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Abstract 
 
Our work focuses on the study of learning paradigms 
within a hybrid reasoning system, consisting of a Neural 
Network and Symbolic Reasoner.  There are several 
aspects to this problem that invite comparisons to work in 
other fields of study involving for example, knowledge 
representation, behavioral modeling, and neuromorphic 
engineering.  Central to this paper is a discussion on the 
coupling between a particular learning paradigm and the 
behaviors that a real-time system develops in attempting 
to achieve a specific goal. 
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1. Introduction 
 
There has been for some time work in the area of utilizing 
environmental changes to trigger decision-making in 
robots [1].  Responses to such triggers have associated 
with them either explicit or intrinsically represented 
behavioral models.  Behavioral models are not restricted 
to any particular type of processing.  They can be 
associated with activities such as filtering, prioritizing, 
monitoring, and reasoning.  A particular behavior could 
involve something as simple as a Boolean test, or as 
complex as a collection of simultaneous processes that 
coordinate with each other to achieve a particular result.   
 
Explicit models are identified by those actions of a system 
(e.g. a robot) that are predetermined by the programming 
and analysis that is associated with its construction.  
Whether or not a module exists that is designated as a 
‘behavior’, the ‘explicit’ classification may still apply.  
The same goes for whether or not the robot is able to take 
different courses of action in real-time.  If the system 
takes deliberate steps to process data, and initiate actions, 
based solely upon instructions that were never learned 
from experience, its behaviors directly reflect only the 
intentions, and thinking of its human designer. 
 

We argue that intrinsic models, on the other hand, are 
ones that are based upon a set of rules for activities that 
are highly adaptable.  Such models give a system the 
ability to interact intelligently with the outside world 
without any outside environmental sense initially built 
into it at all.  As the use of the term ‘behavior’ implies, 
such a model, as represented by a set of rules and 
processing activities, is still used for coordinating other 
activities.  However, while the coordination method may 
be predetermined, the details of the coordination process 
are not.  Instead, they must be learned. 
 
The argument for why learning should be used to 
distinguish between two broad categories of behavioral 
models has to do with the recognition that a system’s 
learning prowess is measured by its ability to encode 
information into a form that isn’t specific to a particular 
scenario—in such a way that what is learned can be 
broadly and correctly applied.  If the encoded information 
is to originate from experience, then learning is at least 
implicitly coupled to the behaviors that are responsible for 
generating the experiences.  Thus, we see the emergence 
of intrinsic behavioral models as being intimately tied to a 
particular learning paradigm.  The deployment of such 
models will play a key role in developing a system’s ‘self-
awareness’, giving it the mechanisms to cope effectively 
with new, unanticipated situations.   
 
As applied to our study, we are interested in investigating 
mechanisms that give rise to what we call ‘Reasoning 
Guided Learning’ or RGL for short.  As the phrase 
implies, RGL refers to the utilization of goals, (how they 
are being used, how successful a system is in achieving 
them, etc.) to determine when and what should be learned.  
Mechanisms for when learning should take place have so 
far been investigated within a logic-based framework, 
with contradictions or time-sensitivity as major triggers 
for learning [2].   
 
Another important concept associated with RGL is the 
‘meta-cognitive loop’ that must exist to enable the system 
to increase its competency over time.  While reasoning 
guided learning will improve the system’s ability to cope 
with problematic situations, there is a need to give the 
system the capability to learn from experiences in order to 
reason.  ‘Learning Guided Reasoning’, or LGR, thus 
rounds out the system’s ability to gather unstructured 



Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico 

information in a context-specific manner, thus providing 
new information and rules for the system to reason with. 
 
In this paper, we look at the application of LGR to a 
hybrid system, with the Neural Network initially 
responsible for making ‘decisions’.  The inspiration 
behind the study comes from considering the maturation 
process of a newborn child.  Supposing that the central 
nervous system is initially in control of the arm or leg 
motions, over time, as experiences are generated, the 
neural programming becomes refined and guided at the 
reasoning, goal-oriented level.  Modeling the emergence 
of such a process, as it applies to the particular case of a 
robot thus represents part of the research under way to 
complete the meta-cognitive loop. 
 
The physics-based system under study is a simulated 
Khepera robot [3], which has two wheels controlling its 
motion, an array of eight infrared sensors, and a pincher 
arm that is capable of grasping and lifting objects. 
 
 
 
 
 
 
      Y 
 
 
 
 
 
 
 
 
 

Figure 1. 
 
 
2. Background 
 
For the purpose of generating cognitive maps, as related 
to large-scale space, one approach has given robots 
different levels of instructions and strategies to extract 
distinct sensor views [4].  Such views are obtained with 
the help of a hill-climbing technique, for example, to 
ensure that the robot is able to navigate around corners.  
Causal graphs are formed to represent the actions that 
carry the robot from one distinct view to another.  In this 
way, a map of the space is constructed which can be used 
for navigation. 
 
Such an approach relies upon many ‘explicit’ behavioral 
models, chained together with the purpose to perform 
navigational tasks.  While learning is often involved, in 
determining what may be regarded as ‘behaviors’, the 
learning is purposely driven by a planned sequence of 
actions that build up the capabilities of the robot.   While 
successful, an introduction of intrinsic models into the 

approach would help the robot to cope with complications 
associated with varying topologies, moving objects, 
changes to distinct views, optimization of performance, 
mistakes due to internal failures or environmental factors, 
as well as minimize the amount of explicit knowledge that 
must be programmed to handle these scenarios. 
 
The emergence of intelligence, out of the synergy formed 
between the cooperation of multiple agents does rely upon 
intrinsic behaviors to build higher-level behaviors.  
However, whether manifested within the interfaces of 
physical robots [5, 6] or simulated components [7], 
knowledge so far has been shared, or distributed in a way 
that does not lend itself easily to centralized, high-level 
reasoning.  To facilitate such reasoning, a synergistic 
(integrated) level goal can be ‘negotiated’; however the 
creation of such goals requires a system capable of 
learning about its own developing synergies. 
 
There is an extensive amount of investigation being 
carried out on Brooks’ concept-free, situational viewpoint 
about intelligence, whereby systems can be designed to 
utilize ‘the world as an external memory’, requiring little 
if any symbolic representation for high-level reasoning 
[8].  Such a viewpoint is bolstered by the use of 
processing technologies such as neural networks. While 
logic can be imbedded within neural networks [9], there is 
an advantage to keeping logical reasoners separate since 
they are optimized to handle symbolic manipulation.  For 
some time, the integration of neural networks and logic 
components acting as expert systems has been applied 
successfully to a variety of tasks such as data mining [10].   
However, pure, symbolic manipulation still has 
advantages for certain technologies, e.g. those involving 
natural language processing [11].  
 
It is thus worthwhile to investigate the development of 
abstractions from situational level intelligence as this 
should represent the grounding of concepts—a necessary 
criterion for achieving human-level reasoning 
(represented by activities such as mathematical problem 
solving, chess, and the creative arts).  It is our view that 
useful insights into this problem can be obtained from a 
study of an integrated architecture consisting of neural 
networks and symbolic reasoners designed to create 
synergistic learning paradigms (within in a real-time 
environment), since such a topic for research requires a 
careful consideration of many of the issues raised by the 
research mentioned in this section. 
 
 
3. System under Study 
 
For our illustration, will consider the particular case 
whereby a robot is given the task to solve a navigational 
problem using RGL.  The aspect of this problem we will 
discuss here involves learning how to avoid collisions 
with objects. 
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Consider a fixed neural net topology process, NN, which 
is assigned to control wheel motion: 
 

NN(x, t) = Wheel Velocities 
 
Here, x represents sensor data at time t.  This function is 
applied, with periodicity T.  T represents a real-time 
based, intrinsic processing cycle time for NN, irrespective 
of other processes that may be occurring.  An Action 
Manager is designed to execute a request over a 
characteristic time ττττ.  After such time, the action is 
considered completed.  We will assume for now that  
T > ττττ, to avoid the discussion of what happens when the 
system processes new information faster than it is able to 
act upon it. 
 
Hence, the system in this example, goes through a 
continuous cycle of executing NN, sending its result in 
the form of a request to the Action Manager, and applying 
the command for a fixed duration of time.  The 
introduction of the Action Manager gives various 
processing components of the system, such as a logic-
based reasoning engine and NN, the ability to 
communicate with each other before a command is sent to 
the robot’s wheels.  This is how hybrid reasoning is 
implemented within this system, with real-time control. 
 
Upon executing the cyclical process, eventually a 
collision with a wall or object occurs, represented here as 
a predicate function C(x).   There are different ways in 
which such a system can notice the collision.  For this 
discussion, we will consider the case whereby a 
peripheral touch sensor is present; however it would be 
possible to consider the use of meta-reasoning to trigger 
the awareness, whereby all commands sent to the action 
manager are monitored for uniqueness (more discussion 
on this later). 
 
We will associate with the touch sensor, a hard-wired 
‘knee-jerk’ reaction that overrides NN, forcing its process 
to terminate, and causing the robot to back out of the 
collision according to the following function: 
 
KJ(x, t) = Backward Wheel Velocities 
 
where KJ  is attenuating over time.  When the function no 
longer has appreciable signal strength, the process 
associated with it terminates.  Note:  this is an example of 
an ‘explicit’ model that is used to force the robot into a 
desired state. 
 
After having backed out of the collision, the robot no 
longer has any processes running to keep it moving.  It 
stops briefly, representing a temporary state of confusion 
or uncertainty.  The Goal Manager recognizes that there 
are still goals to pursue.  One of them represents the 
persistent desire to move without collisions.  For now, we 

will consider this goal G to be hard-wired into the Goal 
Manager solely for the purpose of illustrating the system’s 
ability to develop strategies for avoiding collisions with 
other objects.  Thus, with the robot stopped, the system 
immediately recognizes that it failed in achieving its goal 
of avoiding collisions using the particular NN process it 
had been running.   
 
At this point, a meta-reasoner is invoked to determine 
what process should be running to achieve the desired 
goal.  In this study, the only process available is NN.  
However, there may be several parameter sets for NN, 
each corresponding to a particular training set that was 
extracted from the robot’s experience over time.  Each of 
these training sets and the NN parameters associated with 
them are referred to here as a particular strategy.   Hence, 
the meta-reasoner determines that process NN must be 
invoked and it must then decide whether to modify an 
existing strategy, or create a new one, to improve upon 
the robot’s ability to avoid collisions.  This is discussed 
further in the following two sections. 
 
 
4. Strategy Building 
 
A strategy can be learned in a variety of ways, depending 
upon the number of permutable elements in the problem 
characterization, the environmental factors and the 
experiences received from them at the time of learning; 
and the activities responsible for processing data and 
generating an action in response.  As such, what strategy 
is learned will in all likelihood not be optimized.  It is, in 
fact, desirable for this not to be the case.  Optimization of 
a particular strategy should in itself be goal driven, 
representing a refinement process that may be behavioral 
driven or deliberately reasoning-guided, based upon the 
careful observance of experiences.   
 
Hence, within the RGL framework, a strategy S is 
assigned to a particular goal G while actually 
experiencing its successful application to a particular 
circumstance C(x).  This is in contrast to having 
knowledge beforehand, as expressed in logic, for 
example, that a desired goal state (in this case, avoiding 
C) will be reached if S is applied.    
 
The association, G[C(xC)]���� S, is formed at the creation 
of S, and is initially represented with a particular sensor 
state, however the meta-reasoner will attempt to apply S 
again, whenever a collision occurs in a ‘similar’ fashion 
to what is characterized by C(xC).  If a ‘similar’ situation 
is not found, then the meta-reasoner decides to create a 
new strategy, S’, based upon its memory of what took 
place up until the failure.   
 
In our example, a collision strategy is created by training 
NN on a set of (x , t) coordinates that it retains up until a 
collision.  The collision point xC, is replaced by a new 
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point discovered by a trial and error approach.  Upon 
successfully verifying the short term success associated 
with the new motion, a new training set is created and 
trained into NN using back-propagation.  The resulting 
strategy can be used either as a new approach, for a newly 
identified circumstance, or it may replace an existing 
strategy for a group of ‘similar’ circumstances.  A 
mechanism for deciding between these two options is 
discussed in the next section. 
 
 
5. Use of Clusters 
 
The sensor data in our case comes from 8 infrared 
detectors that are positioned symmetrically about a line 
(Y) that passes between the pair of wheels (Figure 1).  
This symmetry can be exploited to identify one particular 
class of ‘similar’ circumstances.  To illustrate the use of 
clusters, we will examine the case where the robot is 
placed into a long, L-shaped hallway. 
 
Upon colliding with a wall the first time, let us say the left 
wall, a cluster K 1 (formed out of sensor data) is attached 
to xC, and is associated with a newly trained strategy S1.  
Due to the underlying symmetry associated with the 
positioning of the infrared sensors, a dual cluster K 1’ is 
formed corresponding to the swap of sensor coordinates 
across Y.   In many circumstances, S1 will take the robot 
to the other side of the hall, causing it to collide again. 
 
With the two clusters now already in existence, the meta-
reasoner utilizes a distance metric to determine that xC lies 
closest to K 1’.  Hence, the meta-reasoner determines that 
only a permutation of coordinate assignments is required, 
not a change in strategies.  However, to improve upon the 
strategy, it adopts the method described in the previous 
section.  It also adds a new collision point to the definition 
of the cluster, triggering the calculation of a new centroid 
for it. 
 
While this approach will work for the walls of a straight 
hall, for example, the robot must be able to recognize the 
need to develop a new strategy when encountering new 
situations, such as a corner.  Ideally, this decision process 
should also be learned, as the environment may throw in 
variations that will break not only a strategy, but the 
recognition of when to use a different strategy.   
 
One approach under consideration involves allowing the 
robot to remember a sufficient number of collision points 
to create well-defined clusters.  In our illustration, the 
robot may constantly bounce from the left wall to right 
wall in the hallway.  Upon getting enough points, it will 
be able to define a sufficient scale for the cluster sizes 
such that when a corner is eventually encountered, it will 
be able to determine that a new cluster and strategy needs 
to be formed. 
 

If a corner is encountered before a sufficient measure of 
the cluster sizes evolves, an existing strategy may 
‘incorrectly’ be modified.  As the robot then encounters 
new collision points, it will soon find itself failing with 
circumstances identified within the same cluster, and 
conclude that the strategy needs further refinement.  Upon 
several updates to its strategies, incorrectly at times, 
eventually enough of a sample should be obtained for the 
robot to correctly identify when to update a strategy, and 
when a new one should be created. 
 
 
6. Hybrid Learning  
 
A host of other approaches can be taken for the problem 
we are discussing.  In particular, the problem can be 
solved within the realm of logic.  However, to create logic 
based upon experience, in a way comparable to the 
method used with the neural network, it is most 
convenient to have the logic-based reasoner learn from 
the neural network, and develop new goals and beliefs, 
before attempting to take over the neural network’s 
functions.   
 
The reason for doing this is not related so much to the 
desire to have the robot learn how to solve a problem in 
logic, but rather, to develop a method whereby the 
knowledge learned within the neural network processor 
can be raised to a level that involves higher level 
reasoning—reasoning that is best performed at a symbolic 
level.  Such reasoning could be used in the decision-
making for a different class of problems. 
 
Hence, upon allowing the logic based component to learn 
from NN, an ability emerges that allows the logic 
component to ground the actions of the neural network, 
associate the actions with its own developed set of 
commands and predicate functions, and empower it with 
the knowledge to plan its actions.  In our illustration, 
suppose that a set of successful strategies have been 
developed by the neural network to avoid collisions.  
Then, this will mean that as the coordinate space drifts 
from one well-defined cluster, representing a particular 
strategy, into another well-defined cluster, the Goal 
Manager might decide to switch strategies before a 
collision takes place.   
 
In principle it would be able to do this switching using 
logic.  A meta-reasoner would also be able to notice, 
periodically, that it is able to refine the robot’s existing 
strategies by taking trajectory points generated by 
different strategies, and applying them to the same 
strategy.  To perform this operation, however, would 
require another overriding goal to guide it.   
 
While logic can straightforwardly manage the use of the 
strategies, in the way they were originally intended to be 
used, the logical reasoner is capable of learning a more 
valuable lesson, one that empowers it to utilize the 
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strategies for achieving other goals.  Such goals are 
represented by well-discussed goal states in AI research 
literature, where for example, the robot desires to move 
from one end of the hall to another, turn around a corner, 
or lift an object.   
 
As applied to our example, the logical reasoner will need 
to have the capability of learning new goal states from 
experiences, and associating the neural network’s 
collision avoidance strategies towards achieving these 
goals, if appropriate.  To do this will require an exchange 
between the neural network’s knowledge domain, and the 
logical reasoner’s.  One way to accomplish this is with the 
method of coarse-graining.  As used here, coarse-graining 
refers to an activity that is similar to that of the cluster 
algorithm, only now it is applied to actions, instead of 
sensor values. 
 
With coarse-graining of NN outputs, the logical reasoner 
is able to create a finite set of commands that 
characterizes the robot’s motion under NN control.  Upon 
allowing the logical reasoner to keep track of the use of 
the neural network strategies, along with coarse-graining 
of NN outputs, the robot will be able to learn command 
chains, or coarse-grained strategies, that approximately 
replace the actions of their NN counterparts. 
 
The synthesis of command chains involves various levels 
of precision, determined by the resolution of the coarse-
graining algorithms applied to both the actions and the 
sensor inputs.   In our illustration, the resolution of 
outputs does not have to be high; hence the amount of 
detail incorporated within a particular coarse-grained 
strategy will be low.   However, to define goal states that 
the logical reasoner can verify against, coarse-graining 
will have to be applied to the inputs. 
 
Upon enacting a complete, coarse-grained replacement, 
the logical reasoner will then be able to establish goal 
states that are repeatable, either with the use of its coarse-
grained actions, or the application of NN processing.  In 
this way, a mapping between the NN strategies, and a set 
of chained, coarse-grained logic-based strategies will be 
achieved.   By introducing these goal states, the logical 
reasoner will be able to utilize memory to form new 
action-consequence pairs that can be used for logic-based 
planning.   
 
Chaining, and the goal states associated with them, also 
introduces new uses for the existing NN strategies.  With 
the addition of time measurement, the robot will be able 
to use its goal states to measure its own performance.  
Such metrics, along with other goals that encourage 
‘purpose’ into activities (via ‘rewards’) encourage the 
refinement of existing NN strategies.   With this back-and 
forth interaction, between the logical reasoner, and NN 
processing, the logical reasoner will eventually be able to 
form new beliefs based upon its observations of the 
robot’s experiences.   

 
For example, in order to reach a desired location as 
quickly as possible down a straight hall, in order to 
experience the reward of catching a moving object, the 
robot should be able to learn, relatively quickly, that  the 
velocities of both of its wheels needs to be set to the same 
speed. 
 
 
7. Conclusion 
 
In this paper, we have discussed one approach, within a 
particular real-time hybrid architecture scheme, of giving 
a robot the capability of learning new strategies, and 
modifying existing ones—via a neural network and 
clustering algorithm.  To utilize these strategies as part of 
higher-level reasoning performed at the symbolic level, it 
has been argued that it is essential to not only give the 
logical reasoner the ability to manage the utilization of the 
strategies; it is essential to give it the capability to 
examine its experience in applying them, through the use 
of coarse-graining methods. 
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