
Alma/Carne: implementation of a time-situated meta-reasoner

K. Purang
kpurang@yahoo.com

Abstract

Agents need to operate in dynamic situations where the
information they have about the world is incomplete, un-
certain and quite possibly false. Active logic has been de-
signed with capabilities that enable these aspects of the
world to be taken into account, notably time-situatedness,
contradiction tolerance and meta-reasoning. This paper
presents a general-purpose implementation of active logic,
Alma/Carne that is meant to be a basis on which to build
and experiment with such agents. We illustrate the use of
Alma/Carne in the implementation of a non-monotonic rea-
soner that is computable and that has been successfully
tested on a large number of examples from the literature.

1. Introduction

We present Alma/Carne, an implementation of active
logic that is time-situated, tolerates contradictions and is ca-
pable of meta-reasoning. These features make Alma/Carne
a useful tool for specifying and executing agents that oper-
ate in a dynamic world with incomplete and uncertain infor-
mation. In this paper we focus on the contradiction-tolerant
and meta-reasoning features of Alma/Carne.

An agent in an incompletely specified dynamic world
with uncertain knowledge is bound to make mistakes. In
particular, it is bound to have false beliefs. These can lead
to an inconsistency in its knowledge base (KB) where it be-
lieves both P and :P . It needs to detect this situation and
resolve it appropriately if it is to operate in a reasonable
way. The contradiction tolerance and meta-reasoning of ac-
tive logic allows these circumstances to be detected and al-
lows the contradiction to be reasoned about with the aim of
resolving it. This happens while the rest of the inferences of
the agent that are not affected by the inconsistency proceed
normally. The inconsistency is seen as another fact about
the world and is reasoned about just as the logic would rea-
son about birds.

�This work was mostly done while the author was at the University of
Maryland College Park and was supported in part by ONR and AFOSR.

Alma (Active Logic MAchine) is the reasoning en-
gine and Carne executes procedures on behalf of Alma.
Alma/Carne has been used in some applications and we
here describe the implementation of a non-monotonic rea-
soner in Alma/Carne. This uses computable procedures to
jump to conclusions, but in case these are mistaken, they are
corrected automatically and the conclusions improve with
time. This is an important component for an agent of the
kind we are interested in and illustrates some properties and
uses of Alma/Carne.

In the next section we introduce active logic. This pro-
vides the background for the description of Alma/Carne.
We then illustrate some basic behaviors of the system. The
non-monotonic reasoner is described after that. We next
discuss related work and finally conclude and point to fu-
ture work.

2. Active logic

In this section we present an overview of active logic.
More details can be found in [9]. Active logic was devel-
oped to combine inference and reactivity in one formalism.
To enable this, active logic has, as part of its language, a
fluent that represents the current time and as inference takes
place, the value of time changes. This enables the logic to
act (and reason) at specific times and to be aware that the
reasoning takes time. It also enables the logic to have a
history that relates past times to the beliefs the logic held
at those times. With this, the logic can reason about its
own past reasoning. This meta-reasoning capability is key
to our approach to incompleteness, uncertainty and error in
the agent’s view of the world. Note that active logic is to be
viewed as an on-board agent reasoner, rather than as just an
external specification for an agent.

2.1. Formalism

The language of active logic is that of a first-order logic,
augmented with names for expressions to facilitate meta-
reasoning.

The principal change is that inference rules become
time-sensitive. For instance, Modus Ponens becomes



i: P, if(P, Q)
----------

i+1: Q

From the beliefs at time i that P and if(P;Q), we get at
time i + 1 that Q. Inference takes time and this evolution
of the database is recorded and can be explicitly reasoned
about.

Active logic also represents the current time in the lan-
guage through a fluent Now(t). The value of t that makes
this true changes as the logic executes.

Temporal logics [26, 2, 24] also have a notion of past,
present and future, but these do not change as theorems are
derived. These are specification logics external to the rea-
soner. This contrasts strongly with the agent-based on board
character of active logic where the value of Now changes
as the agent thinks.

2.2. Characteristics of active logic

Active logics are able to react to incoming information
while reasoning is ongoing, blending new inputs into its in-
ferences without having to start up a new theorem-proving
effort. So external observations of actions or events can be
made during the reasoning process and also factored into
that process. Thus the notion of theorem for active logics is
a bit different from that of more traditional logics in several
respects:

1. Time sensitivity. TheNow predicate enables the logic
to reason with the current time and this makes formu-
las derivable at some time but not at others. For in-
stance, if(now(1200), lunch) active logic will
conclude lunch only at time 1200.

2. Contradictions. If a direct contradiction (P and :P )
occurs in the belief set at time t, that fact is noted at
time t+1 by means of the inference rule

t: P , ˜P
------------------

t+1: Contra(t+1, P, ˜P)

Details on handling contradictions are presented later.
See also [17].

Truth maintenance systems [7] also tolerate contradic-
tions and resolve them, typically using justification in-
formation. This happens in a separate process which
runs while the reasoning engine is waiting. We do not
think that this will work in general since the reasoning
needed to resolve the contradiction will depend on the
very information that generated it in addition to jus-
tification information. Resolution of contradictions is
itself, in general, a reasoning process much like any
other.

3. Meta-Reasoning In active logic, there is a single
stream of reasoning, which can monitor itself by look-
ing backwards at one moment to see what it has been
doing in the past. All of this is carried out in the same
inferential process, without the need for level upon
level of meta-reasoners. A potential disadvantage is
the possibility of vicious self-reference. However the
contradiction handling capability should be a powerful
tool even there.

3. The Alma/Carne system

Active logic has been used for solving several problems
[8, 18, 20, 14] by having a new implementation for each
solution which is not effective. While individual problems
may require some special representations and procedures,
all of the active logic solutions share a common set of char-
acteristics.

We implemented Alma/Carne[21], with the aim for it to
be the core reasoning engine for active logic applications.
Alma is the logical reasoning engine and Carne is a process
that runs separately from Alma and executes procedures on
its behalf. They are implemented for the most in Prolog
with Java being used for the graphical interface. The Alma
language is used to specify the reasoning domain. It is simi-
lar to a first order language with a set of reserved predicates
some of which are described below.

Alma/Carne is the core of an active logic application
and not the complete application because in addition to the
axiomatic domain description, the user can specify non-
logical representations and procedures that are specific to
the problem to be solved. These representations and pro-
cedures can be accessed from the axioms describing the
system. This feature gives the system the flexibility to be
used in different applications. We do not need all aspects
of the solution of a problem to be expressed in logic for
Alma/Carne to be used. We can incorporate other forms of
reasoning within the system and reason logically about their
results. There may be, for instance, parts of the problem
that are more appropriately solved using Bayesian networks
[19]. In that case, the information needed by the network
can be provided by Alma through Carne and the results of
the computation returned to Alma through Carne. This also
allows Alma/Carne to be embedded in larger systems.

3.1. Top-level control

Alma runs in “steps” which are sequentially numbered.
The step number is used as the time value for Alma. In
each step, the rules of inference are applied to extend
the derivations by at most one inference rule application.
This roughly results in an incremental breadth first forward
chaining proof procedure. At each step some formulas are



added and some deleted. A formula that is deleted at each
step is the now(t) formula. At step n, the KB contains
now(n), and this is deleted and now(n + 1) is added for
the next step, step n + 1. Alma/Carne is also capable of
abckward chaining which is implemented through the for-
ward chaining mechanism.

3.2. Method of inference

The main rule of inference used in Alma is resolution.
While this does not result in a complete reasoner in forward
chaining, backward chaining does gives completeness for
first order logic. The advantage of resolution is that there
is no need to choose which rule of inference to apply, the
disadvantage, conversely, is that there is less control than if
one used natural deduction rules, for instance.

3.3. Not repeating inferences

Alma does not apply all inference rules to all formulas at
each step since this is inefficient. It ensures that each rule
of inference applied involves at least one newly derived for-
mula so that we do not repeat inferences that have already
been done. Doing so reduces the amount of computation
that needs to be done. However, this heuristic causes prob-
lems with formulas with negative introspection (see below).
Negative introspection terms are satisfied if some formula
is not present in the KB. Therefore removing a formula
may make it possible for these formulas to participate in
an inference. This is not possible if we strictly follow the
strategy above. The solution used is to verify at each step,
whether these formulas can be used. This is still effective
since the applications we have considered have relatively
few instances of negative introspection.

3.4. Language features

Alma has a rich set of features that are crucial for rea-
soning with mistakes in beliefs. We describe some of them
here.

� As mentioned above, time is associated to step num-
bers. This is available for reasoning though the pred-
icate now(t). There is just one instance of now(t)
in the KB at any time and the value of t that makes
this true changes with time.

� Alma can compute arbitrary Prolog programs through
the form eval_bound(P, L). P is the program to
evaluate and L is a list of variables that need to be
bound before P is evaluated. The list allows the user
to control when the evaluation is done. This feature al-
lows Alma to be customized easily to various domains
that require non-logical computations.

� Alma records the changes in the KB at each step of
the computation. This record constitutes the history
of the reasoning and can be accessed though reserved
predicates. These then enable the logic to reason about
its own past reasoning which is useful in case of errors,
for instance.

� Alma can introspect in its KB to verify whether a for-
mula is present at that time. The negative introspection
can be used as a time-situated approximation for non-
provability. Instead of finding “is it the case that � is
not provable”, Alma computes “is it the case that � has
not been derived until now”.

� To refer to and assert properties of the formulas in its
KB, Alma names all formulas. Names can be assigned
by the user too, which makes it possible for the user to
assert properties of formulas as part of the description
of the domain. The names can be parameterized by
variables appearing in the formula which makes it easy
to refer to specific instances of universally quantified
formulas.

� In addition to the properties of formulas asserted by the
user, Alma records various properties of the formulas
during execution. These are available to the user for
meta-logical computations. Some of the properties that
Alma stores or computes when requested by the user
are the time at which a formula was first derived and
the formulas that were derived from that formula.

� Detection of a direct contradiction is done by the Con-
tradiction Detection rule. This results in the contradic-
tands and their consequences being “distrusted” and a
formula contra(N1; N2; T ) being added to the KB.
N1 and N2 are the names of the contradictands and T

is the time at which the contradiction was found. When
a formula is distrusted, it cannot be used in any further
inference. However, it can be inspected and reasoned
about. The contra(N1; N2; T ) assertion can be used
to trigger reasoning about the contradiction towards its
resolution.

A distrusted formula P can be reinstatedby asserting
reinstate(P). Once reinstated, a formula can be
used in inferences whereas the formula not reinstated
remains unavailable. This facility is useful when the
contradiction has been resolved. This resolution is typ-
ically specified through axioms provided in describing
the domain.

3.5. Carne

Carne is a process separate from Alma that communi-
cates with Alma to run procedures that would take too long



to run in the Alma process. Carne also serves as a link from
Alma to other external processes. This allows Alma to be
embedded in a larger system with Alma providing reason-
ing services, as in [25] where Alma/Carne implements the
dialog manager in a larger planning system.

Alma directs Carne to do program P through
do(P, ID) where ID is an identifier for this execu-
tion of P. When Carne starts doing the program (which
can take a long time to run), doing(P, ID) is asserted.
Then depending on whether the program succeeds or
fails, doing(P, ID) is replaced by done(P, ID) or
error(P, ID). This allows Alma to keep track of and
reason about the status of the computation.

Carne can also write arbitrary formulas into the Alma
database. This is used for asserting the results of the pro-
grams. External input is asserted in Alma in the same way.

3.6. Control issues

Logic typically brings flexibility but at the cost of effi-
ciency. In addition to the restriction to the application of
inference rules to new formulas, Alma has the following
features to help to mitigate these inefficiencies.

Alma allows the user to limit the number of inferences
done at each step. The inferences chosen to be executed are
those at the top of a list of possible inferences for that step.
The user can specify a sorting procedure to move the more
relevant inferences to the beginning of the list. Note that the
relevance and the ordering can themselves be computed in
the logic.

Another feature of Alma is that there are three kinds of
implications instead of the usual one. fif is like the usual
implication except that it only asserts its consequent when
all the antecedents are satisfied at one step. The result is
that fif formulas cannot combine with other implications
to give various combinations of implications and that the
fif formula cannot be contraposed.

bif also specifies an implication, but one that is only
used in backward chaining contexts. These are therefore
only used in proofs by contradiction and will not affect the
usual forward chaining procedure.

if are the usual implications that can be used both in
forward and backward reasoning.

For example, if there are the following formulas:

if(and(p, t), s).
fif(and(p, q), r).
bif(p, u)

If p is added, we get if(t; s) but not u nor fif(q; r). If
we then add q so that both p and q are in the KB, we will
get r. u will only be obtained if we start a backward search
for it.

4. Illustrations

We now illustrate some simple behaviors of Alma. The
initial formulas asserted in the KB will be presented first,
followed by the formulas derived at successive steps. The
integer to the left of a formula is its name.

4.1. Time situatedness

This example will simply assert a formula at a given
time. The input is:

if(now(5), lunch).

Nothing happens, except for time passage until time 5:

0: now(5) ---> lunch
5: now(5)

At this point the antecedent of formula 0 is true and lunch
is asserted at the nextstep, step 6:

6: lunch
0: now(5) ---> lunch
7: now(6)

4.2. Contradiction detection

If we have p and not(p), the contradiction is detected
and the formulas are distrusted. The initial KB is:

p.
not(p).

We get at the next step:

4: distrusted(0,1)
6: distrusted(1,1)
3: contra(1,0,1)
1: not(p)
0: p
7: now(2)

The arguments of distrusted are the formula name and
the time at which they were distrusted. The arguments for
contra are the formula names and the time.

Note that the contradiction with p and not(p) does not
stop inference from going on with other formulas that may
be present, and the distrust prevents possibly false formulas
from deriving more falsehoods.

5. Non-monotonic reasoning in Alma/Carne

An agent in a dynamic world with incomplete and uncer-
tain information will have to come to conclusions based on



that information. There are several approaches to this prob-
lem, one of them being non-monotonic logics. Further, as
new information becomes available, the agent should mod-
ify its beliefs appropriately, perhaps disbelieving some pre-
viously held beliefs. In this section we describe an im-
plementation of a time-situated non-monotonic reasoner in
Alma/Carne that solves these problems. This can be a cen-
tral component of an agent of the type we are interested in.

The features of active logic and Alma/Carne enable us
to specify a non-monotonic reasoner in Alma/Carne that
jumps to plausible conclusions as soon as possible but then
corrects itself if these conclusions are later found to be mis-
taken. This fast jumping to conclusions has been the in-
tent of non-monotonic logics from the start, but such logics
are generally not computable [5], notable exceptions being
[6, 13]. Our reasoner has been tested on a suite of non-
monotonic examples collated from the literature and per-
forms well overall. In this section, we give an overview of
this application of Alma/Carne.

5.1. Non-monotonic reasoning

Reasoning is non-monotonic when, given a set of formu-
las�1, �1 j= � for some formula � but for a superset of�1,
�2, �2 6j= �. This phenomenon is common in common-
sense reasoning where getting more information about an
object can cause us to change our view of it. The paradigm
example is that if we know that Tweety is a bird, we can
conclude that Tweety flies. But if we also know that Tweety
is a penguin, then we no longer conclude that Tweety flies.
Adding the fact that Tweety is a penguin removes the con-
clusion that Tweety flies. Non-monotonic reasoning seems
essential for an agent operating in the world since the in-
formation it has tends to be incomplete and uncertain and it
can rarely know for sure that a belief it concludes is certain.

There have been several formalizations of non-
monotonic reasoning [15, 22, 16]. A major problem with
these though, is that they are typically undecidable. While
these formalisms might be good at describing the relations
in a non-monotonic theory, they are not suitable for com-
puting non-monotonic conclusions as is our aim.

Non-monotonicity can be expressed by defaults which
express facts that are typically but not always true, like the
fact that birds usually fly. Defaults have exceptions, for ex-
ample, if the bird is a penguin in which case it does not
fly. We represent defaults as formulas of the form � i ,! �i
where �i is called the premise and �i is the consequent of
the default. Such a default will be named Æi. We say that
a default Æi holds in the KB at some time if at that time
�i and �i are both in the KB. We also allow preferences
between defaults. Consider the defaults “Animals typically
don’t fly”, “Birds typically fly”. If we know that Joe is an
animal and a bird, we will prefer the second default and say

that Joe flies. Preferences are expressed as relations among
the names of defaults, for instance Prefer(Æi; Æj). We as-
sume that the preferences induce a partial order on the de-
faults. The preferences are expected to be asserted in the
KB as part of the domain specification. This seems to be
something that is more easily specified for common-sense
domains than are probabilities.

The undecidability of non-monotonic logics is typically
related to the fact that to be sure that we can apply the “Ani-
mals typically don’t fly” default to Joe say, we need to know
that Joe is not a bird. But non-provability is not decidable
and that makes the whole process undecidable.

5.2. Our approach

Our approach is to apply a default if there is no reason
not to (a more preferred default that holds or the negation
of the consequence being non-defeasibly derived) at that
time. If there is one, we do not apply the default. If, on
the other hand, a more preferred default is later found to ap-
ply, we remove the less preferred one and its consequences
from the KB which preempts a contradiction. There are
two ways then that contradictions can appear. First, contra-
dictions can result when the logic non-defeasibly derives a
formula that is the negation of the consequence of a default.
The solution then is to withdraw that default and its conse-
quences. Second is the case when a contradiction depends
on a set of defaults between which there is no preference
(a well known example is Reiter’s Nixon diamond problem
[23]). In this case, we cannot choose between the contra-
dictands and all of the defaults and their consequences have
to be withdrawn. We call a minimal set of such defaults an
ID.

Note that as a result, the answer we get from Alma will
vary with time in such a non-monotonic system. For in-
stance, at first Alma may conclude that Joe does not fly be-
cause he is an animal, then when it finds that he is a bird,
it retracts the old conclusion and asserts that Joe does not
fly. If Alma then finds that Joe is a penguin, it will change
its conclusion once again. This behavior is inevitable if we
are not to wait forever for all there is to know about Joe to
be made available. Intuitively, the later answers are better
than the earlier ones because they are concluded while tak-
ing more information into account. So, the quality of the
answer is expected to improve with time.

5.3. Rules of inference

The approach described above is implemented as two
rules of inference in Alma: one to apply defaults (the DA
rule) and one to resolve contradictions (the CR rule). Recall
that detection of the direct contradictions and their distrust-
ing is done by Alma itself. Further computation, including



identifying the mistaken beliefs and restoring the true for-
mulas is specified by the CR rule.

5.3.1 DA: Applying a default

From the above discussion, the rule for applying a default is
straightforward. Given a default (instance) Æ i = �i ,! �i,
if �i is in the KB, we add �i to the KB unless either of these
conditions hold:

� :�i is in the KB and has been derived non-defeasibly.
This can be computed by verifying that :� is in the
KB and examining its derivation for the presence of
any defaults.

� There is some default Æj such that Prefer(Æj ; Æi) and
Æj holds in the KB. This is easy to verify too since the
logic represents the preference relations explicitly and
it is easy to verify whether �j and �j are in the KB.

� There is some ID that Æi is in. This can be done simply
by looking up the IDs recorded by the logic.

With this rule, defaults are not added if it is apparent
that there is a stronger reason not to do so. The application
of a default is clearly computable–it mainly involves KB
lookups. The cost for this fast default application or jump-
ing to conclusions is that we may be mistaken. We do not
have the assurance that once a default is applied it will hold
forever. But this is a cost we are willing to pay since we
can handle the mistakes and the alternative–not to apply the
default unless we are sure it is correct to do so–condemns
us to not doing anything.

However, when a default is applied, we also need to ver-
ify whether there are less preferred defaults that hold in the
KB but that should not. Taking this approach rather than
allowing the contradiction to appear later simplifies the CR
rule and reduces inconsistency in the KB. So another com-
putable task for the rule is:

� Given that Æi has been applied, for each default in-
stance Æx such that Prefer(Æi; Æx), if Æx holds in the
KB, it is removed and its consequences undone.

5.3.2 CR: Resolving contradictions

The other rule that we need is the CR rule to respond to
contradictions. These indicate mistakes in applying de-
faults. Once the contradictions are detected, the contradic-
tands and their consequences are distrusted automatically
by Alma which results in these formulas not generating any
new consequences. The CR rule needs to find the cause of
the mistake and repair it. The repair involves reinstating
some formulas and deleting others. It also serves to detect
IDs.

The first task of the CR rule is to decide which of the
contradictands is mistaken. This is a diagnostic task that is
compiled into the inference rule. This is possible in this case
since there are just a few possibilities given the structure of
the reasoning that we have specified. Determining the cause
of an inconsistency is not possible in general, however, and
even here, the logic might be mistaken.

From the default application rule, we can see that a clash
among defaults that have preferences among them will not
result in a contradiction because the less preferred default is
removed when the more preferred one is added. Therefore
the only possibility is an ID: a set of defaults is jointly in-
consistent and such that there is no preference among these
defaults. The problem then is to decide from all the defaults
involved in the inconsistency, which are those that are to be
taken to be in the ID. We need to find the minimal set of
such defaults. Note that the ID could be a singleton set in
which case this is a default the negation of whose conse-
quent is obtained non-defeasibly from the KB. In this case,
the resolution is to simply undo the application of the de-
fault. It will subsequently not be reapplied.

Computing IDs The defaults involved in the inconsis-
tency are simply the defaults appearing in the derivation of
that inconsistency. If there are multiple derivations of some
formulas, we might get several sets of defaults. Defaults
not appearing in the derivation are not related to the con-
tradiction and are of no concern. However, not all these
defaults are taken to be in the IDs. We take the leaf defaults
only–those defaults in the derivation tree that are closest to
te contradiction. The IDs are then asserted in the KB.

The computation of the ID can still be mistaken by be-
ing non-minimal. The solution is to try to prove that subsets
of the consequents of the IDs we computed are inconsistent
using only non-defeasible formulas. If any of these proofs
succeeds, the subset is an ID and the previously computed
one was mistaken. These proofs are done in parallel with
the usual computation of the logic and we do not (and can-
not) wait for them to succeed or fail before going on with
using the ID. Here too, if the logic is wrong, this will be
detected and resolved later.

The CR rule
Therefore, when a contradiction is found, the CR rule does
the following:

1. Find the leaf defaults.

2. If there is just one, undo the effects of detecting the
contradiction and undo the application of that default.

3. If there are several leaf defaults, undo the effects of the
contradiction detection rule and undo the application
of the leaf defaults. Further, record the set of distrusted
formulas in an ID and start proofs to look for subset
IDs. If any of these succeeds, undo the distrust of the



defaults that are in the old ID and take the new one to
be the ID.

5.3.3 Results

This non-monotonic reasoner has been implemented in
Alma/Carne (in a slightly simplified form) and tested with
a large variety of problems in the literature. Out of 93 prob-
lems gathered from the non-monotonic reasoning literature,
46 were solved as expected by our system, 23 were simi-
lar enough that we are confident that they would also have
been solved if we had attempted them and 23 could not be
solved.

The problems that could not be solved could not be ex-
pressed in the language or were cases where there are no
procedures in the language to solve the problems. These
include problems where assumptions need to be made, or
where one needs to explicitly minimize the set of objects
that satisfy a predicate or where diagnostic reasoning is re-
quired.

6. Related work

We first consider the RETE algorithm, an efficient pat-
tern matcher that could have been used as a basis of Alma
and that we in fact considered using initially. We also con-
sider Executable temporal logics that have a notion of time
situatedness that approaches that of active logic.

6.1. RETE

The RETE algorithm [11] and its successor RETE++
[10] are fast pattern matchers that compile productions into
tree structures that enable efficient computation of conflict
sets (sets of productions that could be applied) in produc-
tion systems. RETE++ also includes the possibility to do
backward chaining.

The RETE family and Alma/Carne are at different points
of the expressivity/efficiency scale. Whereas RETE is con-
cerned with very efficient searches for some limited kinds
of patterns, Alma/Carne is more concerned with the ability
to represent a wide array of information. Some of the more
prominent differences are as folows.

Firstly, RETE compiles the rules into tree structures
and typically only facts in the KB change. We need to
have more flexibility where one can add and delete arbi-
trary formulas including defaults and RETE rules. The
rules in Alma/Carne are mainly logical rules and the rules
that RETE compiles into trees are maintained as axioms
in Alma/Carne which allows more flexible reasoning with
these.

Related to that problem, Alma/Carne maintains a history
which does not consist only of facts but of complex formu-

las too, including formulas that can be seen as RETE pro-
ductions. It is not clear how that could be done in RETE.

Third, it is not clear how meta-reasoning could be done
in RETE. We would need to be able to refer to RETE pro-
ductions in other productions, and state, maintain and infer
properties of these. This is easily done in Alma/Carne.

6.2. Executable temporal logic

Temporal logics [26, 1] are used to reason about chang-
ing worlds and are used for specifying and verifying dy-
namic systems. Executable temporal logics attempt to build
models of temporal logic formulas by executing the formu-
las.

We focus in discrete temporal logics where the formulas
can refer to individual steps in the execution, and in par-
ticular to the Metatem system [3]. The approach is to see
formulas as expressing what the future should be, given the
past [12]. The slogan being “Declarative past and imper-
ative future”. Any formula can be rewritten in the form
Condition about past! Condition about the present and
future so that executing a formula requires the interpreter
to verify that the antecedent was true in the past and to then
constrain the future based on the consequent of the formula.
The logic is monotonic in that if previous steps constrain a
future state to make some formula true, there cannot be a
later state that makes that false. The interpreter may have
to make choices in the execution that lead it to the impos-
sibility to satisfy some formulas. In that case, the system
backtracks and makes alternate choices.

This approach is close to the active logic point of view in
terms of the agent being situated in time. The backtracking
of the program in the case of failure cannot happen in ac-
tive logic–we cannot undo a choice made earlier but have to
move on from there. Another difference is that the mono-
tonicity of Metatem contrasts with the non-monotonicity of
active logic. These constitute quite basic differences be-
tween the two formalisms.

In [4], Metatem is extended to MML and includes meta-
reasoning. The domain of the logic in this case includes
names of the object level formulas. Variables are divided
into two sorts: the object and the meta variables. This logic
allows one to use MML for meta-interpreters, and for con-
trol of inference for example.

This extension of Metatem allows the logic to refer to
its own formulas but it is not clear that there are facilities
to reason about the derivation or other properties of these
formulas that have proved to be useful in active logic.

7. Conclusion

We have given an account of Alma/Carne, an implemen-
tation of active logic that provides representational and in-



ferential capabilities that we believe are useful in specify-
ing agents that reason and act in worlds with incomplete,
uncertain and dynamic information. We have also shown
an application of Alma/Carne to non-monotonic reasoning
which is one of the tasks such an agent will need to perform.
Our non-monotonic reasoner jumps to conclusions fast but
may later change its mind if new information is available
or if it does more computation. The implemented reasoner
has been tested on an almost 100 example test suite from
the non-monotonic reasoning literature and in 75% of the
cases, we get the expected answers.

There are several areas open for future work. We men-
tion some of them here. First, Alma provides facilities for
control of the inferenence by reordering the agenda and lim-
iting the number of inferences done in a step. We need to
investigate heuristics for doing that.

Second, the non-monotonic reasoning algorithm we de-
vised is not sound or complete in the conventional sense.
However, it does seem to be an anytime algorithm. Further,
there seem to be special cases where the logic results in the
correct answers after some delay. These intuitions have to
be formally characterized.

Third, if an agent is to act in the world, we would typ-
ically want it to use plans, but executing plans in a logi-
cal setting might not be efficient. We would like to have
the efficiency of plan execution architectures toether with
the flexibility that logic provides, especially for reasoning
about and correcting mistakes in the behavior of the agent.
One way to do that would be to use our logic to maintain
the beliefs in one of the many plan execution architectures,
for example PRS [27].

References

[1] J. Allen. An interval-based representation of temporal
knowledge. In Proceedings of the 7th Int’l Joint Conference
on Artificial Intelligence, pages 221–226, 1981.

[2] J. F. Allen and G. Ferguson. Actions and events in interval
temporal logic. Journal of Logic and Computation, 4(5),
1994.

[3] H. Barringer, M. Fisher, D. Gabbay, G. Gough, R. Owens,
and M. An. Metatem: An introduction. Formal Aspects of
Computing, 7(5):533–549, 1995.

[4] H. Barringer, M. Fisher, D. Gabbay, and A. Hunter. Meta-
reasoning in executable temporal logic”. In KR’91: Prin-
ciples of Knowledge Representation and Reasoning, pages
40–49, 1991.

[5] M. Cadoli and M. Schaerf. A survey on complexity results
for nonmonotonic logics. Journal of Logic Programming,
17(2–4):127–160, 1993.

[6] M. Cadoli and M. Schaerf. Approximate inference in de-
fault logic and circumscription. Fundamentae Informaticae,
23(1):123–143, 1995.

[7] J. Doyle. A truth maintenance system. Artificial Intelli-
gence, 12(3):231–272, 1979.

[8] J. Elgot-Drapkin. Step-logic and the three-wise-men prob-
lem. In Proceedings of the 9th National Conference on Ar-
tificial Intelligence, pages 412–417, 1991.

[9] J. Elgot-Drapkin and D. Perlis. Reasoning situated in time
I: Basic concepts. Journal of Experimental and Theoretical
Artificial Intelligence, 2(1):75–98, 1990.

[10] T. H. Enterprise. Rete++: Seamless integration of rules and
objects using the rete algorithm and c++, 1993.

[11] C. L. Forgy. RETE:a fast algorithm for many pattern / many
objectpattern-match problems. Artificial Intelligence, 1982.

[12] D. Gabbay. The declarative past and the imperative future:
executable temporal logic for interactive systems. In B. Ban-
ieqbal, H. Barringer, and A. Pnueli, editors, Proceedings of
Temporal logic in specification, volume 398 of Lecture notes
in computer science. Springer-Verlag, 1989.

[13] A. K. Ghose and R. G. Goebel. Anytime default inference.
In Proceedings of the Fourth Pacific Rim International Con-
ference on Artificial Intelligence, 1996.

[14] J. Gurney, D. Perlis, and K. Purang. Interpreting presup-
positions using active logic: From contexts to utterances.
Computational Intelligence, 13(3):391–413, 1997.

[15] J. McCarthy. Circumscription–a form of non-monotonic rea-
soning. Artificial Intelligence, 13:27–39, 1980.

[16] D. McDermott and J. Doyle. Non-monotonic logic I. Artifi-
cial Intelligence, 13(1,2):41–72, 1980.

[17] M. Miller. A View of One’s Past and Other Aspects of Rea-
soned Change in Belief. PhD thesis, Department of Com-
puter Science, University of Maryland, College Park, Mary-
land, 1993.

[18] M. Nirkhe, S. Kraus, M. Miller, and D. Perlis. How to (plan
to) meet a deadline between nowand then. Journal of logic
computation, 7(1):109–156, 1997.

[19] J. Pearl. Probabilistic reasoning in intelligent systems. Mor-
gan Kaufmann, 1988.

[20] D. Perlis, J. Gurney, and K. Purang. Active logic applied
to cancellation of Gricean implicature. In Working notes,
AAAI 96 Spring Symposium on Computational Implicature.
AAAI, 1996.

[21] K. Purang. The Alma/Carne manual. University of Mary-
land, College Park, 2001.

[22] R. Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13(1,2):81–132, 1980.

[23] R. Reiter and G. Criscuolo. On interacting defaults. In Pro-
ceedings of the Seventh International Joint Conference on
Artificial Intelligence, pages 270–276. AAAI, 1981.

[24] N. Rescher and A. Urquhart. Temporal Logic. Springer-
Verlag, New York, 1971.

[25] D. Traum and C. Andersen. Representations of dialogue
state for domain and task independent meta-dialogue. In
Proceedings of the IJCAI99 workshop: Knowledge And
Reasoning in Practical Dialogue Systems, pages 113–120,
1999.

[26] J. van Benthem. The logic of time. D. Reidel, 1983.
[27] D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wes-

ley. Planning and reacting in uncertain and dynamic envi-
ronments. JETAI, pages 197–227, 1995.


