
Metacognition for Dropping and Reconsidering Intentions ∗

Darsana P. Josyula1, Michael L. Anderson2 and Don Perlis1,2

(1) Department of Computer Science
(2) Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742
{darsana, anderson, perlis}@cs.umd.edu

Abstract

In this paper, we present a meta-cognitive approach for drop-
ping and reconsidering intentions, wherein concurrent actions
and results are allowed, in the framework of the time-sensitive
and contradiction-tolerant active logic.

Introduction
Intentions are commitments for future course of actions;
when an agent adopts an intention to execute an action,
it makes a commitment to perform that action. There-
fore, intentions usually resist being dropped or reconsid-
ered in normal situations. However, in a dynamic world
wherein the environment can change any time, intentions
may have to be dropped or reconsidered (Bratman 1987;
1999). For instance, an agent may create an intention to
wash the car on Saturday. In normal situations, this will
cause the agent to actually execute the action of washing the
car on Saturday. But, suppose the car gets wrecked on Fri-
day; this event has to cause the agent to drop the original
intention to wash the car on Saturday. Similarly, an agent’s
intention to wash the car on Saturday at 10:00 am may have
to reconsidered (and re-scheduled) if the agent has to drive
to New York at 10:00 am on Saturday, assuming that wash-
ing the car and driving the car are not activities that can be
performed concurrently.

Intention reconsideration may need to occur, not only be-
fore the action associated with an intention has been initiated
(as in the examples above), but also possibly after the action
has been invoked. For instance, an intention to listen to mu-
sic, may cause the action of switching on the radio; but if the
radio is not working, the intention remains unachieved and
hence the intention needs to be reconsidered. This reconsid-
eration may result in switching on the CD player or the tape
player instead of the radio.

Selecting a good policy for dropping and reconsidering
intentions is extremely important for any resource bounded
agent. For, as noted in (Bratman, Israel, & Pollack 1988),
reconsidering intentions too often can be too costly from
a computational point of view, while not reconsidering in-
tentions can produce incorrect results (or unwanted behav-

∗This research was supported in part by AFOSR and ONR.
Copyright c© 2005, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

iors) in a dynamic world. Experimental studies (Kinny &
Georgeff 1991; Schut & Wooldridge 2000) have shown that
cautious agents—those that reconsider intentions at every
possible opportunity—outperform bold agents—those that
reconsider intentions only after executing the current set of
intentions—in highly dynamic worlds, while the reverse is
true for static worlds. Since the dynamicity of an environ-
ment can vary from time to time, it is important to have
agents that are neither bold nor cautious, but adaptive—that
is, agents that can adapt their commitment levels at run time.

One way of creating such an adaptive agent is to have a
metacognitive process that “watches” the agent’s current in-
tentions, notes them as achievable, unachievable or achieved
and drops those that have been achieved or are known to be
unachievable in the future. Thus, the metacognitive process
strives towards maintaining an achievable set of intentions
for an agent to act on. And, the agent commits to act only
on this achievable set of intentions. As a result, an agent
may behave boldly or cautiously depending on the particu-
lar environment in which it is situated, and the amount of
resources it has for reasoning. When there are many inten-
tions for an agent to reason about in a limited time, it will
behave boldly whereas when the agent has very few inten-
tions to act on and it has more time in hand, it will behave
cautiously.

If overlapping and concurrent actions are not allowed,
then determining the set of achievable intentions primarily
involves choosing intentions based on which ones have had
their preconditions met. However, in many situations it is
not practical to disallow overlapping and concurrent actions.
For, certain effects can result only when actions are done to-
gether. A classic example is that of “clapping”; to produce
a particular sound effect, the actions of moving the left hand
towards the right and moving the right hand towards the left
are to be done simultaneously. Although performing some
actions concurrently is desirable, doing some other actions
concurrently can lead to disaster. For instance, switching on
two heaters in a room can warm the room quicker; however
kicking with both legs can result in a fall. This is because
of certain actions interfering with the preconditions of other
actions as noted in (Reiter 1996). For instance, the precon-
dition of kicking with the right leg is that one should not
be kicking with the left leg at the same time. Similarly, the
effects of actions can interfere with one another (Boutilier

& Brafman 2001), as in pushing and pulling an object at
the same time. Therefore, when overlapping and concur-
rent actions are allowed, implementing a metacognitive pro-
cess that can choose the set of achievable intentions becomes
tougher.

In this paper, we discuss how this issue is tackled within
the framework of the time-sensitive active logic. The follow-
ing sections examine some key features of active logic and
how these features help create an agent that can make deci-
sions about dropping and reconsidering its intentions at run
time, even in situations where concurrent actions and results
are allowed.

Active Logic
Active logics (Elgot-Drapkin & Perlis 1990), are a family of
formalisms that combine inference rules with a constantly
evolving measure of time (a ‘now’) that itself can be ref-
erenced in those rules; thus the evolving knowledge base
is naturally integrated into the ongoing reasoning processes.
Each “step” in an active logic proof takes one active logic
time-step; thus inference always moves into the future at
least one step. An active logic usually has an observation
function that incorporates new formulas into the logic at any
step.

To achieve much of their reasoning, active logics employ
a notion of “now” that is constantly updated by a “clock
rule” (1), which states that from the fact that it is step t at
the current step, the step number of the next step is t+ 1.

t : now(t)

t+ 1 : now(t+ 1)

(1)

Since the notion of inference in active logics is time-
dependent, only those inferences that have actually been
carried out so far can affect the present state of the agent’s
knowledge. As a result, even if directly contradictory wffs,
P and ¬P, are in the agent’s KB at time t, it need not be the
case that those wffs have been used by time t to derive any
other wff, Q. Indeed, it may be that t is the £rst moment at
which both P and ¬P occur simultaneously in the KB.

By endowing an active logic with a “con¤ict-recognition”
inference rule such as that in (2), direct contradictions can
be recognized as soon as they occur.

t : P,¬P

t+ 1 : contra(i, P,¬P)

(2)

In active logic, most formulas (exceptions include the
ones related to the current time) in one step that are not di-
rectly contradicting are inherited to the next step. This is
controlled by inheritance rules. One simple version of such
an “inheritance rule” which also illustrates the use of £ring
conditions, is shown in (3).

t : A [condition : ¬A 6∈ KB,A 6= now(t)]

t+ 1 : A

(3)

In active logic, negative introspection—the ability to de-
termine that one does not know something—is often en-
coded as the following inference rule (4), where the notation
...[B] means that B is not present.

t : ...[B]

t+ 1 : ¬Know(t, B)

(4)

Active logic maintains a temporal history of its reasoning
process that can be used by the logic for further reasoning.
The history enables the logic to determine when each for-
mula was added or deleted in the past.

Each formula in an active logic has an associated name
and the logic permits an individual formula to be referenced
by its name. This quotation feature together with the history
mechanism allows the logic to reason about its own past rea-
soning.

Finally, the logic has a special proposition, call, which
if proven, will initiate external action that can be reasoned
about and tracked through observation.

Implementation
Alma/Carne (Purang 2001) is a general purpose implemen-
tation of active logic. It has a dual role—(i) acting as the
language to specify active logic based applications and (ii)
providing the core reasoning engine for these applications.

In its role as a language, Alma/Carne allows applications
to be speci£ed as a set of logical sentences and procedures.
When the sentences are loaded into Alma and the procedures
into Carne, Alma/Carne takes the role of a reasoning engine.
In this role, Alma generates active logic inferences, some of
which trigger procedures in Carne. These procedures can
perform some computation or cause effects in the world.
Alma’s state is updated with the status of the procedures
(e.g.. done, doing) which enables reasoning about the pro-
cesses Alma triggered. Failure of a procedure, for instance,
can lead to reasoning that causes retraction of earlier as-
sumptions. Carne can also monitor the world and assert for-
mulas about the state of the world into Alma, implementing
the observation functionality of active logic. This enables
Alma to react to changes in the world. Thus Alma/Carne
can initiate, observe and respond to external events and non-
logical processes.

The notation used in this paper to represent some of the
symbols in the Alma/Carne language is given in Table 1.

ALFA
ALFA—Active Logic For Agents—is a reasoner based on
Alma/Carne with representations for desires, intentions, ex-
pectations and achievements. In general, an agent based on

Table 1: Alma Symbols, Description and Notation used

Alma Symbol Description Notation
and classical and operator ∧
or classical or operator ∨
forall forall operator ∀
not negation operator not
\+ negation on failure ¬
if classical if operator →
fif forward chaining if #
bif backward chaining if a "
pos int positive introspection pos int
bs breadth £rst search b bs
df deletes formula df
contra contradiction contra
reinstate reinstate formula reinstate

aTriggers backward chaining, while doing a breadth-£rst search
bUses bif formulas to conduct the search

ALFA can have desires to achieve sets of concurrent actions
or results at different times. ALFA transforms achievable
desires to intentions and achievable intentions to actions.
Actions cause changes to different properties of objects and
these properties need to be observed to determine whether
the changes have been effective. For this, ALFA creates ex-
pectations regarding the new value of the property, and these
expectations may then get transformed into desires to actu-
ally observe the value of that property. For instance, per-
forming the action—turning the heater on—causes an ex-
pectation that the water temperature increases; this expecta-
tion causes a new desire to observe the water temperature.

In ALFA, an intention for θ, where θ is a set of either
concurrent actions or simultaneous results, is represented as
intention(Id, Type, θ, T1, T2). Here, Id is a unique iden-
ti£er that distinguishes different intentions and Type is a
constant—action or result—depending on whether θ de-
notes a set of actions to be performed concurrently or a set
of results to be obtained simultaneously. T1 and T2 denote
the time period in which the actions are to be performed or
the results need to be obtained. The different values that T1
and T2 can take include all non-negative integers.

Preconditions for actions and results are represented in
ALFA as precondition(κ, θ′) where θ′ is either an action or
a result and κ is either pos int(F) or ¬pos int(F), where
F is any formula.

In ALFA, the effect of a set of concurrent actions α
is represented as effect(α, β′, τ1, τ2), where β′ is either
has(Obj, Prop, V al) or observation(Obj, Prop) depend-
ing on whether α causes a change in the property of an ob-
ject or an observation of a property of an object. τ1 and
τ2 together specify the duration for which the result can be
observed; that is, β′ can be observed for τ2 steps, starting
τ1 steps after the step at which the actions in α have been
invoked. τ2 = 0 indicates that the effect persists.

ALFA maintains an achievable set of intentions for the
agent to act on, with the help of a metacognitive process that

notes intentions as achievable or unachievable. The different
components of this metacognitive process are discussed in
some detail below. In the formulas discussed below, t refers
to the current time step; that is, now(t) evaluates to true.

Achievable vs Unachievable Intentions
ALFA makes a determination about whether an intention is
achievable or not, based on the following:

a. if any precondition of the action or result associated with
an intention no longer holds, then that intention is un-
achievable.

b. intentions that interfere with each other are unachievable.
c. all other intentions are achievable.

ALFA implements condition [a] by rules (5), (6), (7) and
(8), [b] by (9) and [c] by rules (10) and (11).

Unachievable Intentions If θ has not been performed or
produced before step T2, then the corresponding intention is
marked as unachievable using rule (5).

intention(Id, Type, θ, T1, T2) ∧ (T2 < t)∧

form to name(intention(Id, Type, θ, T1, T2), N)

not(achievable(N))

(5)

Formula (6), speci£es that an intention for a set of actions
or results cannot be achieved if the preconditions for the ac-
tions or results associated with the intention do not hold.

intention(Id, Type, θ, T1, T2) ∧ ∃θ′∈θ

[precondition(κ, θ′) ∧ ¬κ]∧

form to name(intention(Id, Type, θ, T1, T2), N)

not(achievable(N))

(6)

An intention to obtain a concurrent set of results β cannot
be achieved if the agent does not know how to cause some
β′ ∈ β. This is speci£ed as rule (7) below.

intention(Id, result, β, T1, T2)∧

∃β′∈β [¬pos int(effect(, β′, ,))]∧

form to name(intention(Id, result, β, T1, T2), N)

not(achievable(N))

(7)

Rule (8) states that an intention for a set of concurrent
results β is unachievable, if there is some β′ ∈ β that cannot
be achieved before T2.

intention(Id, result, β, T1, T2)∧

∃β′∈β [∀α[effect(α, β
′, τ1, τ2)→ ((t+ τ1 > T2)

∧ ∃α′∈α[¬pos int(doing(α′, Id))∧

¬pos int(done(α′, Id))])]]∧

form to name(intention(Id, result, β, T1, T2), N)

not(achievable(N))

(8)

Rules (7) and (8) assume that the set of results β has to be
achieved on an all or none basis.

Rule (9) marks intentions that interfere either with itself
or with other intentions as unachievable.

intention(Id, Type, θ, T1, T2)∧

form to name(intention(Id, Type, θ, T1,

T2), N) ∧ bs(interferes(N,))

not(achievable(N))

(9)

Achievable Intentions An intention for a set of actions α
is achievable, if the preconditions for each action α′ ∈ α
hold, the time at which the actions in α are to be invoked
has not elapsed and the intention does not interfere with any
other intention. This is speci£ed by rule (10).

intention(Id, action, α, T1, T2) ∧ (t < T2)∧

∀α′∈α [∀κ [precondition(κ, α
′)→ κ]]∧

form to name(intention(Id, action, α,

T1, T2), N) ∧ ¬pos int(interferes(N,))

achievable(N)

(10)

If there is an intention to achieve a set of results β, the set
of actions α that can cause β is known, all the preconditions
for α as well as β hold, and α can cause β before T2, then
that intention is marked as achievable using rule (11).

intention(Id, result, β, T1, T2)∧

∀β′∈β [∀κ[precondition(κ, β
′)→ κ]∧

∃α[effect(α, β
′, τ1, τ2) ∧ (t+ τ1 ≤ T2)∧

∀α′∈α∀κ[precondition(κ, α
′)→ κ]]]∧

form to name(intention(Id, result, β,

T1, T2), N) ∧ ¬pos int(interferes(N,))

achievable(N)

(11)

Interfering intentions
An intention is self-interfering if :

d. it has actions with contradictory effects or
e. it has results that are contradictory

Also, two intentions interfere with each other if any of the
following conditions hold:

f. the actions associated with the intentions have contradic-
tory effects.

g. the results associated with the intentions are contradic-
tory.

h. an action associated with one intention has an effect that
contradicts with the result associated with the other inten-
tion.

In ALFA, rules (12) and (13) implement conditions [d]
and [e] respectively, while rules (14), (15) and (16) imple-
ment conditions f, g and h respectively.

An intention for a set of actions α interferes with itself, if
there are subsets ᾱ1 and ᾱ2 for α such that β1 is the effect of
ᾱ1 and β2 is the effect of ᾱ2, and these effects (β1 and β2)

oppose each other and their durations overlap. This is given
by formula (12).

interferes(N,N) "

intention(Id, action, α, T1, T2) ∧ effect(ᾱ1, β1,

τ11
, τ21

) ∧ (ᾱ1 ⊆ α) ∧ effect(ᾱ2, β2, τ12
, τ22

)∧

(ᾱ2 ⊆ α) ∧ bs(contra effects(β1, β2))∧

bs(overlaps(T1 + τ11
, T2 + τ11

+ τ21
,

T1 + τ12
, T2 + τ12

+ τ22
)∧

form to name(intention(Id, action, α, T1, T2), N)
(12)

Formula (13) speci£es that an intention for a set of results
β interferes with itself, if β1 ∈ β opposes β2 ∈ β.

interferes(N,N) "

intention(Id, result, β, T1, T2)∧

∃β1∈β∃β2∈β [bs(contra effects(β1, β2))]∧

form to name(intention(Id, result, β, T1, T2), N)
(13)

An intention for a set of actions α1 interferes with another
intention for a set of actions α2 if there are subsets ᾱ1 and
ᾱ2 for sets α1 and α2 respectively, such that β1 is the effect
of ᾱ1 and β2 is the effect of ᾱ2, and these effects (β1 and
β2) oppose each other and their durations overlap. This is
given by formula (14).

interferes(N1, N2) "

intention(Id1, action, α1, T11
, T21

) ∧ effect(ᾱ1,

β1, τ11
, τ21

) ∧ (ᾱ1 ⊆ α1) ∧ intention(Id2,

action, α2, T12
, T22

) ∧ effect(ᾱ2, β2, τ12
, τ22

)∧

(ᾱ2 ⊆ α2) ∧ bs(overlaps(T11
+ τ11

,

T21
+ τ11

+ τ21
, T12

+ τ12
, T22

+ τ12
+ τ22

)∧

bs(contra effects(β1, β2))∧

form to name(intention(Id1, action, α1, T11
,

T21
), N1) ∧ form to name(intention(Id2,

action, α2, T12
, T22

), N2)

(14)

Formula (15) speci£es that an intention for a set of results
β̄1 interferes with another intention to achieve a set of results
β̄2, if the time periods for the intentions overlap and β1 ∈ β̄1
opposes β2 ∈ β̄2.

interferes(N1, N2) "

intention(Id1, result, β̄1, T11
, T21

)∧

intention(Id2, result, β̄2, T12
, T22

)∧

bs(overlaps(T11
, T21

, T12
, T22

)∧

∃β1∈β̄1
∃β2∈β̄2

[bs(contra effects(β1, β2))]∧

form to name(intention(Id1, result, β̄1, T11
,

T21
), N1) ∧ form to name(intention(Id2,

result, β̄2, T12
, T22

), N2)

(15)

An intention for a set of actions α interferes with another
intention for a set of results β if some effect β1 that α pro-
duces opposes some result β2 in β and the duration of β1
overlaps with the duration of β2. This is given by rule (16).

interferes(N1, N2) "

intention(Id1, action, α, T11
, T21

)∧

effect(ᾱ, β1, τ11
, τ21

) ∧ (ᾱ ⊆ α)∧

intention(Id2, result, β, T12
, T22

)∧

∃β2∈β [bs(contra effects(β1, β2))]∧

bs(overlaps(T11
+ τ11

, T21
+ τ11

+ τ21
, T12

, T22
))∧

form to name(intention(Id1, action, α, T11
,

T21
), N1) ∧ form to name(intention(Id2,

result, β, T12
, T22

), N2)
(16)

Contradictory Effects
Two effects or results are contradictory if they oppose each
other and their durations overlap. The conditions for two
time periods to overlap is speci£ed by formula (17).

overlaps(T1, T2, T3, T4) "

¬(T1 < T2 ∧ T3 ≤ T4 ∧ T2 < T3)∧

¬(T1 ≤ T2 ∧ T3 < T4 ∧ T4 < T1)

(17)

To determine whether two results or effects oppose each
other, ALFA makes use of rule (18).

contra effects(β1, β2) "

β1 = has(Obj, Prop, V al1) ∧ β2 = has(Obj,

Prop, V al2) ∧ bs(oppose(Obj, Prop, V al1, V al2))
(18)

Examples of axioms that represent opposing results (ef-
fects) are shown in (19).

oppose(, , increase, decrease) (19a)
oppose(, ,move left,move right) (19b)

Achieved Intentions
Once Carne asserts that an action α has been completed, the
intention that caused α is noted as achieved using (20).

intention(Id, action, α, T1, T2) ∧ (t < T2)∧

∀α′∈α[done(α
′, Id)]∧

form to name(intention(Id, action, α, T1, T2), N)

achieved(N)

(20)

An intention to change the property Prop of an object
Obj to value V al is noted as achieved if there is an obser-
vation which shows that property Prop indeed has the value
V al. Similarly, an achievable intention to observe the value
of property Prop of object Obj is marked as achieved if
there is an observation that provides the value V al for prop-
erty Prop. Both these scenarios are addressed by rule (21)

intention(Id, result, β, T1, T2) ∧ ∀β′∈β [(β
′ =

has(Obj, Prop, V al) ∨ β′ = observation(Obj,

Prop)) ∧ pos int(observed(Obj, Prop, V al, τ))∧

(T1 ≤ τ) ∧ (T2 ≥ τ)]∧

form to name(intention(Id, result, β, T1, T2), N)

achieved(N)

(21)

Contradictory Predicates
Whenever, there is a contradiction (e.g., achievable vs un-
achievable or intention vs not an intention) ALFA rules in
favor of the knowledge that it attains latter using the contra-
diction handling rules (22) and (23).

name to time(N1, T1) ∧ name to time(N2, T2)∧

(T1 ≥ T2) ∧ (contra(N1, N2,) ∨ contra(N2, N1,))

reinstate(N1)
(22)

name to time(N1, T1) ∧ name to time(N2, T2)∧

(T1 < T2) ∧ (contra(N1, N2,) ∨ contra(N2, N1,))

reinstate(N2)
(23)

Reconsidering Intentions
In a dynamic world, intentions can change from being un-
achievable to achievable or vice-versa. For instance, if a
particular intention is not achievable because of the lack of
knowledge about how to achieve a result, then the addition
of such knowledge will make the intention achievable. The
contradiction handling rules (22) and (23) can aid this trans-
formation. Since the agent acts on those intentions that it
presumes achievable, intentions that get transformed from
unachievable to achievable by the metacognitive process get
automatically acted upon by the cognitive process.

If an intention for a set of actions is unachievable and if
the agent had originally created this intention for achieving
a set of results, then the metacognitive process tries to create
an achievable intention to attain the same results. We omit
the speci£c rules that implement this scenario for lack of
space.

Dropping Intentions
ALFA maintains an intention as long as it holds (i.e., the in-
tention is true but not its negation), it is considered achiev-
able and it has not been achieved so far. Thus, an agent
based on ALFA can behave like an open-minded agent (Rao
& Georgeff 1991; 1992). Rules (24), (25) and (26) imple-
ment this behavior.

In ALFA, intentions that have been achieved are dropped
by (24).

achieved(N)

df(N)
(24)

Intentions that are unachievable in future are dropped by
(25).

not(achievable(N)) ∧ name to formula(N,

intention(Id, θ, T1, T2)) ∧ t > T2

df(N)

(25)

ALFA, drops intentions that are no longer goals for the
agent using formula (26).

not(intention(Id, θ, T1, T2))∧

form to name(intention(Id, θ, T1, T2), N)

df(N)

(26)

Conclusion
The importance of meta-level control of deliberation for
resource-bounded agents situated in dynamic domains has
been discussed in (Kinny & Georgeff 1991; Wooldridge &
Parsons 1999). The meta-level decision theoretic approach
(Schut & Wooldridge 2001; Wooldridge & Parsons 1999;
Parsons et al. 2000; Schut, Wooldridge, & Parsons 2004)
allows an agent, to choose its policy for intention reconsid-
eration at run-time, provided the frequency at which the en-
vironment changes is known before hand. However, in a
dynamic world, this frequency may not be static and hence
cannot be pre-determined. Besides, it is not clear how the
approach extends to an agent that can have intentions to per-
form concurrent actions as well as achieve concurrent re-
sults.

In this paper, we have presented a more general approach
for dropping and reconsidering intentions, wherein concur-
rent actions and results are allowed, based on the time-
sensitive active logic. Our approach uses a metacognitive
process, that dynamically marks intentions as achievable,
unachievable or achieved, drops futile or achieved intentions
and creates alternative intentions for currently unachievable
intentions when possible. Since, this process runs concur-
rently with the cognitive activities of the agent, the amount
of resources available to it, depends on real-time conditions.
Therefore, when time is limited, the metacognitive process
might not mark an intention as unachievable on time; con-
sequently, the resulting agent may actually try to act on that
intention. Thus, at times the agent may act too boldly while
at other times it may act too cautiously, but the idea is that,
it adapts its commitment level based on the conditions and
resources available at run-time.

References
Boutilier, C., and Brafman, R. I. 2001. Partial-order plan-
ning with concurrent interacting actions. Journal of Arti£-
cial Intelligence Research 14:105–136.
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and
Resource-bounded Practical Reasoning. Computational In-
telligence 4(4):349–355.
Bratman, M. E. 1987. Intention, Plans and Practical Rea-
son. Massachusetts, USA: Harvard University Press.
Bratman, M. E. 1999. Faces of Intention: Selected Essays
on Intention and Agency. Cambridge, UK: Cambridge Uni-
versity Press. 93–161.

Elgot-Drapkin, J., and Perlis, D. 1990. Reasoning Situated
in Time I: Basic Concepts. Journal of Experimental and
Theoretical Arti£cial Intelligence 2(1):75–98.
Kinny, D. N., and Georgeff, M. P. 1991. Commitment
and effectiveness of situated agents. In Proceedings of the
Twelfth International Joint Conference on Arti£cial Intelli-
gence (IJCAI-91), 82–88.
Parsons, S.; Pettersson, O.; Saf£otti, A.; and Wooldridge,
M. 2000. Intention reconsideration in theory and practice.
In Horn, W., ed., Proceedings of the Fourteenth European
Conference on Arti£cial Intelligence (ECAI-2000). John
Wiley.
Purang, K. 2001. Alma/Carne: Implementation of a Time-
situated Meta-reasoner. In Proceedings of the Thirteenth
International Conference on Tools with Arti£cial Intelli-
gence (ICTAI-01), 103–110.
Rao, A. S., and Georgeff, M. P. 1991. Modeling Ratio-
nal Agents within a BDI-Architecture. In Allen, J.; Fikes,
R.; and Sandewall, E., eds., Proceedings of the Second In-
ternational Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-91), 473–484. Morgan Kauf-
mann.
Rao, A. S., and Georgeff, M. P. 1992. An Abstract Ar-
chitecture for Rational Agents. In Rich, C.; Swartout,
W.; and Nebel, B., eds., Proceedings of the Third Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-92), 439–449. Morgan Kaufmann.
Reiter, R. 1996. Natural Actions, Concurrency and Contin-
uous Time in the Situation Calculus. In Proceedings of the
Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR -96), 2–13.
Schut, M. C., and Wooldridge, M. 2000. Intention recon-
sideration in complex environments. In Sierra, S.; Gini, M.;
and Rosenschein, J., eds., Proceedings of the Fourth In-
ternational Conference on Autonomous Agents (AGENTS -
00), 209–216. ACM Press.
Schut, M., and Wooldridge, M. 2001. Principles of in-
tention reconsideration. In Müller, J. P.; Andre, E.; Sen,
S.; and Frasson, C., eds., Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents - (AGENTS-01),
340–347. ACM Press.
Schut, M. C.; Wooldridge, M. J.; and Parsons, S. 2004.
The theory and practice of intention reconsideration. Jour-
nal of Experimental and Theoretical Arti£cial Intelligence
16(4):261–293.
Wooldridge, M., and Parsons, S. 1999. Intention recon-
sideration reconsidered. In Müller, J. P.; Singh, M. P.; and
Rao, A. S., eds., LNAI - Proceedings of the 5th Interna-
tional Workshop on Intelligent Agents V : Agent Theories,
Architectures, and Languages (ATAL-98), volume 1555,
63–80. Springer-Verlag.

