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Abstract

The current paper details a restricted semantics
for active logic, a time-sensitive, contradiction-
tolerant logical reasoning formalism. Central to
active logic are special rules controlling the in-
heritance of beliefs in general, and beliefs about
the current time in particular, very tight con-
trols on what can be derived from direct con-
tradictions (P&¬P ), and mechanisms allowing
an agent to represent and reason about its own
beliefs and past reasoning. Using these ideas,
we introduce a new definition of model and of
logical consequence, as well as a new definition
of soundness such that, when reasoning with
consistent premises, all classically sound rules
are sound for active logic. However, not every-
thing that is classically sound remains sound
in our sense, for by classical definitions, all
rules with contradictory premises are vacuously
sound, whereas in active logic not everything
follows from a contradiction.

1 Introduction

Real agents have some important characteristics that we
need to take into account when thinking about how they
might actually reason logically: (a) their reasoning takes
time, meaning that agents always have only a limited,
evolving awareness of the consequences of their own be-
liefs1, and (b) their knowledge is imperfect, meaning that
some of their beliefs will need to be modified or retracted,
and they will inevitably face contradictions and other
inconsistencies. The challenge from the standpoint of

1Levesque’s distinction between explicit and implicit be-
liefs [Levesque, 1984] points to this same issue; however, our
approach is precisely to model the evolving awareness itself,
rather than trying to model the full set of (implicit) conse-
quences of a given belief set.

classical logical formalisms is that, if an agent’s knowl-
edge base can be inconsistent, then according to classical
logic, it is permissible to derive any formula from it.

This fact about classical logics is commonly known
by the Latin phrase ex contradictione quodlibet: from
a contradiction everything follows. However, Graham
Priest has coined the somewhat more vivid term explo-
sive logics: a logic is explosive iff for all formulas A and
B, (A&¬A) → B. Priest defines a paraconsistent logic
precisely as one which is not explosive [Priest, 2002;
Priest et al., 1989; Priest and Tanaka, Summer 2004].
Now, clearly real agents cannot tolerate the promiscuity
of belief resulting from explosive logics, and must some-
how maintain control over their reasoning, watching for
and dealing with contradictions as they arise. The rea-
soning of real agents, that is, must be paraconsistent.
But what sort of paraconsistent logic might agents use-
fully employ, what methods might agents use to con-
trol inference and deal with contradictions, and how can
these logics (and methods) be modeled in terms of truth
and consequence in structures?

In the current paper we are primarily interested in
the last of these questions. For some time we have been
developing, and have had significant practical success
with, a time-sensitive, contradiction-tolerant logical rea-
soning formalism called active logic [Elgot-Drapkin and
Perlis, 1990; Miller and Perlis, 1993; Nirkhe et al., 1997;
Purang, 2001]. Here we offer a start on a semantics for
such a logic. We hope and expect it will be of interest as
a specific model of formal reasoning for real-world agents
that have to face both the relentlessness of time, and the
inevitability of contradictions.

2 Active logic

One of the original motivations for active logic was the
need to design formalisms for reasoning about an ap-
proaching deadline; for this use it is crucial that the rea-
soning take into account the ongoing passage of time as
that reasoning proceeds. Thus, active logic reasons one



step at a time, updating its belief about the current time
at each step, using rules like 1.

(1)
i : Now(i)

i+1 : Now(i+1)

This step-wise, time-aware approach gives active logic
fine control over what it does, and does not, derive and
inherit at each step; note, for instance, that Now(i) is
not inherited at time step i + 1.2 This is accomplished
by special inheritance rules like 2, shown below.

(2)
i : A
i+1 : A

[condition: ¬A 6∈ KB at step i and A 6= Now(i)]

Such step-wise control over inference gives active logic
the ability to explicitly track the individual steps of a
deduction. Thus, for instance, an inference rule can refer
the results of all inferences up until now—i.e. thru step
i—as it computes the subsequent results (for step i+1).
This allows an active logic to reason, for example, about
its own (past) reasoning; and in particular about what it
has not yet concluded. Moreover, this can be performed
quickly, since it involves little more than a lookup of the
current knowledge base.

Active logic’s step-wise control over inference, and its
built-in ability to refer to individual steps of reasoning,
make it a natural formalism for detecting and reasoning
about contradictions and their causes. For as soon as a
contradiction reveals itself—that is, as soon as P and ¬P
are both present in the KB—it is possible to “capture” it,
preventing further reasoning using the contradictands as
premises (and thereby preventing any explosion of wffs),
while at the same time marking their presence, to allow
further consideration of the cause of the contradiction.
Current implementations of active logic incorporate a
“conflict-recognition” inference rule like 3 for this pur-
pose.

(3)
i : P, ¬P
i+1 : contra(P, ¬P, i)

Through the use of such rules, direct contradictions
can be recognized as soon as they occur, and further
reasoning can be initiated to repair the contradiction,
or at least to adopt a strategy with respect to it, such
as simply avoiding the use of either of the contradic-
tands for the time being. Unlike in truth maintenance
systems [Doyle, 1979; 1980] where a separate process re-
solves contradictions using justification information, in
an active logic the contradiction detection and handling
[Miller, 1993] occur in the same reasoning process. Note

2To “inherit” P is, roughly speaking, to assert P at step
i+1 just in case it was believed at step i. However, in a tem-
poral, non-monotonic formalism what is justified now may
not be justified later. Thus, although inheriting is a rea-
sonable default behavior, there will be conditions and limits.
Inheritance and disinheritance are directly related to belief
revision [Gärdenfors, 1988] and to the frame problem [Mc-
Carthy and Hayes, 1969; Brown, 1987]; see [Nirkhe et al.,
1997] for further discussion.

that the contra predicate is a meta-predicate: it is about
the course of reasoning itself (and yet is also part of that
same evolving history).

Thus, speaking somewhat more broadly, active logic is
a paraconsistent logic that achieves its paraconsistency
in virtue of possessing two simultaneously active (and
interactive) modes of reasoning, which might be called
circumspective and literal. In literal mode, the reasoning
agent is simply working with, and deriving the conse-
quences of, its current beliefs. In circumspective mode,
the reasoning agent is reasoning about its beliefs, noting,
for instance, that it has derived a contradiction, and de-
ciding what to do about that. It is important to active
logic that these are not separate, isolated modes, but in-
teractive and part of the same overall reasoning process.

3 A semantics for real-world reasoning

In this section we propose a semantics for a time-
sensitive, contradiction-tolerant reasoning formalism,
based heavily on the basic features of active logic de-
tailed above.

3.1 Starting assumptions

In order to make the problem tractable for our first spec-
ification of the semantics, we will work under the follow-
ing assumptions concerning the agent, the world, and
their interactions:

• There is only one agent a.

• The agent starts its life at time t = 0 and runs
indefinitely.

• The world is deterministic and stationary for t ≥ 0.
Thus, changes occur only in the beliefs of the agent
a.

3.2 The language L

In order to express theories about such an agent-and-
world, we define a sorted first-order language L. We de-
fine it in two parts: the language Lw, a propositional lan-
guage in which will be expressed facts about the world,
and the language La, a first order language used to ex-
press facts about the agent and about the agent’s beliefs.
We write SnLan to mean the sentences of any language
Lan.

Definition 1 Let Lw be a propositional language con-
sisting of the following symbols:

• a set S of sentence symbols (propositional or sen-
tential variables) S = {Si : i ∈ N} (N is the set of
natural numbers).

• the propositional connectives ¬ and →

Definition 2 Let La be a sorted first-order language
that does not contain variables or quantifiers. It has
three sorts S1, S2, and S3. Sort S1 is the sort of sentences
in language Lw, S2 is the sort of times, and S3 is the sort
of sentences in language L = La∪Lw. La consists of the
following symbols:



• the propositional connective ¬

• a set of constant symbols C = {ci : i ∈ N}, each ci
is of sort S2 (time)

• a set of constant symbols D = {dσi
: i ∈ N}, each

dσi
is of sort S1 (SnLw

)

• a set of constant symbols E = {eθi
: i ∈ N}, each

eθi
is of sort S3 (SnL)

• the unary relation symbol Now of sort S2

• the ternary relation symbol contra of sort (S1 ×
S1 × S2)

• the binary relation symbol bel of sort (S3 × S2)

In La, Now is used to express the agent’s time, the
symbol contra is used to indicate the existence of a direct
contradiction in its beliefs, and the symbol bel expresses
the fact that the agent had a particular belief at a given
time. These will be defined formally in definition 5. All
the agent’s knowledge is expressed in SnL. The agent’s
knowledge may be incomplete, incorrect, or contradic-
tory.

3.3 The semantics of L
In the following several definitions, we define the seman-
tics of the formalism given above, in the standard way.

Definition 3 An Lw-truth assignment is a function h :
S → {T, F} defined over the set S of sentence symbols
in Lw.

Definition 4 An Lw interpretation h (we keep the same
notation) is a function h : SnLw

→ {T, F} over SnLw

that extends an Lw-truth assignment h as follows:
h(¬ϕ) = T ⇐⇒ h(ϕ) = F
h(ϕ→ ψ) = F ⇐⇒ (h(ϕ) = T and h(ψ) = F )

We also stipulate a standard definition of consistency
for Lw: a set of Lw sentences is consistent iff there is
some interpretation in which all the sentences are true.
Notationally we write the usual h |= Σ, to mean all the
sentences of Σ are assigned T by h.

4 A model of the agent’s La beliefs

First of all it is important to note that, even in the case
where the agent’s beliefs are incomplete, incorrect, or
inconsistent, there is always a complete and consistent
theory of those beliefs at the meta level, and this theory
can be expressed using the language La. For instance,
if the agent believes both Si and ¬Si, the two sentences
“the agent believes that Si” and “the agent believes that
¬Si” can both be true at the same time.

Thus, we define the La-structure at time t that models
the theory about the agent’s beliefs at the meta level,
given KBat (the agent’s knowledge base at time t).

Definition 5 Let Hr
t = (S1 = SnLw

,S2 = N,S3 =
SnL, {ci}i∈N , {dσi

}i∈N , {eθi
}i∈N , Now, contra, bel)

where:

• the sort S1 is the sort of sentences in the language
Lw; the sort S2 is the sort of the times; and the sort
S3 is the sort of sentences in the language L

• ∀i ∈ N, ci names the time index i

• Since Lw is a countable language then SnLw
is

countable, so can be enumerated as SnLw
= {σi :

i ∈ N}. The d-constants name every element in this
set, that is, ∀i ∈ N, dσi

names σi

• Since L is a countable language then SnL is count-
able, so it can be enumerated as SnL = {θi : i ∈ N}.
The e-constants name every element in this set, that
is, ∀i ∈ N, eθi

names θi

• The relation symbol Now has the following seman-
tics: Hr

t |= Now(cs) ⇐⇒ s = t
Now keeps track of the time, and indicates the cur-
rent time of the agent’s internal clock. Now is a
logical symbol so at every time step it has the same
interpretation in all structures.

• The relation symbol contra has the following seman-
tics: Hr

t |= contra(dσi
, dσj

, ck) all i, j, k ∈ N ⇐⇒
k ≤ t, σi;σj ∈ KBak ; and either σi = ¬σj or
σj = ¬σi for some σi and σj ∈ SnLw

contra indicates that σi and σj are in direct con-
tradiction, and that both were in the agent’s KB
at some time ck where k is less than or equal to t.
For simplicity of expression we will typically write
contra(dα, d¬α, ct).

• The relation symbol bel has the following semantics:
Hr
t |= bel(eθi

, ck) ⇐⇒ k ≤ t and θi ∈ KBak

bel has the rough meaning “believes that”, and simply
states that a given sentence from L was in the agent’s
KB at a time ck where k is less that or equal to t. We
will typically write bel(eα, ct).

Finally we define an L-structure that models the the-
ory of the agent-and-world.

Definition 6 An active structure at time t, shortly a-
structure, is an L-structure defined as follows: Mt =<
ht, H

r
t >

5 A model of the agent’s Lw beliefs

Now we turn to the challenging problem of how to model,
at the object level, the agent’s beliefs about the world,
given that these beliefs are not just evolving from mo-
ment to moment, but that at any given time, they may
be inconsistent.

First, we define two notions of temporal consistency
relative to the language L. We will not mention the
language when it is clear from the context.

Definition 7 A set of sentences Σ ⊆ SnL is said to
be temporally-strongly consistent at time t (t-strongly
consistent) if and only if ∃(Mt)[Mt |= Σ].

Definition 8 A set of sentences Σ ⊆ SnL is said to be
temporally-weakly consistent at time t (t-weakly consis-
tent) if and only if ∃(Mt)[Mt |= (Σ

⋂
SnLa

)].

From now on, we will assume that the agent’s KB is t-
weakly consistent, and therefore that the agent’s knowl-
edge at the meta-level is t-strongly consistent.



Definition 9 Let Σωt = {Σ ∈ P(SnL) : Σ is t-weakly
consistent and Σ is finite}

Next we define a new propositional language L′
w to

express the awareness of the agent of its knowledge about
the world (the notion of awareness will become clearer
as we proceed with our discussion).

Definition 10 The propositional language L′
w derived

from Lw consists of the following symbols:

• a set of sentence symbols S ′ = {Sji : j ∈ N and Si ∈
Lw}. Thus for every sentence symbol in Lw, there
is a corresponding infinite pool of sentence symbols
in L′

w.

• the propositional connectives ¬,→

Definition 11 Let L′ = L′
w

⋃
La. Let SnL′ =

SnL′

w

⋃
SnLa

. The language L′ is used to express the
agent’s awareness of its agent-and-world knowledge.

Note that definitions 7 and 8 can be extended to L′

We next define a perception (awareness) function for
an agent. The notion of a perception function is intended
to help capture, at least roughly, how the world might
seem to an agent with a given belief set KB. For a
real agent, only some logical consequences of its KB
are believed at any given time, since it cannot manage
to infer all the infinitely many consequences in a finite
time, let alone in the present moment. Moreover, even
if the KB has contradictory beliefs, the agent still has a
view of the world, and there will be limits on what the
agent will and won’t infer. This is in sharp distinction
to the classical notion of a model, where (i) inconsistent
beliefs are ruled out of bounds, since then there are no
models, and (ii) all logical consequences of KB are true
in all models.

The task we are addressing, then, is that of finding
a notion of model based somehow on semantic-like con-
cepts, yet that avoids both (i) and (ii) above. Our idea—
via perception functions—is to suppose that an agent’s
limited resources apply also to its ability to inspect its
own KB. Thus, if Si and ¬Si are both in the KB, the
agent might not realize, at first, that the two letters in
question are the same. Thus it might seem to the agent
that the world is one in which, say, S1

i is true, and so is
¬S2

i . Only later might the agent realize the two letters
are one and the same.

This allows the agent to have inconsistent beliefs while
still having a consistent world model. Later, when S1

i

and S2
i are unified into Si—i.e., when the agent real-

izes there is a conflict—it will take some remedial action
such as doubting one or both beliefs. Moreover, it al-
lows us to see how an agent with inconsistent beliefs
could avoid vacuously concluding any wff, and also rea-
son in a directed way, by applying inference rules only
to an appropriately perceived sub-set of its beliefs. We
hope that this approach can shed some light on focused,
step-wise, resource-bounded reasoning more generally.

In our definition we start with a t-weakly consistent
set Σ. The perception function can make changes only

to Σ
⋂
SnLw

, which we call Γ. A perception function
does not change Σ− Γ. We assume that the elements of
Γ are ordered alphabetically. We use the same notation
per when the perception function is applied to a sentence
symbol, a sentence, or a set of sentences.

Definition 12 A perception (awareness) function at
time t is a mapping: pert : Σωt → P(SnL′) defined by
a finite sequence of positive integers < i1, . . . , in > with
the following effect:

1. Let Sk be the kth sentence symbol in Γ. For k ≤ n,
pert(Sk) = Sikk . Then for φ ∈ Γ, pert(φ) = φ′ where
φ′ is obtained by applying pert to all the applicable
symbols in φ.

2. Let the set of contradictory pairs be defined
as follows: CP = {< φ,ψ > |pert(φ) =
¬pert(ψ) or pert(ψ) = ¬pert(φ)}.

3. pert(Σ) = (Σ − Γ)
⋃
{pert(φ)|φ ∈

Γ}
⋃
{contra(dφ, dψ, ct)| < φ,ψ >∈ CP}

−{pert(φ)| < φ,ψ >∈ CP} −{pert(ψ)| <
φ,ψ >∈ CP}

Note that in the above definition of the percep-
tion function we assumed that the agent can become
aware of the direct contradictions in its knowledge base.
And since we assume instantaneous awareness then this
means that the agent can capture these types of contra-
dictions immediately after they appear in its knowledge
base.

Definition 13 Let PERt be the class of all perception
functions at time t.

Note that there are infinitely many ways of assigning
superscripts to sentences, yielding infinitely many per-
ception functions at any given time.

Theorem 1 If KBat is t-weakly consistent, then there
is some pert ∈ PERt such that pert(KB

a
t ) is t-strongly

consistent (in L′).

Proof Assume that KBat is finite. Consider the sub-
set KBat

⋂
SnLw

= Γ, and the ordered set of all sen-
tence symbol tokens from S1 to Sn in Γ. Apply to
this set of sentence symbols the perception function
< 1, 2, 3 . . . , n > according to the procedure described
in definition 12, to obtain Γ′. That is, replace S1 with
S1

1 , S2 with S2
2 , etc. The result makes every sentence

symbol appearing in Γ′ unique. Now, if an even number
of the negation symbol is applied to a sentence symbol
x in a formula ϕ, we say x occurs positively in ϕ, oth-
erwise we say x occurs negatively in ϕ. Consider the
following truth assignment in Γ′: for each symbol that
occurs positively, assign a true value, otherwise assign a
false value. By this assignment every ϕ ∈ Σ′ would be
true and hence Γ′ is consistent. Since the remaining sen-
tences in KBat are consistent by assumption, pert(KB

a
t )

is t-strongly consistent.

Definition 14 Let pert ∈ PERt be a perception func-
tion at time t. We define KBapert

= pert(KB
a
t ) as the

agent’s perception of its knowledge base at time t. We



also define W a
pert

= (SnL′

w
∩KBapert

) as the agent’s per-
ception of the part of its own knowledge base concerning
the external world.

From the above definition and our prior assumptions,
W a
pert

is t-strongly consistent, so there exists a set of L′
w

interpretations Gpert
such that hpert

|= W a
pert

for every
hpert

∈ Gpert
.

Definition 15 Let pert ∈ PERt be a perception func-
tion at time t. Define Gpert

to be the class of
L′
winterpretations determined by W a

pert
.

Now we define an L′-structure that models the agent’s
KB after a perception function has been applied to it.
This is meant to capture the way the world might seem
to the agent at a given time.

Definition 16 Let pert ∈ PERt be a perception func-
tion at time t. Then a perceived temporal structure at
time t, shortly pt-structure, is an L′-structure defined as
follows: Mpert

= 〈hpert
, Hr

t 〉 for some hpert
∈ Gpert

. We
use Mpert

for the set of all Mpert
s.

6 Active consequence

At this point we are ready to define the notion of ac-
tive consequence at time t—the active logic equivalent of
logical consequence.

Definition 17 Let Σ,Θ ⊆ SnL such that Σ = KBat .
Then Θ is said to be a 1-step active consequence of Σ
at time t, written Σ |=1 Θ, if and only if the following
holds:

(∃pert ∈ PERt)(∃pert+1 ∈ PERt+1)(∀Mpert
∈

Mpert
)[Hr

t+1 |= (pert+1(Θ) ∩ SnLa
)&Mpert

|=
(pert+1(Θ) ∩ SnL′

w
)]

Roughly speaking, if for the Lw sentences, the set of
conclusions—as perceived by the agent at time t+ 1 ac-
cording to the restrictions set out in definition 12—are
yielded by the antecedents as perceived by the agent at
time t according to those same restrictions, and if for the
La sentences, the La structure Hr

t+1 models—according
to definition 5—the agent’s perception of the conclusions
at time t+1, then it can be said that the conclusions are
one-step active consequents of the antecedents.
Examples:

1 Let Σ = {ϕ,¬ϕ} = KBat , let Θ =
{contra(dϕ, d¬ϕ, ct)}. Let pert ∈ PERt, such
that pert(Σ) = {contra(dϕ, d¬ϕ, ct)}, and
pert+1 ∈ PERt+1 such that pert+1(Θ) =
{contra(dϕ, d¬ϕ, ct)}. We have Hr

t+1 |=
{contra(dϕ, d¬ϕ, ct)}, hence Σ |=1 Θ.

This case is very straightforward. Since the conse-
quents contain only La sentences, we only need to deter-
mine if the agent’s perception of the consequent, namely
contra(dϕ, d¬ϕ, ct), is modeled by Hr

t+1, which clearly
by definition 5 it is, since ϕ and ¬ϕ are contradictory,
and both ∈ KB at t.

2 Let Σ = {Now(t), S1, S1 → S4, S12} = KBat . Let
Θ = {Now(t + 1), S4, S12}. Let pert ∈ PERt
such that pert(Σ) = {Now(t), Sa1 , S

a
1 → Sb4, S

c
12}

for some a, b, c ∈ N . Then ∀(hpert
) ∈ Gpert

,
hpert

(Sa1 ) = hpert
(Sb4) = hpert

(Sc12) = T . Let
pert+1 ∈ PERt+1 where pert+1(Θ) = {Now(t +
1), Sb4, S

c
12}. Clearly, Hr

t+1 |= pert+1(Θ) ∩ SnLa
=

{Now(t + 1)} and hpert
|= pert+1(Θ) ∩ SnL′

w
=

{Sb4, S
c
12} for every hpert

. Hence Σ |=1 Θ.

This is also relatively straightforward, since, once
the perception function has been applied, determining
whether the Lw sentences in Θ are active consequents of
Σ is similar to determining this classically; and for the
La sentences it is just a matter of being sure that Hr

t+1

models those sentences according to definition 5.

3 Let Σ,Θ be as in the previous example with
bel(eS5

, ct) added to Θ. Since S5 6∈ Σ, then Hr
t+1 6|=

bel(eS5
, ct) (see definition 5). So Σ 6|=1 Θ.

4 Let Σ = {Now(t)} = KBat . Let Θ = {Now(t+ 5)}
The perception function can only give these same
sentences: pert(Σ) = {Now(t)} and pert+1(Θ) =
{Now(t + 5)}. But Hr

t+1 6|= {Now(t + 5)} at time
t+ 1 (see definition 5), and so Σ 6|=1 Θ.

A more general notion of active consequence, called
an n-step active consequence, is defined recursively from
1-step active consequence.

Definition 18 Let Σ,Θ ⊆ SnL such that Σ = KBat .
Then Θ is said to be an n-step active consequence of Σ
at time t, written Σ |=n Θ, if and only if the following
holds:

∃Γ ⊆ SnL: Σ |=n−1 Γ and Γ |=1 Θ

Finally, we define active consequence, written |=a, in
terms of n-step active consequence.

Definition 19 Let Σ,Θ ⊆ SnL such that Σ = KBat . Θ
is said to be an active consequence of Σ, that is, Σ |=a Θ,
iff Σ |=n Θ for some n ∈ N .

Example:

1. Let Σ = KBat = {S1, S2, S2 → ¬S1} and Θ =
{contra(dS1

, d¬S1
, t+1)}. Then Σ |=a Θ as follows.

Let Γ = {S1,¬S1}. Let pert ∈ PERt such that
pert(Σ) = {Sa1 , S

b
2, S

b
2 → ¬Sc1} for some a, b, c ∈ N .

Then for every hpert
∈ Gpert

the following must hold:
hpert

(Sa1 ) = hpert
(Sb2) = T, hpert

(Sc1) = F .
Let pert+1 ∈ PERt+1 where pert+1(Γ) = {Sa1 ,¬S

c
1}.

Clearly, ∀(hpert
) ∈ Gpert

, hpert
|= pert+1(Γ), hence Σ |=1

Γ. Notice that Γ is potentially part of KBa
t+1, and that

once in the KB, the superscripts a and c are dropped, so
that the sentences would appear in KBa

t+1 as {S1,¬S1}.
Next, let pert+2 ∈ PERt+2 where pert+2(Θ) =

contra(dS1
, d¬S1

, t + 1). Since S1,¬S1 ∈ Γ (potentially
part of KBat+1), then Hr

t+2 |= pert+2(Θ), hence Γ |=1 Θ.
So we have Σ |=1 Γ and Γ |=1 Θ; this proves Σ |=2 Θ,

and thus Σ |=a Θ.
The point of this example is that, in active logic, it

can take time for particular sentences to appear in the



KB. So, for instance, because the contradiction in Σ is
indirect, it will not become a direct contradiction until
t+1—that is, time t+1 is the first time that both S1 and
¬S1 are actually in the KB. This is important because
one of the conditions of contra(dσi

, dσj
, cs) is that σi and

σj are in the KB at time s, and this does not happen in
our example until t+1. It is at this point that the contra-
diction can be recognized, and {contra(dS1

, d¬S1
, ct+1)}

can be asserted.
Note that this approach to logical consequence allows

one to define possible valid paths of reasoning, and, in
the case of 1-step active consequence, the shortest possi-
ble valid path. However, a given agent may or may not,
in practice, take the shortest possible valid path to reach
a given conclusion. Any given agent, reasoning validly,
may still reason more or less efficiently, or more or less
directly to a particular conclusion, depending on the way
it perceives its KB, and on the inference rules it in fact
employs.

6.1 The relation between logical
consequence and active consequence

The following theorem gives a key result regarding the
relationship between classical propositional logical con-
sequence and active consequence (restricted to sentences
in Lw). It says that for a consistent KB = Σ, Θ is a
classical logical consequence of Σ, iff it is an active conse-
quence. Intuitively this should make sense. For consider
that every given set of consistent sentences has a cer-
tain definite set of conclusions—call this the “inferential
power” of the set. We would expect this same set in
active logic to have at least as much, but not more, in-
ferential power as it has under classical logic. “At least
as much” because one possible perception function, by
assigning the same number to each sentence in Σ essen-
tially leaves the set of sentences, and therefore its infer-
ential power, unchanged. “Not more than” because there
is no perception function that increases the inferential
power of a given set—a perception function either leaves
the inferential power the same, or reduces the number of
things that can be inferred.

Theorem 2 Let Σ,Θ ⊆ SnLw
. If Σ is consistent, then

the following holds:

Σ |= Θ ⇐⇒ Σ |=a Θ

Proof Let A = {Si1 , · · · , Sin} be the set of all sentence
symbols appearing in Σ, and let B = {Sj1 , · · · , Sjm} be
the set of all sentence symbols appearing in Θ.

⇒ If Σ |= Θ, then ∀h:h |= Σ ⇒ h |= Θ. Con-
sider pert ∈ PERt where all instances of every sen-
tence symbol Sk in its input gets mapped to S1

k. Then
the following holds: (∀h |= Σ)(∀h′):h′ |= pert(Σ) ⇐⇒
(∀Sk ∈ A:h′(S1

k) = h(Sk)), where h is an Lw-truth as-
signment and h′ is an L′

w-truth assignment. Consider
pert+n = pert, then the previous sentence holds when
replacing Σ by Θ, A by B, and pert by pert+n. Hence
Σ |=a Θ.
⇐ If Σ 6|= Θ, then there exists an Lw-truth assign-

ment h such that h |= Σ and h 6|= Θ. Then h 6|= θ

for some θ ∈ Θ. Let pert be some perception func-
tion at time t; let Σ′ = pert(Σ). Let pert+n be some
perception function at time t + n; let Θ′ = pert+n(Θ);
let θ′ ∈ Θ′ be the mapping of θ under this func-
tion. Consider the following L′

w-truth assignment h′

where h′(Sj1i1 ) = h(Si1), · · · , h
′(Sjnin ) = h(Sin) for all

j1, · · · , jn ∈ N . Clearly, h′ |= Σ′ and h′ 6|= θ′, so Σ 6|=a Θ.

Note that the above theorem doesn’t hold for all La
sentences—that is, a given set of Lw sentences Σ might,
in active logic, yield some La sentences that would not
be yielded by classical logic.3 Consider for instance Σ =
{S1} at t and Θ = {bel(eS1

, ct)} at t + 1. The sentence
bel(eS1

, ct) is an active consequence of S1 (at t), but is
not a classical logical consequence. So the inferential
power of a given set is increased in active logic, but only
in its yield of La sentences.

Of course, it is precisely the fact that active logic per-
mits the inference of certain additional La sentences that
allows it to reduce the inferential power of inconsistent
sets. This is crucial because (as previously noted) in
classical logic the inferential power of an inconsistent set
is indefinitely large. For active logic, however, there are
only two possibilities for inconsistent sets: either (1) the
set is made consistent by a perception function that as-
signs different superscript numbers to the relevant sen-
tences, in which case nothing will follow from the con-
tradiction (as there will be no contradiction), or (2) the
contradiction will be recognized and contra(dϕ, d¬ϕ, ct)
(and only this) will follow from the contradiction (see
definition 26 and theorem 8, below).

This brings us to our notion of sound inference, which
we define in terms of n-step active consequence.

Definition 20 An active sound (a-sound) inference is
one in which the consequent is an active consequence of
the antecedent.

7 Sound and unsound inferences in

active logic

At this point we are in a position to define some inference
rules, beginning with the rules most central to active
logic.

7.1 Some active-sound inference rules

First we define the timing inference rule.

Definition 21 If now(t) ∈ KBat (remember KBat is t-
weakly consistent), then the timing inference rule is de-
fined as follows:

t : Now(ct)

t+ 1 : Now(ct+1)

Theorem 3 The timing inference rule is a-sound.

3This is in addition to the obvious fact that by classical
inference {Now(1)} would not yield {Now(2)}.



Proof We need to show that {Now(ct)} |=1

{Now(ct+1)} at time t. This holds by defini-
tion 12 of the perception functions: ∀pert+1 ∈
PERt+1: pert+1({Now(ct+1)}) = {Now(ct+1)}
and by definition 5 of L-structures: Hr

t+1 |=
{Now(ct+1)}.

We also define the direct contradiction rule.

Definition 22 If ϕ,¬ϕ ∈ KBat , where ϕ ∈ SnLw
and

¬ϕ ∈ SnLw
, then the direct contradiction inference rule

is defined as follows:

t : ϕ,¬ϕ

t+ 1 : contra(dϕ, d¬ϕ, ct)

Theorem 4 The direct contradiction inference rule is
a-sound.

Proof We need to show that {ϕ,¬ϕ} |=1

{contra(dϕ, d¬ϕ, ct)} at time t. This holds
by definition 12 of the perception functions:
∀pert+1 ∈ PERt+1: pert+1({contra(dϕ, d¬ϕ, ct)}) =
{contra(dϕ, d¬ϕ, ct)}
and by definition 5 of L-structures: Hr

t+1 |=
{contra(dϕ, d¬ϕ, ct)} (since ϕ,¬ϕ are in the antecedents
and hence in KBat ).

We define the introspection inference rule as follows.

Definition 23 If ϕ ∈ KBat , where ϕ ∈ SnL, then the
introspection inference rule is defined as follows:

t : ϕ

t+ 1 : bel(eϕ, ct)

Theorem 5 The introspection rule is a-sound.

Proof We need to show ϕ |=1 bel(eϕ, ct) at time t.
This holds by definition 12 of the perception functions:
∀pert+1 ∈ PERt+1: pert+1({bel(eϕ, ct)}) = {bel(eϕ, ct)}
and by definition 5 of L-structures: Hr

t+1 |= {bel(eϕ, ct)}
(since ϕ is in the antecedents and hence in KBa

t ).

We define the negative introspection inference rule as
follows.

Definition 24 If ϕ 6∈ KBat , where ϕ ∈ SnL for some
i ∈ N , then the negative introspection inference rule is
defined as follows:

t : KBat
t+ 1 : ¬bel(eϕ, ct)

Theorem 6 The negative introspection rule is a-sound.

Proof We need to show KBat |=1 ¬bel(eϕ, ct) at time
t. This holds by definition 12 of the perception func-
tions: ∀pert+1 ∈ PERt+1: pert+1({¬bel(eϕ, ct)}) =
{¬bel(eϕ, ct)} and by definition 5 of L-structures:
Hr
t+1 |= {¬bel(eϕ, ct)} (since ϕ 6∈ KBat ).

We can define the equivalent of the modus ponens in-
ference rule—active modus ponens, or AMP—as follows.

Definition 25 If ϕ,ϕ → ψ ∈ KBat , then the AMP in-
ference rule is defined as follows:

t : ϕ,ϕ→ ψ

t+ 1 : ψ

Theorem 7 The AMP inference rule is a-sound.

Proof We need to show {ϕ,ϕ → ψ} |=1 {ψ} at time
t. Let pert ∈ PERt, following the same procedure as
described in the proof of theorem 1, except that both
instances of ϕ are mapped to the same sentence ϕ1. So
we have pert({ϕ,ϕ → ψ}) = {ϕ1, ϕ1 → ψ1}. From the
proof of theorem 1, we can see that this latter set is
consistent and any interpretation must satisfy the fol-
lowing: ∀(hpert

) ∈ Gpert
:hpert

(ϕ1) = hpert
(ψ1) = T .

Let pert+1 ∈ PERt+1 such that pert+1({ψ}) = {ψ1},
then ∀(hpert

) ∈ Gpert
:hpert

|= {ψ1}.

7.2 Active-unsound inference rules

We have examined a number of instances of classically
unsound inference rules, and get the expected intuitive
results that these inferences are also active-unsound.
However, one rule that is classically sound, but active-
unsound, is the explosive rule. This shows that active
logic is a paraconsistent logic, something we consider one
of its advantages over classical formalisms.

Definition 26 We’ll call the rule where (A and ¬A)
implies B the explosive rule:

t : ϕ,¬ϕ

t+ 1 : ψ

Theorem 8 The explosive inference rule is a-unsound.

Proof There are two general cases to consider, one in
which the perception function treats the sentences as
different, i.e. assigns them different subscripts, and an-
other in which the perception function at time t treats
the sentences in the antecedent as the same, i.e. as con-
tradictory, giving contra(dϕ, d¬ϕ, ct).

1. For three numbers i, j, k ∈ N , such that i 6= j, and
k may equal either i or j or neither,4 the percep-
tion function gives pert({ϕ,¬ϕ}) = {ϕi,¬ϕj}, and
pert+1({ψ}) = {ψk}. However, for every one of the
possible numeric assignments to i, j, k, (that is, for
every pert ∈ PERt except that discussed in clause
(2)) there is at least one interpretation hpert

such
that {ϕi,¬ϕj} 6|= {ψk}, namely the one which as-
signs both ϕi and ¬ϕj to T and ψk to F.

2. For the only remaining pert ∈ PERt, that
gives pert({ϕ,¬ϕ}) = {contra(dϕ, d¬ϕ, ct)} and
pert+1({ψ}) = {ψk}, there is also at least one in-
terpretation hpert

such that {contra(dϕ, d¬ϕ, ct)} 6|=
{ψk}, that assigns contra(dϕ, d¬ϕ, ct) to T and ψk

to F.

4If i = j the perception function must produce
contra(dϕi , d

¬ϕj , dt), in which case see clause(2).



8 Conclusion and Future Work

In this paper we have outlined a semantics for a time-
sensitive, contradiction-tolerant logical reasoning for-
malism designed for on-board use by real-world agents.
Central to the semantics is the notion of a perception
function, inspired by the idea that, until an agent no-
tices that a set of beliefs is inconsistent, that set seems
consistent—and that when a contradiction is noticed,
that fact can be explicitly registered by the agent, and
further reasoning with the contradictory beliefs can be
curtailed.

To keep this initial presentation relatively simple, we
made a number of assumptions that in future work we
will discard. The most important of these assumptions is
that the world is stationary, and thus all facts about the
world are timelessly true. It should be noted that there
is no problem in principle with applying active logic to
the case of reasoning about a changing world—after all,
the facts that beliefs are held at times, that the KB
changes over time, and that inference is itself a tempo-
ral phenomenon, are all already explicitly modeled by
the formalism. To handle a changing world, we would
also have to model the additional facts that beliefs can be
held not just at times, but about facts-at-times, and even
about the durations of facts—e.g. that it rained yester-
day, or that it rained yesterday for 1 hour between noon
and one. Such modification is straightforward. There are
some tricky aspects to modeling proper reasoning with
temporally relative beliefs in a changing world, but for
this we can avail ourselves of the extensive literature on
default reasoning and non-monotonic temporal logics.

Future work will also consider multiple agents, reason-
ing both about the world and about one another’s beliefs,
and extending the semantics to include predicates.

Finally, we acknowledge that fuller understanding of
this work will require comparison and contrast with re-
lated efforts, e.g., [Gabbay, 1999; Ismail and Shapiro,
2000; Lespérance and Levesque, 1995; Martins and
Shapiro, 1988]. We regret that space contraints made
such discussion impossible in this case.
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