
Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

RGL STUDY IN A HYBRID REAL-TIME SYSTEM

K. Hennacy*, N. Swamy, D. Perlis
Computer Science, University of Maryland

*UMIACS, University of Maryland
College Park, MD 20742, U.S.A.

Abstract

Our work focuses on the study of learning paradigms
within a hybrid reasoning system, consisting of a Neural
Network and Symbolic Reasoner. There are several
aspects to this problem that invite comparisons to work in
other fields of study involving for example, knowledge
representation, behavioral modeling, and neuromorphic
engineering. Central to this paper is a discussion on the
coupling between a particular learning paradigm and the
behaviors that a real-time system develops in attempting
to achieve a specific goal.

Key Words
Emergent Intelligence, Hybrid Reasoning, Real-Time
Behavior, Reason Guided Learning

1. Introduction

There has been for some time work in the area of utilizing
environmental changes to trigger decision-making in
robots [1]. Responses to such triggers have associated
with them either explicit or intrinsically represented
behavioral models. Behavioral models are not restricted
to any particular type of processing. They can be
associated with activities such as filtering, prioritizing,
monitoring, and reasoning. A particular behavior could
involve something as simple as a Boolean test, or as
complex as a collection of simultaneous processes that
coordinate with each other to achieve a particular result.

Explicit models are identified by those actions of a system
(e.g. a robot) that are predetermined by the programming
and analysis that is associated with its construction.
Whether or not a module exists that is designated as a
‘behavior’, the ‘explicit’ classification may still apply.
The same goes for whether or not the robot is able to take
different courses of action in real-time. If the system
takes deliberate steps to process data, and initiate actions,
based solely upon instructions that were never learned
from experience, its behaviors directly reflect only the
intentions, and thinking of its human designer.

We argue that intrinsic models, on the other hand, are
ones that are based upon a set of rules for activities that
are highly adaptable. Such models give a system the
ability to interact intelligently with the outside world
without any outside environmental sense initially built
into it at all. As the use of the term ‘behavior’ implies,
such a model, as represented by a set of rules and
processing activities, is still used for coordinating other
activities. However, while the coordination method may
be predetermined, the details of the coordination process
are not. Instead, they must be learned.

The argument for why learning should be used to
distinguish between two broad categories of behavioral
models has to do with the recognition that a system’s
learning prowess is measured by its ability to encode
information into a form that isn’t specific to a particular
scenario—in such a way that what is learned can be
broadly and correctly applied. If the encoded information
is to originate from experience, then learning is at least
implicitly coupled to the behaviors that are responsible for
generating the experiences. Thus, we see the emergence
of intrinsic behavioral models as being intimately tied to a
particular learning paradigm. The deployment of such
models will play a key role in developing a system’s ‘self-
awareness’, giving it the mechanisms to cope effectively
with new, unanticipated situations.

As applied to our study, we are interested in investigating
mechanisms that give rise to what we call ‘Reasoning
Guided Learning’ or RGL for short. As the phrase
implies, RGL refers to the utilization of goals, (how they
are being used, how successful a system is in achieving
them, etc.) to determine when and what should be learned.
Mechanisms for when learning should take place have so
far been investigated within a logic-based framework,
with contradictions or time-sensitivity as major triggers
for learning [2].

Another important concept associated with RGL is the
‘meta-cognitive loop’ that must exist to enable the system
to increase its competency over time. While reasoning
guided learning will improve the system’s ability to cope
with problematic situations, there is a need to give the
system the capability to learn from experiences in order to
reason. ‘Learning Guided Reasoning’, or LGR, thus
rounds out the system’s ability to gather unstructured

Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

information in a context-specific manner, thus providing
new information and rules for the system to reason with.

In this paper, we look at the application of LGR to a
hybrid system, with the Neural Network initially
responsible for making ‘decisions’. The inspiration
behind the study comes from considering the maturation
process of a newborn child. Supposing that the central
nervous system is initially in control of the arm or leg
motions, over time, as experiences are generated, the
neural programming becomes refined and guided at the
reasoning, goal-oriented level. Modeling the emergence
of such a process, as it applies to the particular case of a
robot thus represents part of the research under way to
complete the meta-cognitive loop.

The physics-based system under study is a simulated
Khepera robot [3], which has two wheels controlling its
motion, an array of eight infrared sensors, and a pincher
arm that is capable of grasping and lifting objects.

 Y

Figure 1.

2. Background

For the purpose of generating cognitive maps, as related
to large-scale space, one approach has given robots
different levels of instructions and strategies to extract
distinct sensor views [4]. Such views are obtained with
the help of a hill-climbing technique, for example, to
ensure that the robot is able to navigate around corners.
Causal graphs are formed to represent the actions that
carry the robot from one distinct view to another. In this
way, a map of the space is constructed which can be used
for navigation.

Such an approach relies upon many ‘explicit’ behavioral
models, chained together with the purpose to perform
navigational tasks. While learning is often involved, in
determining what may be regarded as ‘behaviors’, the
learning is purposely driven by a planned sequence of
actions that build up the capabilities of the robot. While
successful, an introduction of intrinsic models into the

approach would help the robot to cope with complications
associated with varying topologies, moving objects,
changes to distinct views, optimization of performance,
mistakes due to internal failures or environmental factors,
as well as minimize the amount of explicit knowledge that
must be programmed to handle these scenarios.

The emergence of intelligence, out of the synergy formed
between the cooperation of multiple agents does rely upon
intrinsic behaviors to build higher-level behaviors.
However, whether manifested within the interfaces of
physical robots [5, 6] or simulated components [7],
knowledge so far has been shared, or distributed in a way
that does not lend itself easily to centralized, high-level
reasoning. To facilitate such reasoning, a synergistic
(integrated) level goal can be ‘negotiated’; however the
creation of such goals requires a system capable of
learning about its own developing synergies.

There is an extensive amount of investigation being
carried out on Brooks’ concept-free, situational viewpoint
about intelligence, whereby systems can be designed to
utilize ‘the world as an external memory’, requiring little
if any symbolic representation for high-level reasoning
[8]. Such a viewpoint is bolstered by the use of
processing technologies such as neural networks. While
logic can be imbedded within neural networks [9], there is
an advantage to keeping logical reasoners separate since
they are optimized to handle symbolic manipulation. For
some time, the integration of neural networks and logic
components acting as expert systems has been applied
successfully to a variety of tasks such as data mining [10].
However, pure, symbolic manipulation still has
advantages for certain technologies, e.g. those involving
natural language processing [11].

It is thus worthwhile to investigate the development of
abstractions from situational level intelligence as this
should represent the grounding of concepts—a necessary
criterion for achieving human-level reasoning
(represented by activities such as mathematical problem
solving, chess, and the creative arts). It is our view that
useful insights into this problem can be obtained from a
study of an integrated architecture consisting of neural
networks and symbolic reasoners designed to create
synergistic learning paradigms (within in a real-time
environment), since such a topic for research requires a
careful consideration of many of the issues raised by the
research mentioned in this section.

3. System under Study

For our illustration, will consider the particular case
whereby a robot is given the task to solve a navigational
problem using RGL. The aspect of this problem we will
discuss here involves learning how to avoid collisions
with objects.

Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

Consider a fixed neural net topology process, NN, which
is assigned to control wheel motion:

NN(x, t) = Wheel Velocities

Here, x represents sensor data at time t. This function is
applied, with periodicity T. T represents a real-time
based, intrinsic processing cycle time for NN, irrespective
of other processes that may be occurring. An Action
Manager is designed to execute a request over a
characteristic time ττττ. After such time, the action is
considered completed. We will assume for now that
T > ττττ, to avoid the discussion of what happens when the
system processes new information faster than it is able to
act upon it.

Hence, the system in this example, goes through a
continuous cycle of executing NN, sending its result in
the form of a request to the Action Manager, and applying
the command for a fixed duration of time. The
introduction of the Action Manager gives various
processing components of the system, such as a logic-
based reasoning engine and NN, the ability to
communicate with each other before a command is sent to
the robot’s wheels. This is how hybrid reasoning is
implemented within this system, with real-time control.

Upon executing the cyclical process, eventually a
collision with a wall or object occurs, represented here as
a predicate function C(x). There are different ways in
which such a system can notice the collision. For this
discussion, we will consider the case whereby a
peripheral touch sensor is present; however it would be
possible to consider the use of meta-reasoning to trigger
the awareness, whereby all commands sent to the action
manager are monitored for uniqueness (more discussion
on this later).

We will associate with the touch sensor, a hard-wired
‘knee-jerk’ reaction that overrides NN, forcing its process
to terminate, and causing the robot to back out of the
collision according to the following function:

KJ(x, t) = Backward Wheel Velocities

where KJ is attenuating over time. When the function no
longer has appreciable signal strength, the process
associated with it terminates. Note: this is an example of
an ‘explicit’ model that is used to force the robot into a
desired state.

After having backed out of the collision, the robot no
longer has any processes running to keep it moving. It
stops briefly, representing a temporary state of confusion
or uncertainty. The Goal Manager recognizes that there
are still goals to pursue. One of them represents the
persistent desire to move without collisions. For now, we

will consider this goal G to be hard-wired into the Goal
Manager solely for the purpose of illustrating the system’s
ability to develop strategies for avoiding collisions with
other objects. Thus, with the robot stopped, the system
immediately recognizes that it failed in achieving its goal
of avoiding collisions using the particular NN process it
had been running.

At this point, a meta-reasoner is invoked to determine
what process should be running to achieve the desired
goal. In this study, the only process available is NN.
However, there may be several parameter sets for NN,
each corresponding to a particular training set that was
extracted from the robot’s experience over time. Each of
these training sets and the NN parameters associated with
them are referred to here as a particular strategy. Hence,
the meta-reasoner determines that process NN must be
invoked and it must then decide whether to modify an
existing strategy, or create a new one, to improve upon
the robot’s ability to avoid collisions. This is discussed
further in the following two sections.

4. Strategy Building

A strategy can be learned in a variety of ways, depending
upon the number of permutable elements in the problem
characterization, the environmental factors and the
experiences received from them at the time of learning;
and the activities responsible for processing data and
generating an action in response. As such, what strategy
is learned will in all likelihood not be optimized. It is, in
fact, desirable for this not to be the case. Optimization of
a particular strategy should in itself be goal driven,
representing a refinement process that may be behavioral
driven or deliberately reasoning-guided, based upon the
careful observance of experiences.

Hence, within the RGL framework, a strategy S is
assigned to a particular goal G while actually
experiencing its successful application to a particular
circumstance C(x). This is in contrast to having
knowledge beforehand, as expressed in logic, for
example, that a desired goal state (in this case, avoiding
C) will be reached if S is applied.

The association, G[C(xC)]���� S, is formed at the creation
of S, and is initially represented with a particular sensor
state, however the meta-reasoner will attempt to apply S
again, whenever a collision occurs in a ‘similar’ fashion
to what is characterized by C(xC). If a ‘similar’ situation
is not found, then the meta-reasoner decides to create a
new strategy, S’, based upon its memory of what took
place up until the failure.

In our example, a collision strategy is created by training
NN on a set of (x , t) coordinates that it retains up until a
collision. The collision point xC, is replaced by a new

Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

point discovered by a trial and error approach. Upon
successfully verifying the short term success associated
with the new motion, a new training set is created and
trained into NN using back-propagation. The resulting
strategy can be used either as a new approach, for a newly
identified circumstance, or it may replace an existing
strategy for a group of ‘similar’ circumstances. A
mechanism for deciding between these two options is
discussed in the next section.

5. Use of Clusters

The sensor data in our case comes from 8 infrared
detectors that are positioned symmetrically about a line
(Y) that passes between the pair of wheels (Figure 1).
This symmetry can be exploited to identify one particular
class of ‘similar’ circumstances. To illustrate the use of
clusters, we will examine the case where the robot is
placed into a long, L-shaped hallway.

Upon colliding with a wall the first time, let us say the left
wall, a cluster K 1 (formed out of sensor data) is attached
to xC, and is associated with a newly trained strategy S1.
Due to the underlying symmetry associated with the
positioning of the infrared sensors, a dual cluster K 1’ is
formed corresponding to the swap of sensor coordinates
across Y. In many circumstances, S1 will take the robot
to the other side of the hall, causing it to collide again.

With the two clusters now already in existence, the meta-
reasoner utilizes a distance metric to determine that xC lies
closest to K 1’. Hence, the meta-reasoner determines that
only a permutation of coordinate assignments is required,
not a change in strategies. However, to improve upon the
strategy, it adopts the method described in the previous
section. It also adds a new collision point to the definition
of the cluster, triggering the calculation of a new centroid
for it.

While this approach will work for the walls of a straight
hall, for example, the robot must be able to recognize the
need to develop a new strategy when encountering new
situations, such as a corner. Ideally, this decision process
should also be learned, as the environment may throw in
variations that will break not only a strategy, but the
recognition of when to use a different strategy.

One approach under consideration involves allowing the
robot to remember a sufficient number of collision points
to create well-defined clusters. In our illustration, the
robot may constantly bounce from the left wall to right
wall in the hallway. Upon getting enough points, it will
be able to define a sufficient scale for the cluster sizes
such that when a corner is eventually encountered, it will
be able to determine that a new cluster and strategy needs
to be formed.

If a corner is encountered before a sufficient measure of
the cluster sizes evolves, an existing strategy may
‘incorrectly’ be modified. As the robot then encounters
new collision points, it will soon find itself failing with
circumstances identified within the same cluster, and
conclude that the strategy needs further refinement. Upon
several updates to its strategies, incorrectly at times,
eventually enough of a sample should be obtained for the
robot to correctly identify when to update a strategy, and
when a new one should be created.

6. Hybrid Learning

A host of other approaches can be taken for the problem
we are discussing. In particular, the problem can be
solved within the realm of logic. However, to create logic
based upon experience, in a way comparable to the
method used with the neural network, it is most
convenient to have the logic-based reasoner learn from
the neural network, and develop new goals and beliefs,
before attempting to take over the neural network’s
functions.

The reason for doing this is not related so much to the
desire to have the robot learn how to solve a problem in
logic, but rather, to develop a method whereby the
knowledge learned within the neural network processor
can be raised to a level that involves higher level
reasoning—reasoning that is best performed at a symbolic
level. Such reasoning could be used in the decision-
making for a different class of problems.

Hence, upon allowing the logic based component to learn
from NN, an ability emerges that allows the logic
component to ground the actions of the neural network,
associate the actions with its own developed set of
commands and predicate functions, and empower it with
the knowledge to plan its actions. In our illustration,
suppose that a set of successful strategies have been
developed by the neural network to avoid collisions.
Then, this will mean that as the coordinate space drifts
from one well-defined cluster, representing a particular
strategy, into another well-defined cluster, the Goal
Manager might decide to switch strategies before a
collision takes place.

In principle it would be able to do this switching using
logic. A meta-reasoner would also be able to notice,
periodically, that it is able to refine the robot’s existing
strategies by taking trajectory points generated by
different strategies, and applying them to the same
strategy. To perform this operation, however, would
require another overriding goal to guide it.

While logic can straightforwardly manage the use of the
strategies, in the way they were originally intended to be
used, the logical reasoner is capable of learning a more
valuable lesson, one that empowers it to utilize the

Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

strategies for achieving other goals. Such goals are
represented by well-discussed goal states in AI research
literature, where for example, the robot desires to move
from one end of the hall to another, turn around a corner,
or lift an object.

As applied to our example, the logical reasoner will need
to have the capability of learning new goal states from
experiences, and associating the neural network’s
collision avoidance strategies towards achieving these
goals, if appropriate. To do this will require an exchange
between the neural network’s knowledge domain, and the
logical reasoner’s. One way to accomplish this is with the
method of coarse-graining. As used here, coarse-graining
refers to an activity that is similar to that of the cluster
algorithm, only now it is applied to actions, instead of
sensor values.

With coarse-graining of NN outputs, the logical reasoner
is able to create a finite set of commands that
characterizes the robot’s motion under NN control. Upon
allowing the logical reasoner to keep track of the use of
the neural network strategies, along with coarse-graining
of NN outputs, the robot will be able to learn command
chains, or coarse-grained strategies, that approximately
replace the actions of their NN counterparts.

The synthesis of command chains involves various levels
of precision, determined by the resolution of the coarse-
graining algorithms applied to both the actions and the
sensor inputs. In our illustration, the resolution of
outputs does not have to be high; hence the amount of
detail incorporated within a particular coarse-grained
strategy will be low. However, to define goal states that
the logical reasoner can verify against, coarse-graining
will have to be applied to the inputs.

Upon enacting a complete, coarse-grained replacement,
the logical reasoner will then be able to establish goal
states that are repeatable, either with the use of its coarse-
grained actions, or the application of NN processing. In
this way, a mapping between the NN strategies, and a set
of chained, coarse-grained logic-based strategies will be
achieved. By introducing these goal states, the logical
reasoner will be able to utilize memory to form new
action-consequence pairs that can be used for logic-based
planning.

Chaining, and the goal states associated with them, also
introduces new uses for the existing NN strategies. With
the addition of time measurement, the robot will be able
to use its goal states to measure its own performance.
Such metrics, along with other goals that encourage
‘purpose’ into activities (via ‘rewards’) encourage the
refinement of existing NN strategies. With this back-and
forth interaction, between the logical reasoner, and NN
processing, the logical reasoner will eventually be able to
form new beliefs based upon its observations of the
robot’s experiences.

For example, in order to reach a desired location as
quickly as possible down a straight hall, in order to
experience the reward of catching a moving object, the
robot should be able to learn, relatively quickly, that the
velocities of both of its wheels needs to be set to the same
speed.

7. Conclusion

In this paper, we have discussed one approach, within a
particular real-time hybrid architecture scheme, of giving
a robot the capability of learning new strategies, and
modifying existing ones—via a neural network and
clustering algorithm. To utilize these strategies as part of
higher-level reasoning performed at the symbolic level, it
has been argued that it is essential to not only give the
logical reasoner the ability to manage the utilization of the
strategies; it is essential to give it the capability to
examine its experience in applying them, through the use
of coarse-graining methods.

References

[1] A. Mali, On the evaluation of agent behaviors,
Artificial Intelligence, 143, 2003, 1-17.

[2] M. Anderson, Y. Okamoto, D. Josyula, and D. Perlis,
The use-mention distinction and its importance to HCI,
Proceedings of the Sixth Workshop on the Semantics and
Pragmatics of Dialogue, Edinburgh, UK, 2002, 21-28.

[3] K-Team, S.A. Switzerland, www.k-team.com.

[4] D. Pierce and B. Kuipers, Learning to Explore and
Build Maps, Proceedings of the Twelth National
Conference on Artificial Intelligence (AAAI-94), Seattle,
Washington, 1994, 1264-1271.

[5] A. H. Cohen, C. Koch, G. Indiveri, R. Douglas, S.
Shamma, T. Sejnowski, and T. Horiuchi, Technical
Report, 2002 Workshop on Neuromorphic Engineering,
Telluride, CO, 2002.

[6] M. Vona and D. Rus, Self-reconfiguration Planning
with Compressible Unit Modules, Proceedings of the
1999 IEEE International Conference on Robotics and
Automation, Detroit, MI, 1999.

[7] H. Bojinov, A. Casal, T. Hogg, Multiagent control of
self-reconfigurable robots, Artificial Intelligence, 142,
2002, 99-120.

[8] R. A. Brooks, Intelligence without representation,
Artificial Intelligence, 47, 1991, 139-159.

Paper presented at IASTED NCI Conference, May 19-21,2003, Cancun, Mexico

[9] Boon Toh Low, Reasoning about Beliefs: An
Inference Network Approach, Ph.D. Thesis, University
of Sydney, Australia, 1994.

[10] V. Ciesielski and Gregory Palstra, Using a Hybrid
Neural/Expert System for Data Base Mining in Market
Survey Data, Proceedings of The Second International
Conference on Knowledge Discovery and Data Mining
(KDD-96), Pgs. 36-43, AAAI Press, 1996.

[11] D. Perlis, K. Purang, D. Purushothaman, C.
Andersen, and D. Trum, Modeling time and meta-
reasoning in dialogue via active logic, Working notes of
AAAI Fall Symposium on Psychological Models of
Communication, 1999.

Acknowledgement: Our appreciation to Alejandro
Rodriguez for pointing out the Khepera robot example.

