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Abstract

Our work focuses on the study of learning paradigms
within a hybrid reasoning system, consisting of eufdl
Network and Symbolic Reasoner. There are several
aspects to this problem that invite comparisonsddk in
other fields of study involving for example, knowtge
representation, behavioral modeling, and neuromorph
engineering. Central to this paper is a discussiorihe
coupling between a particular learning paradigm el
behaviors that a real-time system develops in gt

to achieve a specific goal.
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1. Introduction

There has been for some time work in the areailifing
environmental changes to trigger decision-making in
robots [1]. Responses to such triggers have assokci
with them either explicit or intrinsically represed
behavioral models. Behavioral models are not ictstt

to any particular type of processing. They can be
associated with activities such as filtering, ptiming,
monitoring, and reasoning. A particular behaviould
involve something as simple as a Boolean test, or a
complex as a collection of simultaneous proceskas t
coordinate with each other to achieve a particdault.

Explicit models are identified by those actionaafystem
(e.g. a robot) that are predetermined by the progriag
and analysis that is associated with its conswuocti
Whether or not a module exists that is designated a
‘behavior’, the ‘explicit’ classification may stilapply.
The same goes for whether or not the robot is @btake
different courses of action in real-time. If thgstem
takes deliberate steps to process data, and éndiztions,
based solely upon instructions that were nevernbshr
from experience, its behaviors directly reflect yothe
intentions, and thinking of its human designer.

We argue that intrinsic models, on the other heare,
ones that are based upon a set of rules for detivihat
are highly adaptable. Such models give a systen th
ability to interact intelligently with the outsidevorld
without any outside environmental sense initiallyilto
into it at all. As the use of the term ‘behaviariplies,
such a model, as represented by a set of rules and
processing activities, is still used for coordingtiother
activities. However, while the coordination methody

be predetermined, the details of the coordinatimtgss
are not. Instead, they must be learned.

The argument for why learning should be used to
distinguish between two broad categories of behalio
models has to do with the recognition that a sysem
learning prowess is measured by its ability to €eco
information into a form that isn’t specific to arpeular
scenario—in such a way that what is learned can be
broadly and correctly applied. If the encoded linfation

is to originate from experience, then learning tideast
implicitly coupled to the behaviors that are resgible for
generating the experiences. Thus, we see the enw¥g
of intrinsic behavioral models as being intimatiééd to a
particular learning paradigm. The deployment ofhsu
models will play a key role in developing a systerself-
awareness’, giving it the mechanisms to cope etfelgt
with new, unanticipated situations.

As applied to our study, we are interested in itigaing
mechanisms that give rise to what we call ‘Reagpnin
Guided Learning’ or RGL for short. As the phrase
implies, RGL refers to the utilization of goalsp(n they
are being used, how successful a system is in \d@ogie
them, etc.) to determine when and what should &enésl.
Mechanisms for when learning should take place lsave
far been investigated within a logic-based framdyvor
with contradictions or time-sensitivity as majoiggrers
for learning [2].

Another important concept associated with RGL ig th
‘meta-cognitive loop’ that must exist to enable Hystem

to increase its competency over time. While resmpn
guided learning will improve the system’s ability ¢ope
with problematic situations, there is a need toegilie
system the capability to learn from experiencesrder to
reason. ‘Learning Guided Reasoning’, or LGR, thus
rounds out the system’s ability to gather unstmextu
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information in a context-specific manner, thus padog
new information and rules for the system to reasibh.

In this paper, we look at the application of LGR &0
hybrid system, with the Neural Network initially
responsible for making ‘decisions’. The inspiratio
behind the study comes frooonsidering the maturation
process of a newborn child. Supposing that theéraken
nervous system is initially in control of the arm leg
motions, over time, as experiences are generated, t
neural programming becomes refined and guided eat th
reasoning, goal-oriented level. Modeling the erencg
of such a process, as it applies to the particcdae of a
robot thus represents part of the research undgrtwa
complete the meta-cognitive loop.

The physics-based system under study is a simulated
Khepera robot [3], which has two wheels controllitegy
motion, an array of eight infrared sensors, andnahgr

arm that is capable of grasping and lifting objects

Figure 1.

2. Background

For the purpose of generating cognitive maps, Etec

to large-scale space, one approach has given robots
different levels of instructions and strategieseiiract
distinct sensor views [4]. Such views are obtaingtth

the help of a hill-climbing technique, for exampke,
ensure that the robot is able to navigate aroumdecs.
Causal graphs are formed to represent the actioais t
carry the robot from one distinct view to anothénm. this

way, a map of the space is constructed which camsbd

for navigation.

Such an approach relies upon many ‘explicit’ bebali
models, chained together with the purpose to perfor
navigational tasks. While learning is often inwedy in
determining what may be regarded as ‘behavior®, th
learning is purposely driven by a planned sequesfce
actions that build up the capabilities of the robdtvhile
successful, an introduction of intrinsic modelsoirihe

approach would help the robot to cope with comfilices
associated with varying topologies, moving objects,
changes to distinct views, optimization of perfonoe,
mistakes due to internal failures or environmefdators,

as well as minimize the amount of explicit knowledbat
must be programmed to handle these scenarios.

The emergence of intelligence, out of the syneogynéd
between the cooperation of multiple agents dogsugbn
intrinsic behaviors to build higher-level behaviors
However, whether manifested within the interfacds o
physical robots [5, 6] or simulated components [7],
knowledge so far has been shared, or distributedviray
that does not lend itself easily to centralizedjhHievel
reasoning. To facilitate such reasoning, a sysg&cgi
(integrated) level goal can be ‘negotiated’; howetre
creation of such goals requires a system capable of
learning about its own developing synergies.

There is an extensive amount of investigation being
carried out on Brooks’ concept-free, situation@wpoint
about intelligence, whereby systems can be desigmed
utilize ‘the world as an external memory’, requdilittle

if any symbolic representation for high-level regisg

[8]. Such a viewpoint is bolstered by the use of
processing technologies such as neural networkslewh
logic can be imbedded within neural networks [B&re is

an advantage to keeping logical reasoners sepsirate
they are optimized to handle symbolic manipulati¢tor
some time, the integration of neural networks awgicl
components acting as expert systems has been @pplie
successfully to a variety of tasks such as datangifi0].
However, pure, symbolic manipulation still has
advantages for certain technologies, e.g. thosehimg
natural language processing [11].

It is thus worthwhile to investigate the developteh
abstractions from situational level intelligence s
should represent the grounding of concepts—a negessa
criterion  for achieving human-level reasoning
(represented by activities such as mathematicabl@no
solving, chess, and the creative arts). It is\doew that
useful insights into this problem can be obtainexinf a
study of an integrated architecture consisting efiral
networks and symbolic reasoners designed to create
synergistic learning paradigms (within in a reahdi
environment), since such a topic for research requa
careful consideration of many of the issues raisgdhe
research mentioned in this section.

3. System under Study

For our illustration, will consider the particularase
whereby a robot is given the task to solve a ndidgal
problem using RGL. The aspect of this problem vié w
discuss here involves learning how to avoid cdltisi
with objects.
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Consider a fixed neural net topology proce¢l, which
is assigned to control wheel motion:

NN(x, t) = Wheel Velocities

Here,x represents sensor data at titneThis function is
applied, with periodicityT. T represents a real-time
based, intrinsic processing cycle time kX, irrespective

of other processes that may be occurring. An Actio
Manager is designed to execute a request over a
characteristic timer. After such time, the action is
considered completed. We will assume for now that

T > 1, to avoid the discussion of what happens when the
system processes new information faster thandbis to

act upon it.

Hence, the system in this example, goes through a
continuous cycle of executingN, sending its result in
the form of a request to the Action Manager, aralyapg

the command for a fixed duration of time. The
introduction of the Action Manager gives various
processing components of the system, such as a-logi
based reasoning engine anbN, the ability to
communicate with each other before a command istsen
the robot's wheels. This is how hybrid reasonisg i
implemented within this system, with real-time coht

Upon executing the cyclical process, eventually a
collision with a wall or object occurs, represenkexnte as

a predicate functiol©(x). There are different ways in
which such a system can notice the collision. this
discussion, we will consider the case whereby a
peripheral touch sensor is present; however it ddad
possible to consider the use of meta-reasoningigger

the awareness, whereby all commands sent to tlenact
manager are monitored for uniqueness (more dismussi
on this later).

We will associate with the touch sensor, a haraavir
‘knee-jerk’ reaction that overridd$N, forcing its process
to terminate, and causing the robot to back outhef

collision according to the following function:

KJ(x, t) = Backward Wheel Velocities

whereKJ is attenuating over time. When the function no
longer has appreciable signal strength, the process
associated with it terminates. Note: this is ranaple of

an ‘explicit’ model that is used to force the roliatio a
desired state.

After having backed out of the collision, the rolbai
longer has any processes running to keep it movitg.
stops briefly, representing a temporary state officgion
or uncertainty. The Goal Manager recognizes thetet
are still goals to pursue. One of them represéms
persistent desire to move without collisions. Row, we

will consider this goalG to be hard-wired into the Goal
Manager solely for the purpose of illustrating fystem'’s
ability to develop strategies for avoiding collisgowith
other objects. Thus, with the robot stopped, tystesn
immediately recognizes that it failed in achievitggoal
of avoiding collisions using the particul&iN process it
had been running.

At this point, a meta-reasoner is invoked to deteem
what process should be running to achieve the atksir
goal. In this study, the only process availableNIN.
However, there may be several parameter setNkr
each corresponding to a particular training set thas
extracted from the robot’'s experience over timecteof
these training sets and tN&N parameters associated with
them are referred to here as a particular strateggnce,
the meta-reasoner determines that prodéNsmust be
invoked and it must then decide whether to modify a
existing strategy, or create a new one, to impropen
the robot’s ability to avoid collisions. This issdussed
further in the following two sections.

4. Strategy Building

A strategy can be learned in a variety of waysedepg
upon the number of permutable elements in the probl
characterization, the environmental factors and the
experiences received from them at the time of iegin
and the activities responsible for processing datd
generating an action in response. As such, whategty
is learned will in all likelihood not be optimizedt is, in
fact, desirable for this not to be the case. Oigttion of
a particular strategy should in itself be goal eny
representing a refinement process that may be behhv
driven or deliberately reasoning-guided, based uihen
careful observance of experiences.

Hence, within the RGL framework, a strate@ is
assigned to a particular goalG while actually
experiencing its successful application to a paldic
circumstance C(x).  This is in contrast to having
knowledge beforehand, as expressed in logic, for
example, that a desired goal state (in this cassidiag

C) will be reached i is applied.

The associationG[C(xc)]= S, is formed at the creation
of S, and is initially represented with a particulanser
state, however the meta-reasoner will attempt fya
again, whenever a collision occurs in a ‘similaasiiion
to what is characterized §/(xc). If a ‘similar’ situation

is not found, then the meta-reasoner decides tatera
new strategyS’, based upon its memory of what took
place up until the failure.

In our example, a collision strategy is createdrbining
NN on a set ofX, t) coordinates that it retains up until a
collision. The collision poinic is replaced by a new
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point discovered by a trial and error approach. otup
successfully verifying the short term success asset
with the new motion, a new training set is creased
trained intoNN using back-propagation. The resulting
strategy can be used either as a new approach,rfewly
identified circumstance, or it may replace an déxgst
strategy for a group of ‘similar’ circumstances. A
mechanism for deciding between these two options is
discussed in the next section.

5. Use of Clusters

The sensor data in our case comes from 8 infrared
detectors that are positioned symmetrically abolihe

(Y) that passes between the pair of wheels (Fidyre
This symmetry can be exploited to identify one ioatar
class of ‘similar’ circumstances. To illustrateethse of
clusters, we will examine the case where the radbot
placed into a long, L-shaped hallway.

Upon colliding with a wall the first time, let uaysthe left
wall, a clusterK; (formed out of sensor data) is attached
to X¢, and is associated with a newly trained stratggy
Due to the underlying symmetry associated with the
positioning of the infrared sensors, a dual clusteris
formed corresponding to the swap of sensor cootetna
across Y. In many circumstanc&s,will take the robot

to the other side of the hall, causing it to calahain.

With the two clusters now already in existence, rieta-
reasoner utilizes a distance metric to determiaexthlies
closest toK;'. Hence, the meta-reasoner determines that
only a permutation of coordinate assignments isired,

not a change in strategies. However, to improvatthe
strategy, it adopts the method described in theiqus
section. It also adds a new collision point todke&nition

of the cluster, triggering the calculation of a neswtroid

for it.

While this approach will work for the walls of araght
hall, for example, the robot must be able to recgthe
need to develop a new strategy when encounterimg ne
situations, such as a corner. ldeally, this denigirocess
should also be learned, as the environment maywtimo
variations that will break not only a strategy, kbe
recognition of when to use a different strategy.

One approach under consideration involves alloviiney
robot to remember a sufficient number of collisjgoints
to create well-defined clusters. In our illustoati the
robot may constantly bounce from the left wall ight
wall in the hallway. Upon getting enough pointswill
be able to define a sufficient scale for the clusiees
such that when a corner is eventually encounterewd|l
be able to determine that a new cluster and sirategds
to be formed.

If a corner is encountered before a sufficient raea®of

the cluster sizes evolves, an existing strategy may
‘incorrectly’ be modified. As the robot then enocters
new collision points, it will soon find itself faflg with
circumstances identified within the same clustand a
conclude that the strategy needs further refinemeipon
several updates to its strategies, incorrectly ilieg,
eventually enough of a sample should be obtainethf®
robot to correctly identify when to update a styggteand
when a new one should be created.

6. Hybrid Learning

A host of other approaches can be taken for theleno

we are discussing. In particular, the problem t&n
solved within the realm of logic. However, to desbbgic
based upon experience, in a way comparable to the
method used with the neural network, it is most
convenient to have the logic-based reasoner lemnm f
the neural network, and develop new goals and fselie
before attempting to take over the neural network’s
functions.

The reason for doing this is not related so muchhto
desire to have the robot learn how to solve a probin
logic, but rather, to develop a method whereby the
knowledge learned within the neural network process
can be raised to a level that involves higher level
reasoning—reasoning that is best performed at a gjenb
level. Such reasoning could be used in the degisio
making for a different class of problems.

Hence, upon allowing the logic based componen¢aon
from NN, an ability emerges that allows the logic
component to ground the actions of the neural net¢wo
associate the actions with its own developed set of
commands and predicate functions, and empowertlit wi
the knowledge to plan its actions. In our illusta,
suppose that a set of successful strategies haga be
developed by the neural network to avoid collisions
Then, this will mean that as the coordinate spatfsd
from one well-defined cluster, representing a patér
strategy, into another well-defined cluster, the alGo
Manager might decide to switch strategies before a
collision takes place.

In principle it would be able to do this switchinging
logic. A meta-reasoner would also be able to eotic
periodically, that it is able to refine the robogsisting
strategies by taking trajectory points generated by
different strategies, and applying them to the same
strategy. To perform this operation, however, woul
require another overriding goal to guide it.

While logic can straightforwardly manage the usehef
strategies, in the way they were originally intethde be
used, the logical reasoner is capable of learnimgose
valuable lesson, one that empowers it to utilize th
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strategies for achieving other goals. Such goaés a
represented by well-discussed goal states in Adamreh
literature, where for example, the robot desiresntwve
from one end of the hall to another, turn arourcdner,

or lift an object.

As applied to our example, the logical reasonel mékd
to have the capability of learning new goal stdtesn
experiences, and associating the neural network’s
collision avoidance strategies towards achievingse¢h
goals, if appropriate. To do this will require @xchange
between the neural network’s knowledge domain, taed
logical reasoner’s. One way to accomplish thisith the
method of coarse-graining. As used here, coamseigg
refers to an activity that is similar to that oktlkluster
algorithm, only now it is applied to actions, iresteof
sensor values.

With coarse-graining oRN outputs, the logical reasoner
is able to create a finite set of commands that
characterizes the robot’'s motion und¥ control. Upon
allowing the logical reasoner to keep track of tise of
the neural network strategies, along with coarsengrg

of NN outputs, the robot will be able to learn command
chains, or coarse-grained strategies, that appaigim
replace the actions of thé\N counterparts.

The synthesis of command chains involves variousl$e
of precision, determined by the resolution of tlbarse-
graining algorithms applied to both the actions anel
sensor inputs. In our illustration, the resolntiof
outputs does not have to be high; hence the amufunt
detail incorporated within a particular coarse-ged
strategy will be low. However, to define goaltstathat
the logical reasoner can verify against, coarseigg
will have to be applied to the inputs.

Upon enacting a complete, coarse-grained replademen
the logical reasoner will then be able to estabtisial
states that are repeatable, either with the u#ts ocbarse-
grained actions, or the application N processing. In
this way, a mapping between tN& strategies, and a set
of chained, coarse-grained logic-based strategiéshey
achieved. By introducing these goal states, tiggcéal
reasoner will be able to utilize memory to form new
action-consequence pairs that can be used for-lmged
planning.

Chaining, and the goal states associated with tlzso,
introduces new uses for the existiNgl strategies. With
the addition of time measurement, the robot willaide

to use its goal states to measure its own perfoceman
Such metrics, along with other goals that encourage
‘purpose’ into activities (via ‘rewards’) encouragke
refinement of existindg\N strategies. With this back-and
forth interaction, between the logical reasoned AN
processing, the logical reasoner will eventuallyabée to
form new beliefs based upon its observations of the
robot’s experiences.

For example, in order to reach a desired locatisn a
quickly as possible down a straight hall, in order
experience the reward of catching a moving objtw,
robot should be able to learn, relatively quickhyat the
velocities of both of its wheels needs to be s¢héosame
speed.

7. Conclusion

In this paper, we have discussed one approachimath
particular real-time hybrid architecture schemegieing
a robot the capability of learning new strategiaagd
modifying existing ones—via a neural network and
clustering algorithm. To utilize these strategisspart of
higher-level reasoning performed at the symboheleit
has been argued that it is essential to not onhg ¢e
logical reasoner the ability to manage the utilabf the
strategies; it is essential to give it the capspilio
examine its experience in applying them, throughuke
of coarse-graining methods.
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