
Specification of a test environment and performance measures for
perturbation-tolerant cognitive agents

Michael L. Anderson
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742

Abstract

In this paper I propose a flexible method of characterizing a
test environment such that its environmental complexity, in-
formation density, variability and volatility can be easily mea-
sured. This allows one to determine the task performance of a
cognitive agent as a function of such measures, and therefore
permits derivative measures of the perturbation tolerance of
cognitive agents—that is, their ability to cope with a complex
and changing environment.

Introduction and Background
A cognitive agent is an agent that, because it is intended to
perform complex actions in a rich and dynamic environment,
must combine the basic elements of reactive systems (per-
ception and (re-)action) with higher-order cognitive abilities
like planning, deliberation, and introspection. For instance,
one important reactive approach, on which many hope to
improve, is Brooks’ behavior-based robotics (Brooks 1986;
1997). Brooks suggests that sophisticated robotic intelli-
gence can and should be built through the incremental ad-
dition of individual layers of situation-specific control sys-
tems. Although many agree that an architecture of this sort
can provide fast and fluid reactions in real-world situations,
very few accept Brooks’ claim (Brooks 1991b; 1991a) that
such an approach can eventually achieve the flexibility and
robustness of human intelligence (for some arguments to
this effect see, e.g. (Kirsh 1991; Anderson 2003)). For
that, in addition to perception/action loops providing fast
and fluid reactions, there must be cognitive systems sup-
porting both deliberation and re-consideration, which, we
have argued, calls for symbolic reasoning and (most impor-
tantly) meta-reasoning, which includes self-monitoring and
self-correction (Anderson et al. 2002; Bhatia et al. 2001;
Chong et al. 2002; Perlis, Purang, & Andersen 1998).

Often, achieving this range of capacities has meant com-
bining Bayesian or neural-network-based control systems
with logic-based ones (see, for instance, the work by Ron
Sun (Sun 2000; Wermeter & Sun 2000; Sun 1994; Sun, Pe-
terson, & Sessions 2001), Ofer Melnik and Jordan Pollock
(Melnik & Pollack 2002), Matthias Fichtner et al. (Fichtner,
Großmann, & Thielscher 2003) and Gary Marcus (Marcus
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2001)). Some of the work from my own research group has
begun to move in this direction as well, guided by the no-
tion that fast, fluid and flexible real-world systems can be
achieved by adding a layer of symbolic (meta-)reasoning on
top of adaptive control layers, and allowing it not just to
suppress the adaptive layers, but also to re-train them when
necessary (Anderson et al. submitted; Hennacy, Swamy,
& Perlis 2003). However, there are also those who prefer
a “logic-only” approach (Bringsjord & Schimanski 2003;
Amir & Maynard-Reid 2003), and my research group has
had some success in building “logic-only” cognitive sys-
tems to tackle problems including natural language human-
computer interaction (Anderson, Josyula, & Perlis 2003;
Josyula, Anderson, & Perlis 2003), commonsense reasoning
(Elgot-Drapkin & Perlis 1990; Purang 2001), and deadline-
coupled planning (Kraus, Nirkhe, & Perlis 1990; Nirkhe
1994; Nirkhe et al. 1997). Other examples of applications
and environments that seem to require—or at least would
benefit from—the use of cognitive agents are on-line infor-
mation search and/or exchange (Barfourosh et al. 2002), and
autonomous robotics.

We call the general ability to cope with a complex and
changing environment “perturbation tolerance”. The term
is meant as an extension and generalization of John Mc-
Carthy’s notion of “elaboration tolerance”—a measure of
the ease with which a reasoning agent can add and delete ax-
ioms from its knowledge base (McCarthy 1998). Our term
is more general than McCarthy’s because his is explicitly
limited to formal, symbolic systems, and an elaboration is
defined as an action taken to change such a system (Amir
2000). But, as noted above, a cognitive agent may well con-
sist of more than just a formal reasoning system, and flexibly
coping with a changing world may therefore involve altering
components in addition to, or instead of, its formal reasoner.
Thus, we define a perturbation as any change, whether in the
world or in the system itself, that impacts the performance of
the agent. Performance is meant to be construed broadly to
encompass any measurable aspect of the agent’s operation,
although, as will be explained below, we tend to favor mea-
sures for such things as average reward and percentage task
completion over such things as reasoning speed or through-
put. Perturbation tolerance, then, is the ability of an agent
to quickly recover—that is, to re-establish desired/expected
performance levels—after a perturbation.



However, if improving perturbation tolerance is to be
among the goals for cognitive agents, it will be necessary
to quantify and measure this aspect of performance. And
it would be best if, instead of each lab and working group
devising their own set of standards, there were a common
standard. To this end, I suggest a way to specify an envi-
ronment that allows for such factors as its complexity, in-
formation density, variability and volatility to be measured.
From such measures I show how derivative measures of
environmentally-relative task difficulty and degree of pertur-
bation can be developed, and suggest some different metrics
for measuring task performance.

Comparison with Related Work
First, it should be made clear that while the specification of-
fered here could be used to build new testbeds, it can also
be used to characterize the properties of existing testbed en-
vironments in a uniform way. Thus, what is offered here
is less a blueprint for new standard testbed implementa-
tions, and more a suggestion for a standard way of measur-
ing some important properties of the testbed environments
within which cognitive agents operate. It is perhaps worth
noting that the lack of a standard way to evaluate cognitive
agents has prompted DARPA to modify their Cognitive In-
formation Processing Technology research initiative to in-
clude Cognitive Systems Evaluation as a focal challenge.1

One weakness of some domain specifications, from the
standpoint of evaluating perturbation tolerance, is that they
focus on controlling the characteristics and interactions of
the agents in the world, rather than on fine control of the
world itself. In MICE, for instance (Durfee & Montgomery
1989), the main goal was “an experimental testbed that does
not simulate any specific application domain, but can instead
be modified to impose a variety of constraints on how agents
act and interact so that we can emulate the different coordi-
nation issues that arise in various application domains.” This
strategy is, of course, perfectly sensible when it is the coor-
dination strategies of multi-agent systems that is under in-
vestigation, but it provides little foundation for measures of
perturbation tolerance per se.

Another weakness of some domain specifications is the
limited number of environmental features that can be eas-
ily isolated and measured. For instance, the Phoenix testbed
(Greenberg & Westbrook 1990; Cohen et al. 1989) offers
ways of building complex and dynamic environments (in
which the main task is fighting forest fires), but does not
offer a general method for measuring the complexity and
dynamicity of those environments. Even what is perhaps
the most popular and adjustable of the standard test do-
mains for simulated autonomous agents, Tileworld (Pollack
& Ringuette 1990), suffers somewhat from this defect. The
main task in Tileworld is to fill holes with tiles, quickly and
efficiently, while avoiding obstacles. Among the strengths
of Tileworld is its ability to easily measure the performance
trade-off between deliberation and reactivity. Tileworld al-
lows one to set the value of such environmental variables
as the frequency with which objects appear and disappear,

1http://www.darpa.mil/baa/baa02-21mod6.htm

the number and distribution of objects, and the reward value
for filling each hole. However, as important as these envi-
ronmental variables are, there are also other aspects of an
environment with which a cognitive agent must cope, and
against which performance should be measured. In addition,
it is not clear how to translate the variables governing Tile-
world to those governing other environments. Finally, Tile-
world tests only planning (and plan implementation) perfor-
mance. But cognitive agents may also need to be able to
perform such tasks as the inference-based categorization or
identification of objects; the communication of accurate in-
formation about an environment; and the mapping of stable
environmental features. The current proposal, in providing
a more general environmental specification, aims to lay a
foundation for measuring performance in these tasks as a
function of the complexity of the environment, and to make
cross-domain and even cross-task comparisons easier.

Environmental Specification
It is proposed that the environment consist of a n-
dimensional grid2 and a large number of propositions (in-
cluding sets of numeric values and node activations, to sim-
ulate the operation of perceptual NNs, sonar, etc.) that can
characterize each location, or “square”, in the grid. Each
square may be adjacent to (accessible from) one or more
other squares. Each proposition p might or might not hold
in each square s. As s comes into the perceptual range of
the agent, it “picks up” on the propositions that characterize
it (propositions consisting of numeric values “stimulate” the
appropriate perceptual systems directly; symbolic proposi-
tions are entered directly into the agent’s knowledge base
(KB), and might be thought of as the sort of structured rep-
resentations that would typically be delivered to a cognitive
system by a complex perceptual system like vision).3 The
combination of a grid of a certain size and shape with its
characterizing propositions is called an overlay (O).

Any given environment has many different features that
determine its complexity, independent of the task to be per-
formed in that environment. Specifying the environment in
the terms given above allows one to measure these features
as follows.

Basic Measures
n (overlay size): the number of squares in the overlay. If

the number of squares changes during the course of an
experiment, this will naturally have to be reflected in the
measure; whether it is best to use the average size, the fi-
nal size, or some other measure may depend on the details
of the experiment.
2For a discussion of the wide applicability of this model, see

the subsection on Generality and Extensibility, below.
3It is perhaps worth emphasizing that the only propositions rel-

evant to the specification are those characterizing features of the
environment that the agent would be expected to perceive or other-
wise pick up. The number of water atoms at a given location would
not be a relevant proposition unless the agent in question is capable
of seeing and counting water atoms. Note the implication that the
more perceptually sophisticated the agent, the richer its domain.



ρI (information density): the average number of propositions
characterizing each square.

Vo (variability): a measure of the degree of difference in the
characterizing propositions from square to square. Vo can
be calculated as the sum of the propositional difference
between each pair of squares in the overlay divided by
their geometric (minimum graph) distance:

(1) Vo =
∑n

i,j=1
Dp(si,sj)
G(si,sj)

.

Where Dp(si, sj) is the number of propositions that hold
in si but not in sj and vice-versa; G(si, sj) is the distance
between the squares and n is the total number of squares
in the overlay.

δo (volatility): a measure of the amount of change in the
overlay as a function of time. δo can be measured in a way
similar to Vo, except that rather than measure the propo-
sitional difference as a function of geographical distance,
we measure it as a function of temporal distance.

(2) δo =
∑n,t

i,j=1
Dp(si,1,si,j)

j
.

Where Dp(si,1, si,j) is the number of propositions that
hold in si at time 1, but not in si at time j, and vice-versa;
t is the total time of the simulation, and n is the number
of squares in the overlay.

I (inconsistency): the amount of direct contradiction be-
tween the beliefs of an agent (in its KB) and the propo-
sitions characterizing the environment. Note this must
be a measure of the number of direct contradictions be-
tween p and ¬p, since the inconsistency of any two sets
of propositions is in general undecidable (Perlis 1986).4
I can be measured as the percentage of propositions ini-
tially in the overlay that directly contradict elements of
the agent’s initial KB (e.g., 2%, 5%, 10%, 15%, 25%). In
the case where δo > 0, a more accurate measure might
be the average percentage of propositions, over time, that
directly contradict elements of the initial KB. Note, how-
ever, that this measure should not reflect the percentage
of direct contradiction between the environment over time
and the KB over time. I is meant to be a measure of one
kind of difficulty an agent might face in its environment,
that it needs to overcome (or at least manage) in order to
successfully cope with that environment. Thus, only the
initial KB should be used to determine I , for if, through
the efforts of the agent, I approaches zero as the test run
proceeds, this is a measure of the success of the agent, and
does not represent a reduction of the difficulty of the task
the agent faced.

4A practical aside: work with Active Logic shows that although
an indirect contradiction may lurk undetected in the knowledge
base, it may be sufficient for many purposes to deal only with di-
rect contradictions. After all, a real agent has no choice but to
reason only with whatever it has been able to come up with so far,
rather than with implicit but not yet performed inferences. Active
Logic systems have been developed that can detect, quarantine, and
in some cases automatically resolve contradictions (Purang 2001;
Elgot-Drapkin 1988; Elgot-Drapkin et al. 1993; Elgot-Drapkin &
Perlis 1990; Purang et al. 1999; Bhatia et al. 2001).

Do (overlay difference): a measure of the propositional dif-
ference between two overlays O1 and O2. Do can be mea-
sured as the sum of the propositional differences between
the corresponding squares of each overlay.
(3) Do =

∑n
i=1(sO1,i, sO2,i)

Two overlays may have precisely the same information
density, variability and volatility, and still be character-
ized by different propositions; hence this measure of over-
lay difference. This is useful for cases where an agent is
to be trained in one overlay, and tested in another, and the
question is how much the differences in the test and target
domains affect performance.

It is not expected that every testbed, nor every test run,
will make use of all these measures of environmental com-
plexity. Depending on the capabilities of the testbed, and
on what is being tested at the time, only a few of these
measures may be appropriate. Note further that, depend-
ing on the task, some of these measures can simulate oth-
ers. For instance, even in a completely stable environment
(δo = 0), the agent can experience the equivalent of volatil-
ity if Vo > 0, for as it traverses the environment each square
will offer different information. This difference may not af-
fect the agent at all if its sole task is to map the environment,
but it could make an inference-based task more difficult in
the same way that a changing environment would. Likewise
for the case where I > 0, for as the agent encounters these
contradictions, they can offer the equivalent of change, since
change can be understood in terms of p being true at one
time, and not true at another. Naturally, determining what
manner of variation affects what tasks is one of the items of
empirical interest to AI scientists. Isolating these different
kinds of complexity and change can help make these deter-
minations more specific and accurate.

Derivative Measures
The basic measures discussed above can be combined in var-
ious ways to construct any number of derivative measures.
One such measure of particular importance is of the overall
complexity of the environment.

C (complexity): a measure of the overall complexity of the
environment. C can be defined as the product of all the
non-zero basic measures:
(4) C = n× ρI × Vo × δo × (I + 1)

The intuition behind this compound measure of complex-
ity is that there are in fact many different reasons that an
environment might be difficult to cope with, all of which,
therefore, can be considered to contribute in some way to
the overall complexity of the environment itself, or to a mea-
sure of the environment’s contribution to the difficulty of
tasks to be performed there. For instance, a large environ-
ment is in some sense more complex than a small one ceteris
paribus, just because there is more of it to deal with. After
all, mapping or locating objects in a large environment is
likely to be harder than doing it in a small one. Likewise,
information density captures the notion that a more intricate
environment—one that requires a greater number of propo-
sitions to describe—will be harder to reason about or deal



with than a less intricate one. Sometimes this will mean that
a cognitive agent has more to think about in trying to act in a
more intricate environment, and sometimes this will mean it
has more to ignore; both can be difficult. The variability and
volatility of an environment expresses the intuition that an
environment that remains more or less the same from place
to place, and from time to time, is simpler than one that does
not. Inconsistency expresses the idea that an environment
that is very different from one’s expectations will be harder
to deal with than one that is not, and, similarly, the overlay
difference allows one to quantify the notion that moving be-
tween different domains can be difficult (and is likely to be
more difficult as a function of the difference).

It may well turn out, after further consideration, both that
there are more factors important to the complexity of an
environment, and that each factor contributes to a measur-
ably different degree to overall complexity (something that
might be expressed by adding various coefficients to equa-
tion 4). Likewise, perhaps it will turn out that more accurate
expression of overall complexity results from adding rather
than multiplying all or some of the various factors. I would
welcome such future developments as improvements of the
preliminary suggestions I am offering here. Ultimately, an
evaluation of the usefulness of these measures will require,
and suggestions for improvement will certainly result from,
their attempted application in evaluating the performance of
cognitive agents in increasingly complex environments. My
hope is only that they are well-specified enough in their cur-
rent form to lend themselves to such use.

Generality and Extensibility
I have characterized the test environment in terms of a grid
of squares of a certain size and shape. Naturally, such a
characterization is most directly applicable to artificial envi-
ronments in fact composed of such a grid (“grid worlds”).
However, it should be noted that whenever it is possible to
divide a domain into parts, and characterize (the contents
of) those parts in terms of some set of propositions, in the
sense defined above, then it should therefore be possible to
characterize and measure the complexity of that domain in
the terms set forth here. We might call such domains “grid-
available”.

One obvious case of a grid-available domain is one con-
sisting of a mappable terrain (or space) with discrete, local-
izable features. There are very many domains of this sort,
including those, like the world itself, that are not naturally
structured according to a grid, i.e. that are continuous. It is
nevertheless possible, albeit with some abstraction, to use-
fully divide such a domain into spatial parts, and character-
ize the features of each part in terms of a set of propositions.

Another class of domains that are grid-available are those
that, while not strictly-speaking spatial, nevertheless con-
sist of individualizable information-parts. A database is
one such domain, and the World Wide Web is another. In
each case, the domain consists of individual parts (records,
pages), with specifiable contents, that may be adjacent to
(linked to, accessible from) one or more other part. Depend-
ing on the needs of the experiment, an “overlay” might be
defined as an entire database or set of web-pages, or some

particular subset, as for instance the recordset returned by a
given query.

Finally, well-specified state spaces are also grid-available
domains. Each state corresponds to a “square” in the grid,
and the agent can take actions that move it between states.
The states themselves can be characterized in terms of some
set of propositions.

Examples of domains that are not grid-available include
truly continuous or holistic domains that cannot be usefully
broken into parts and/or have few or no local properties (all
properties are properties of the whole). Domains described
at the quantum level appear to be of this sort, as global quan-
tum properties are often not determined by local ones, mak-
ing analysis of the parts far less useful than in classically
described domains.

Sample Performance Metrics
In keeping with the philosophy that flexibility and
adaptability—an ability to get along even in difficult
circumstances—are among the paramount virtues of cog-
nitive agents, we suggest that evaluating task performance
is more important than evaluating such things as reasoning
speed, throughput, or the degree of consistency in a post-test
KB. Indeed, for a cognitive agent it may be that maintaining
a consistent database is in general less important than being
able to deal effectively with contradictions while continu-
ing to operate in a dynamic environment.5 Consider, for in-
stance, a target location task, where the agent must traverse
an environment containing 100 targets (lost hikers, for in-
stance) and find them all as quickly as possible. A simple
measure of performance6 here might be:

(5) M = (TP )
(tA)

where T is the number of targets correctly identified,7 A
is the percentage of environmental area covered at the time
the measurement is taken (this allows a measure of M to
be taken at any time in the run, e.g., when A = 0.25, A =
0.5, A = 0.75 etc.), t is time elapsed, and P is the per-
centage of task completion (percentage of targets, out of all
100, correctly identified). Because a low performance time
is generally only desirable when task completion is high, t
is divided by P to penalize fast but sloppy performers.

In the case where the identification of the target is
inference-based, and therefore liable to error (for instance,
the agent has to tell the difference between lost hikers, park
rangers, and large animals), tracking not just correct target
IDs (True Positives, or TP) but also False Positives (FP),

5This is because, for any sufficiently complex knowledge base
that was not produced by logical rules from a database known to
be consistent, and/or to which non-entailed facts are to be added
(e.g. from sensory information), it will not be possible to know
whether it is consistent, nor to use principled methods to maintain
consistency (Perlis 1986). Thus, contradictions are in this sense
practically inevitable.

6The metric offered here is one example of a task-based metric
that captures much that is useful.

7The variable T might also be calculated as correct IDs minus
incorrect IDs (TP − FP , see below).



False Negatives (FN), and True Negatives (TN) will allow
one to use the following standard performance metrics:

Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

PPV (Positive Predictive Value) = TP
TP+FP

NPV (Negative Predictive Value) = TN
TN+FN

Although the bare metric M , and the measures for sen-
sitivity, specificity, PPV and NPV, give one straightforward
way to compute the performance of a given agent, and to
compare the performance of different systems, when one is
dealing with cognitive agents that can learn, it is also very
important to measure the change in performance over time,
and as a function of increased environmental complexity.
Successive M values can be compared to assess the learn-
ing or improvement rate of the system. Likewise, succes-
sive values for the environmental complexity measures can
be used to assess the agent’s improving ability to handle in-
creased environmental difficulty, for instance:

Ct (avg. complexity tolerance) = ∆C
∆M

Vot (avg. variability tolerance) = ∆Vo

∆M

δot (avg. volatility tolerance) = ∆δo

∆M

Dot (avg. domain flexibility) = ∆Do

∆M

Similar metrics can of course be used for measuring
changes in sensitivity, specificity, PPV, and NPV as a func-
tion of task complexity. These various measures taken to-
gether can give a clear picture of the perturbation tolerance
of a given cognitive agent.

Finally, because the special abilities possessed by some
cognitive agents, such as getting advice, reorganizing one’s
KB, or changing one’s conceptual categories, can be very
time-consuming, their worth depends a great deal on the
value of accuracy -vs- the need for quickness in a given task.
Thus in many cases it is sensible to introduce the domain
variable RV , a subjective measure of the importance of ac-
curacy in the current task-domain. Although the variable
RV does not actually change anything about the domain it-
self, it can be used to inform the agent about the character-
istics of its task. For the autonomous agent with complex
cognitive abilities, and the ability to measure and track its
own performance, RV can provide a threshold measure as
to when (and when not) to stop and ponder.

Implementation and Application
A general test domain—PWorld—allowing for relatively
easy characterization according to the suggested standard
has been implemented as a component object model (COM)
object on Microsoft Windows. PWorld is an n× n grid, and
all elements of the world, including characterizing propo-
sitions, are stored and tracked in a database, with which
PWorld communicates using ActiveX Data Objects (ADO).
Active elements of the world—e.g. agents, weather, and

such things as plants that can wither or grow—are imple-
mented as separate COM objects that can communicate di-
rectly with the world, and indirectly with other active ele-
ments, by calling PWorld’s various methods, such as:
addProposition(), sense(), move(), and eat().

PWorld was recently used to measure the perturbation tol-
erance of an agent using a standard reinforcement learning
technique (Q-learning), and to compare it to the perturbation
tolerance of an agent using a version of Q-learning that was
enhanced with simple metacognitive monitoring and con-
trol (MCL) to create a very simple cognitive agent. The
basic idea behind Q-learning is to try to determine which ac-
tions, taken from which states, lead to rewards for the agent
(however these are defined), and which actions, from which
states, lead to the states from which said rewards are avail-
able, and so on. The value of each action that could be taken
in each state—its Q-value—is a time-discounted measure of
the maximum reward available to the agent by following a
path through state space of which the action in question is a
part.

The Q-learning algorithm is guaranteed, in a static world,
to eventually converge on an optimal policy (Watkins 1989;
Watkins & Dayan 1992), regardless of the initial state of
the Q-learning policy and the reward structure of the world.
Moreover, if the world changes slowly, Q-learning is guar-
anteed to converge on near-optimal policies (Szita, Takács,
& Lörincz 2002). This is to say that Q-learners are already
somewhat perturbation tolerant. However, we found that the
actual performance of a Q-learner in the face of perturba-
tion varies considerably, and, indeed, that post-perturbation
performance is negatively correlated to the degree of per-
turbation (R = −0.85, p < 0.01). We further discovered
that adding even a very simple metacognitive monitoring
and control (MCL) component, that monitored reward ex-
pectations and, if expectations were repeatedly violated, in-
structed the Q-learner to change its policy in one of a number
of ways, could greatly improve the perturbation tolerance of
a Q-learner. The comparative performance results are sum-
marized in Figure 1. The results show a high degree of cor-
relation between the degree of the perturbation and the ratio
of MCL to non-MCL performance (R = 0.79, p < 0.01).
See (Anderson et al. submitted) for details.

However, from the standpoint of the current paper, what
is important is the evaluation scheme in general, and our es-
timate of the “degree of perturbation” in particular. For this,
the experiment must be understood in some more detail. To
establish the above results, we built a standard Q-learner,
and, starting with no policy (all Q-values=0), placed the Q-
learner in an 8x8 grid-world—the possible states being loca-
tions in the grid—with reward r1 in square (1,1) and reward
r2 in square (8,8). The initial reward structure [r1,r2] of the
world was one of the following: [10,-10]; [25,5]; [35,15];
[19,21]; [15,35]; [5,25]. The Q-learner was allowed to take
10,000 actions in this initial world, which was enough in all
cases to establish a very good albeit non-optimal policy. Af-
ter receiving a reward, the Q-learner was randomly assigned
to one of the non-reward-bearing squares in the grid. In turn
10,001, the reward structure was abruptly switched to one
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Figure 1: Ratio of MCL/non-MCL post-perturbation perfor-
mance, as a function of the degree of perturbation. (R =
0.79, p < 0.01)

of the following: [25,5]; [35,15]; [19,21]8; [15,35]; [5,25],
[-10,10].

Our task-based performance measure for the Q-learner
was the ratio of actual average reward per action taken
(henceforth, per turn) to the ideal average reward per turn,
i.e., the average reward per turn theoretically available to a
Q-learner following an optimal policy in the given environ-
ment. To get a handle on the difficulty of each perturbation,
we first considered that the learned Q-table can be visualized
as a topographic overlay on the grid world, where positive
rewards are attractors, and negative rewards are repulsors,
and the grade of the topography (the differences in the Q-
values for each action at each location) corresponds to the
degree of attraction to a given reward. Following the policy
recommended by the Q-table is equivalent to moving down-
hill as quickly as possible. For simplicity, we can abstract
considerably from this picture, and imagine that each square
of the policy-overlay contains a proposition indicating the
direction of the slope—toward (1,1), or toward (8,8). For a
given perturbation, then, we can get one factor in the dif-
ficulty of the change, by counting the number of squares
where the propositions characterizing the slope (as deter-
mined by an ideal policy) have changed. Thus, for instance,
to go from the ideal abstract policy for reward structure [10,-
10] (every square says go to (1,1)) to the abstract policy for
reward structure [-10,10] (every square says go to (8,8)) in-
volves a large overlay difference (Do) of value 64, but going
from [19,21] to [21,19] involves essentially no overlay dif-
ference.9

8Except when the initial structure was [19,21], in which case
the post-perturbation structure was [21,19]

9It should be noted that this is an adaptation of the meaning
of overlay and overlay difference to fit the experimental circum-
stances, and the nature of the agent being tested. If we understand
the task of a Q-learner in terms of uncovering and mapping the
reward-based topography of a given region, then this is the relevant
difference between two regions that needs measuring when assess-

Another factor in measuring the degree of perturbation
we considered for the current case was any valence change
in the rewards. A valence change makes the perturbation
greater because it makes it harder for the agent to actually
change its abstract policy (one way to think about this might
be as the mathematical equivalent of a contradiction). For
instance, a negative reward that becomes positive (V +) is
masked from the agent because the policy is strongly biased
against visiting that state. Thus, in light of the above con-
siderations, we devised an equation to estimate the degree of
perturbation (Dp) in each of the 22 cases:

(6) Dp = Do/16 + 3V + + V −

The experiment as described primarily evaluated the per-
turbation tolerance of the agent in terms of its ability to
move effectively between different (abstract) overlays, mak-
ing the overlay difference the most relevant measure. How-
ever, other aspects of the test domain can indeed be mea-
sured according to the metrics offered here.

n (overlay size) = 64. There are 64 squares in the overlay.
ρI (information density)= 3. Three propositions characterize

each square: an X value and Y value that correspond to
its location, and an R value that corresponds to the reward
available there.

Vo (variability)= 0.36. The average minimum graph distance
between squares in the grid is 5.5, and the average propo-
sitional difference is just above 2 (a square can differ by
at most 3 propositions (X, Y and R), however most of the
squares differ by 2 (X and Y, X and R, or Y and R), and a
few by only 1 (X or Y)).

δo (volatility)= 0. The overlay does not change over time.
I (inconsistency)= 0%/3%. Two values are given here, be-

cause when the agent begins the experiment, it has no be-
liefs, and there is therefore no inconsistency. However,
when it moves between the two overlays, it has 64 beliefs
about the rewards available in each square. Two of these
beliefs are in direct conflict with the state of the world
(2/64 = 0.03). Note the agent also has a number of be-
liefs about what actions to take in what circumstances to
achieve maximum reward; many of these beliefs are false
in its new circumstances. However they are not directly
about the world, and nothing that the agent can perceive
about the world directly contradicts any of these beliefs.
Therefore, these do not count toward the measure of in-
consistency.

Conclusion
In this paper I have suggested a standard way to character-
ize the size, information density, variability, volatility, and
inconsistency of a given test environment, each of which
contribute to the complexity of that environment. I have
also suggested a way to measure the difference between two

ing the difficulty of moving from one to the other. Such adaptation
of shared definitions and terms to individual circumstances is in-
evitable, and care must be taken in each case to properly explain
individualized uses, and to remain sensitive to the overall goal of
allowing cross-experiment comparisons.



different environments of the same size. From these basic
measures, I have shown how one can construct more com-
prehensive measures of the complexity of the environment,
and I have given several examples of how the metrics can
be used to measure the task performance and perturbation
tolerance of cognitive agents. Finally, I showed how some
of the metrics were applied to demonstrate that a metacog-
nitive monitoring and control component could enhance the
perturbation tolerance of a simple machine-learner.
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