellation of im-
plicature.

Likewise, in the TRAINS example, suppose the system
were to choose the Metroliner asthe referent of “the Boston
train” through acourse of reasoning. It should be opento the
user to say “No”, and have the system retract its assumption
(and remember the retraction, for it will likely be relevant).
Asmentioned, our version of TRAINS has this ability to re-
tract the assertion “ Send the Metroliner to New York” and
remember that retraction to help in future interpretations of
user utterances. Itisworth pointing out however that the sys-
tem has made two assumptionsin order to get to itsinterpre-
tation: first, that the* Bostontrain” meansthetrain at Boston,
and second, that the Metroliner istherelevant train at Boston.
We are working on refining our representation and use of the
ongoing dialog context to make it possible not just to rea-
son about other interpretations of phrases like “the Boston
Train”, but to be able to choose which of these assumptions
to negatein light of the user’'s“No.”

Changein meaning

Active logic has been also used to model changes in the
meaning associated with terms (Miller 1993). Thefollowing
isthe kind of problem treated in that work.

Imagine an ongoing conversation in which B initially un-
derstands A’'s use of Bush to mean George Walker Bush, the
43rd president of the United States. However, A meant his
father George Herbert Walker Bush, the 41st president. A
then tells B that Bush is the "read my lips’ president. Sup-
posing that B does not know anything about the "read my
lips’ speech that the 41st president made, B will understand
the 43rd president to be the "read my lips’ president. Later,

however, when A tells B that Bush is married to Barbara,
B realizes his misunderstanding. At this point, B hasto re-
associate previous information with the appropriatereferent;
B then understands that the "read my lips’ president is the
41st president. Thisisadlightly different sort of repair from
those mentioned in the section above, although obviously re-
lated.

Potential Applications
Time Sensitive Automated Theorem Prover

Can an automated theorem prover function—toitsadvantage
— more like a (human) mathematician? One way in which
this might be possible is via time-sensitivity. A human is
highly aware of the passage of time, and in particular to time
well-spent as opposed to ill-spent.

Thus a mathematician might, after months (or hours, or
even minutes) of pursuing a particular line of investigation,
decide that it is not paying off, and instead try a different
track. Active logic, with its built-in time-sensitivity, pro-
vides a potential mechanism for exploring this possibility.
The obvious advantageisthat, although a computer may not
care that it runs a given program for hundreds of yearsin a
search for a proof, we certainly care and we will want it to
try adifferent tack long before many years go by.

Thereisanother likely possibleadvantage here, something
inherent in the active logic framework: it avoidsthe KR in-
flexibility of most traditional Al systems. In creative ac-
tivities such as mathematical reasoning, often the introduc-
tion of akey new concept, or even an improved (and possi-
bly inequivalent) reformulation of an old concept, can vastly
shorten the argument or even recast it entirely. But Al sys-
temstypically are stuck in afixed meansof representing their
knowledge and cannot, for instance use Set(X) to refer to fi-
nite sets at one time, and later to sets that are finite or in-
finite. Indeed, such systems cannot easily give up a belief,
and when they do (“belief revision”), it is lost rather than
availablefor further consideration. Thisis not to say that ac-
tive logic has a built-in general-purpose concept-formation
mechanism; but it does have the expressive power to rep-
resent and reason with such formations, if they were made
available, perhaps aong lines of AM (Lenat 1982; Lenat &
Brown 1984).

Furthermore, as seen earlier, activelogic alowsfor recog-
nition that a given statement is already known, or that it's
negation is known, or that neither is known, thereby avoid-
ing re-derivation of atheorem. Similarly, if such apurported
human-style-theorem-prover (HSTP) that is allowed to run
in continual mode (rather than started up at a user’srequest)
already working on a proof of X, it can respond, if asked
(again) whether X istrue, that it isuncertain but that aproof is
already underway and that it has established such-and-such
lemmas, and so on; or that it has given up since the consider-
abletime spent has not resulted in resultsthat support further
effort.

I nteractive Mathematical Companion - IMC

Weenvision an active-logic-based interactive system, which,
in conjunction with an appropriate computational mathemat-

ical package (MP) aswell as a conventional theorem prover
(TP), can act as avirtual mathematical assistant and/or com-
panion (Benzmiller et al. 1997; Chang & Lee 1973). It may
be used in a variety of modes asillustrated by the following
scenario outline.

A client may wish to use IMC to ask a (mathematical)
question. IMC can try to understand the question on the ba-
sisof itsexisting KB and quite possibly be ableto answer the
guery. Or it may not understand some of the terms used by
the client and ask the client to explain them. The desired in-
teractionssuch asIMC trying to clarify the meaning of terms
can be achieved easily by active logic with its ability of de-
tecting and handling ignorance. Thus adialog may ensuein
which IMC may take note of the new definitions or factsrel-
evant to the query that the client furnishes in much the same
manner as an interested professional colleague might. After
this preliminary dialog, IMC may find that it is unableto an-
swer the question from its (local) KB (even thoughiit * thinks
it understandsthe question’). At thispoint, IMC may consult
the TP to seeif TP has an answer to the client’s question. If
TP can respond affirmatively (within the time specified by
IMC), IMC can capture the answer, convey the same to the
client and also update its KB. In thisway IMC is ‘learning’
from the interaction with the client.

If TPisunableto provide the answer, uncertainty prevails
for the client as well as IMC. TP's inability to provide the
answer may be because one of the two reasons. Either it is
not given sufficient time, or it may just be unable to prove
it from the hypotheses contained in the query. In any case
IMC can tell the client that it does not know the answer to
the question. Uncertainty persists.

The client may then try to pursue some thought of her
own. She may come to a point whereit is necessary to com-
pute something (possibly as an intermediate step). She may
choose to ask IMC to do the computation. IMC interprets
client’scommand and formul ates the necessary computation
as a request and submits it to the MP. When (and if) it re-
ceives the response from MP it passes it back to the client.
Such an interaction between the client and IMC can con-
tinueindefinitely until the client decidesto terminateit. IMC
is thus able to mobilize the mathematical resources for the
client.

At each step, during the course of an interaction such as
outlined above, IMC checks any new facts that are submit-
ted toit by theclient, or that areresponsesit gathersfromMP
or TR, against its current KB. If the new facts do not directly
contradict the KB, they are recorded as assertionsin its KB
along with the (time) step number whenit wasentered. If any
factisin conflict with any existingitemin the current KB, the
contradiction isnoted and client is made aware of the contra-
dictands. active logic provides a convenient framework in
which IMC can be implemented.

The ability of IMC to keep track of facts as they develop
and to detect contradictions can be put to good use by any
client who might be trying to check the truth of (or construct
aproof of) a proposition.

Continual Computation

A student of Al will soon find out that, almost without excep-
tion, any interesting problem is NP-hard. When a computer
scientist is confronted with ahard problem, there are several
options to deal with it. One is to simplify the problem, or
identify a simpler subproblem so that it can be solved algo-
rithmically and automated, and leave the hard part for the hu-
man. Another option isfor the scientist to study the problem
carefully, derive some heuristics, and hope that they will be
adequate most of thetime. But none of theseis quite satisfy-
ing: ideally, wewould like the computer to do as much work
for usaspossible, and hopefully, be ableto derivetheheuris-
tics by itself. A promising approach toward realizing this
ideal isthe notion of continual computation (Horvitz 1997).

The main motivation behind continual computation is to
exploit the idle time of a computation system. As exempli-
fied by usage pattern of desktop computers, workstations,
web-servers, etc of today, most computer systems are under
utilized: in typical employments of these systems, relatively
long spans of inactivity are interrupted with bursts of com-
putation intensive tasks, wherethe systems are taxed to their
limits. How can wemake useof theidletimeto helpimprove
performance during critical time?

Continual computation generalizes the definition of a
problem to encompass the uncertain stream of challenges
faced over time. One way to analyzethisproblemisto put it
into the framework of probability and utility, or more gen-
eraly, rational decision making(Horvitz 2001). However,
animplicit assumption of the utility-based work in continual
computationisthat thefutureissomehow predictable. Butin
many cases, this cannot be expected. For example, for long
term planning, most statisticswill probably lose their signif-
icance. Here is a place where logic-based systems with the
capability to derive or discover theorems by its own (e.g.,
Lenat’sAM system) can play acomplementary role, inasim-
ilar way where mathematics plays a complementary role to
engineering principles. Just as mathematicians usually do
not rely onimmediatereward to guidetheir research (yet dis-
cover theorems of utmost utility), AM can functionin away
independent of the immediate utility of itswork.

Moreprecisely, if we adopt logic as our base for computa-
tion and look at problem solving as theorem proving (Bibel
1997), asystem capable of discovering new theorems can be-
comeavery attractivemodel of acontinual computation sys-
tem. In such a system, every newly discovered theorem has
the potential of simplifying the proof of futuretheorem; soin
essence, theorem becomes our universal format for caching
the result of precomputation and partial solutions to prob-
lems.

A simplistic embodiment of the model can just be a for-
ward chaining system capable of combining facts in its
database to produce new theorems using modus ponens, for
instance. Such asystem isnot likely to be very useful, how-
ever, because it will spend most of its time deriving uninter-
esting theorems. So the success of this model of continual
computation will hinge on whether we can find meaningful
criteriafor the “interestingness’ of a theorem. In the classi-
ca AM (Lenat 1982; 1983; Lenat & Brown 1984), the sys-
tem relieslargely on human to provide the judgment of inter-

estingness. In asurvey of several automated discovery pro-
grams, (Colton & Bundy 1999) identify several properties
of concepts which seem to be relevant to their interesting-
ness, such as novelty, surprisingness, understandability, ex-
istence of models and possibly true conjectures about them.
Although these properties seem plausible, it is not obvious
they are precise enough to be operational to guide automated
discovery programs toward significant results.

Mathematical conceptsare characterized by their abstract-
ness. In fact, it is unclear whether the interestingness prop-
erty of concepts is even meaningful at such abstract level,
where the concepts are stripped to their bare essentials, san-
itized from any domain specificity: in real life, our inter-
ests seem always to be tied to our biological existence in
the physical world. When isolated from all real-world in-
terpretations, is there an objective way to tell one theorem
ismore “interesting” than another? Although we don’t have
an answer to thisquestion, we have areason to be optimistic:
mathematics has worked so well for us.

Seven Daysin the Life of Al To put things into perspec-
tive, we will consider Al, a robot powered by active logic.
Al isan“officerobot”, who roamsthe CS office building de-
livering documents, coffee, etc. He was endowed at birth
with the desire to make people happy. We will see how ac-
tivelogic enabled Al to devel op into an excellent officerobot
through hisfirst week of work (7).

e 1st day: The first day Al began his day as the office
robot, he was given atour of the building. Among other
things, he was shown the power outlets scattered around
the building so that he can recharge himself. Not wanting
to overwhelm Al in the new environment, the supervisor
let Al off early.

e 2ndday: Themorningwent well: Al delivered everything
on target, making good use of the map he constructed from
thetour given theday before. But aproblem occurred dur-
ing the afternoon: Al found himself unable to move! The
problem was soon diagnosed — it was simply low battery.
(Since thinking draws less energy than moving, Al could
till think.) 1t turned out that although Al knew he needed
power to operate and he could recharge himself to restore
his battery, it had never occurred to him that, “he would
need to reach an outlet before the power went too low for
him to move!” The movement failure triggered Al to de-
rivetheaboveconclusion, but it wastoo late; Al was stuck,
and could not deliver coffee on request. Caffeine deprived
computer scientists are not happy human beings; Al had a
bad day.

e 3rd day: Al was bailed out of the predicament by his su-
pervisor at the morning. Having learned hislesson, Al de-
cided to find an outlet afew minutes before the battery got
too low. Unfortunate for Al, optimal route planning for
robot navigation is an NP-complete problem. When Al fi-
nally found an optimal path to the nearest power outlet, his
battery level waswell below what he needed to move, and
Al was stuck again. Sincetherewas nothing else he could
do, Al decided to surf theweb (through the newly installed
wireless network in the building), and came upon an in-

teresting articletitled “ Deadline-Coupled Real -time Plan-
ning” (Kraus, Nirkhe, & Perlis 1990).

e 4th day: After reading the paper, Al understood that plan-
ning takes time, and decided to quickly pick the outlet in
sight when his battery was low. Unfortunately, the outlet
happenedto betoo far away, and Al ran out of power again
before reaching it. Actually, there was a nearer outlet just
around the corner; but since Al used a non-optimal plan-
ning algorithm, he wasunableto find it. Again, stuck with
nothing else to do, Al kicked into the “meditation” mode
where he called the Automated Discovery (AD) module
to draw new conclusions and theorems based on the facts
he accumulated these few days. Al made some interest-
ing discoveries: upon inspecting the history of his obser-
vations and reasonings, Al found that there were only a
few places he frequented; he could actually precompute
the optimal routesfrom those placesto the nearest outlets.
Al spent al night computing those routes.

e 5th day: This morning, Al’'s AD module derived an in-
teresting theorem: “if the battery power level is above
97% of capacity when Al starts (and nothing bad happened
along the way), he can reach an outlet before the power is
exhausted.” Finally, Al didn’'t get stuck that day. But peo-
ple were not quite happy; Al seemed not very responsive.
Later, it was found that Al spent most of his time around
the outlets recharging himself — since Al’s power level
dropped 3% for every 10 minutes, the theorem above led
him to conclude that he needed to go to the outlet every 10
minutes.

e 6th day: After Al's routine introspection before work, it
was revealed to him that his knowledge base was popu-
lated with millions of theoremssimilar to the one hefound
the day before, but with the power level at 11%, 12%, ...,
and so on. Infact, thetheoremistruewhen the power level
isabove 10% of capacity. Luckily, there was a meta-rule
in Al knowledge base saying that “ atheorem subsumed by
another was less interesting;” thus all the theorems with
parameter above 10% were discarded. Equipped with this
newer, more accurate information, Al concluded that he
could get away with recharging every 5 hours. Although
this might not be an optimal rule, it seemed to work well:
Al did hisjob, and people were happy.

e 7th day: That happened to be Sunday. Nobody was com-
ingtothe office. Al spent hisday contemplating the mean-
ing of life.

We would like to bring to attention several features of ac-
tive logic which helped Al tremendoudly: time awareness
of active logic enabled Al to realized that optimality is not
necessarily desirable, especially when there isadeadline ap-
proaching; this realization improved his chances of success.
More fundamentally, the time awareness allows Al to keep
track of changes: the battery level is X now does not imply
that is still true 5 hours later. Active logic’s Now(i) predi-
cate provides a natural and efficient way to deal with that.
The history mechanism in active logic gave Al an opportu-
nity to spot certain pattern in his past behavior, which hel ped
him improve his future behavior. The expressiveness of ac-

tive logic made it possible to store the meta-rules about in-
terestingness of theorems, which gave Al a good “taste” in
evaluating them. Finally, because of the uniformity of the
logic-based system, precomputation is seamlessly integrated
into goal based problem solving through the forward- and
backward-chaining mechanisms of active logic.

The so caled No Free Lunch Theorem (Wolpert &
Macready 1997) states that “all algorithms that search for
an extremum of a cost function perform exactly the same,
when averaged over all possible cost functions.” In other
words, without domain specific structural assumptions of
the problem, no algorithm can be expected to perform bet-
ter on average than simple blind search. This result ap-
pears to be a cause for pessimism for researchers hoping
to devise domain-independent methods to improve problem
solving performance. But on the other hand, this theorem
also provides compelling reason for embracing the notion of
continual computation, which can be seen as a way to ex-
ploit domain dependent information in a domain indepen-
dent way. However, to take advantage of continual compu-
tation, we cannot avoid theissue of interestingness. Interest-
ingnesstoucheson the ultimate uncertainty: what to do next?
Although utility theory has its place, we argued that there
are aspects of interestingness not susceptibleto utility based
analysis. We believe that a forward and backward chaining
capablelogic system such asactivelogic, withitsexpressive-
ness,time sensitivity, and reflective ability to reason about
theorems, proofs and derivations, is well-positioned to take
advantage of the opportunity offered by continual computa-
tion and explore the possihilitiesof interestingness.

Importing Intelligence Into Computation

In this paper we hope to have supported the view that (ex-
plicit, time-sensitive, and flexible) reasoning can be advan-
tageous wherever there is uncertainty. The underlying ar-
chitecture can be thought of as (one or more) procedural al-
gorithms with a suitably attached reasoning component so
the (system of interacting) algorithms becomes capable of
self-monitoring in real time. The reasoning component af-
fords certain protections such as recognizing and repairing
errors, informed guiding of strategies, and incorporation of
new concepts and terminologies.

In our view, reasoning should apply amost across the
board, not only to Al programs, or to automated theorem-
provers, but also, for example, to operating systems. |mag-
ine an OS that had an attached active logic. Such an OS-
Alma pair not only could gather statistics on its ongoing
behavior (this is not new) but could infer and initiate real-
time alterations to its behavior as indicated by the circum-
stances. We envision such an application as largely default-
powered, along the line of error-diagnosis tools such as
(deKleer 1986). But an active logic version has the addi-
tional virtues of accepting dynamically changing observa-
tions, and of having agenuinereal-time default capability via
its introspective lookup interpretation of ignorance.

Acknowledgments

Wewould liketo acknowledge support for thisresearch from
AFOSR and ONR.

References

Benzmiller, C.; Cheikhrouhou, L.; Fehrer, D.; Fiedler,
A.; Huang, X.; Kerber, M.; Kohlhase, M.; Konrad, K.;
Meier, A.; Mdlis, F.; Schaarschmidt, W.; Siekmann, J.; and
Sorge, V. 1997. QOMEGA: Towards a mathematical assis-
tant. In McCune, W., ed., Proceedings of the 14th Interna-
tional Conference on Automated deduction, volume 1249
of LNAI, 252-255. Berlin: Springer.

Bibel, W. 1997. Let’splan it deductively! InJCAI, 1549—
1562.

Bratman, M. 1999. Faces of Intention. Cambridge, UK:
Cambridge University Press.

Chang, C.L.,and Leg, R. C. T. 1973. Symbolic Logic and
Mechanical Theorem Proving. New York, NY: Academic
Press.

Chong, W.; O’ Donovan-Anderson, M.; Okamoto, Y.; and
Perlis, D. 2001. Seven daysin the life of arobotic agent.
In To be presented at the GS-C/JPL Wbrkshop on Radical
Agent Concepts.

Colton, S., and Bundy, A. 1999. On the notion of inter-
estingness in automated mathematical discovery. In AISB
Symposiumon Al and Scientific Discovery.

deKleer, J. 1986. Problem solving with the ATMS. Artifi-
cial Intelligence 28:197-224.

Ferguson, G. M.; Allen, J. F; Miller, B. W.; and Ring-
ger, E. K. 1996. The design and implementation of the
TRAINS-96 system: A prototype mixed-initiativeplanning
assistant. TRAINS Technical Note 96-5, University of
Rochester.

Grice, H. P. 1975. Logic and conversation. In Cole, P, and
Morgan, J. L., eds., Syntax and semantics 3: Speech Acts.
Academic Press. 41-58.

Gurney, J,; Perlis, D.; and Purang, K. 1997. Interpreting
presuppositions using active logic: From contexts to utter-
ances. Computational Intelligence 13(3):391-413.

Horvitz, E. 1997. Modelsof continual computation. In Pro-
ceedingsof the 14th National Conferenceon Artificial Intel-
ligence and 9th Innovative Applications of Artificial Intel-
ligence Conference (AAAI-97/1AAI-97), 286-293. Menlo
Park: AAAI Press.

Horvitz, E. 2001. Principles and applications of continual
computation. Artificial Intelligence 126(1-2):159-196.

Kraus, S;; Nirkhe, M.; and Perlis, D. 1990. Deadline-
coupled real-time planning. In Proceedings of 1990 DARPA
wor kshop on Innovative Approaches to Planning, Schedul-
ing and Control, 100-108.

Lenat, D. B., and Brown, J. S. 1984. Why AM and EU-
RISKO appear to work. Artificial Intelligence 23(3):269—
294.

Lenat, D. B. 1982. AM: Discovery in Mathematics as
Heuristic Search. New York, NY: McGraw-Hill. 1-225.

Lenat, D. B. 1983. Theory Formation by Heuristic Search.
Artificial Intelligence 21:31-59.

McCarthy, J. 1986. Applications of circumscription to for-
malizing common-sense knowledge. Artificial Intelligence
28(1):89-116.

Miller, M. 1993. A View of One's Past and Other Aspects
of Reasoned Changein Belief. Ph.D. Dissertation, Depart-
ment of Computer Science, University of Maryland, Col-
lege Park, Maryland.

Nirkhe, M.; Kraus, S.; Miller, M.; and Perlis, D. 1997. How
to (plan to) meet adeadline between now and then. Journal
of logic computation 7(1):109-156.

Paek, T., and Horvitz, E. 1999. Uncertainty, utility
and misunderstanding: A decision-theoretic perspectiveon
groundingin conversational systems. In Proceedings, AAAI
Fall Symposium on Psychological Models of Communica-
tion in Collaborative Systems.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, Cali-
forniac Morgan Kaufmann.

Perlis, D.; Purang, K.; Purushothaman, D.; Andersen, C.;
and Traum, D. 1999. Modeling time and meta-reasoning
in dialogue viaactive logic. In Working notes of AAAI Fall
Symposium on Psychological Models o f Communication.

Perlis, D.; Gurney, J.; and Purang, K. 1996. Active logic
applied to cancellation of Gricean implicature. In Working
notes, AAAI 96 Soring Symposiumon Computational Impli-
cature. AAAL.

Perlis, D. 1997. Sources of, and exploiting, inconsis-
tency: Preliminary report. Journal of APPLIED NON-
CLASSICAL LOGICS?7.

Ramoni, M., and Riva, A. 1994. Belief maintenance in
bayesian networks. In Proceedings of UAI 1994.

Wolpert, D. H., and Macready, W. G. 1997. No freelunch
theorems for optimization. |EEE Transactions on Evolu-
tionary Computation 1(1):67-82.

