N
(tfuk} TETA/T

Journal of Experimental and Theoretical Artificial Intelligence
Vol. 18, No. 3, September 2006, 387411

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

The metacognitive loop I: Enhancing reinforcement
learning with metacognitive monitoring and control
for improved perturbation tolerance| |

MICHAEL L. ANDERSON*19, TIM OATESTS,
WAIYIAN CHONGi and DON PERLIS#}

TInstitute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA
iDepartment of Computer Science, University of Maryland,
College Park, MD 20742, USA
§Department of Computer Science, University of Maryland,
Baltimore County, Baltimore, MD 21250, USA
Y|Department of Psychology, Franklin & Marshall College,
Lancaster, PA 17604, USA

(Received 9 January 2006; in final form 27 June 2006)

Maintaining adequate performance in dynamic and uncertain settings
has been a perennial stumbling block for intelligent systems. Nevertheless,
any system intended for real-world deployment must be able to
accommodate unexpected change—that is, it must be perturbation
tolerant. We have found that metacognitive monitoring and control—the
ability of a system to self-monitor its own decision-making processes and
ongoing performance, and to make targeted changes to its beliefs and
action-determining components—can play an important role in helping
intelligent systems cope with the perturbations that are the inevitable result
of real-world deployment. In this article we present the results of several
experiments demonstrating the efficacy of metacognition in improving the
perturbation tolerance of reinforcement learners, and discuss a general
theory of metacognitive monitoring and control, in a form we call the
metacognitive loop.

Keywords: Learning; Commonsense reasoning; Autonomous agents

*Corresponding author. Email: michael.anderson@fandm.edu
|| This research is supported in part by the AFOSR and ONR.

Journal of Experimental and Theoretical Artificial Intelligence
ISSN 0952-813X print/ISSN 1362-3079 online © 2006 Taylor & Francis
http://www.tandf.co.uk/journals
DOI: 10.1080/09528130600926066

Taylor &Francis
Taylor &Francis Group

New XML Template (2006) [29.8.2006-1:25pm] [387-411]
(tfuk} TETA/TETA_I_18_03/TETA_A_192523.3d (TETA) [Invalid folder]

388 M. L. Anderson et al.
1. Introduction

Maintaining adequate performance in dynamic and uncertain settings has been
a perennial stumbling block for intelligent systems, and an ongoing challenge to Al
A dynamic and uncertain environment means that conflict between what is currently
believed (or tacitly assumed) and what is currently true is inevitable, and therefore
an intelligent system’s beliefs, assumptions, rules for thinking—in short, any aspect
of the system which models or otherwise carries information about the environment
or how to act in it—should ideally be open to alteration. And the problem is even
worse than this, for not just the deployment environment, but the system itself
can change: sensor calibration can drift, parts can wear or break, and the knowledge
base can get large and unwieldy, or even be partially deleted or corrupted. Any
system intended for real-world deployment should be able to accommodate such
changes, both expected and unexpected; it must be, as we say, perturbation tolerant.
The term is meant as an extension and generalization of John McCarthy’s notion
of “elaboration tolerance”—a measure of the ease with which a reasoning agent can
add and delete axioms from its knowledge base (McCarthy 1998). Our term is more
general than McCarthy’s because his is explicitly limited to formal, symbolic systems,
and an elaboration is defined as an action taken to change such a system
(Amir 2000). But a cognitive agent may well consist of more than just a formal
reasoning system, and flexibly coping with a changing world may therefore involve
altering components in addition to, or instead of, its formal reasoner. Thus, we
define a perturbation as any change, whether in the world or in the system itself,
that impacts the performance of the agent. Performance is meant to be construed
broadly to encompass any measurable aspect of the agent’s operation. Perturbation
tolerance, then, is the ability of an agent to quickly recover—that is, to re-establish
desired/expected performance levels—after a perturbation.

People tend to do this well. Indeed, the ability to “get along” in a wide range
of changing environments can be said to be something of a hallmark of human
cognition, and the cognitive ability that has been most difficult to reproduce in
artificial systems. This is in stark contrast to formal domains where special
intellectual cleverness or skill is involved, for instance, solving math problems or
playing chess; here, artificial systems have nearly equaled if not surpassed human
performance. It should be noted, however—and this is an important point—that the
fact that humans are good at adjusting to perturbations does not imply that it is
necessarily easy for us. Indeed, it can be jarring when something goes wrong, or we
are confronted with something unexpected. This subjective sense of having to shift
gears, of being forced to re-think something in these situations, has long suggested
to us that noting and recovering from perturbation involves specialized components
that may not typically be involved in everyday decision-making. We have
hypothesized that in these situations a metacognitive loop (MCL) is brought to
bear, wherein an individual (i) notes there is a difficulty to be addressed; (ii) assesses
the options for dealing with the difficulty; and (iii) guides one of the options
into action (Anderson and Perlis 2005).

In fact, there is some empirical evidence for the importance of metacognition in
dealing with the unexpected or unfamiliar. In studies of human learning strategies,
for instance, an individual studying for a test will make judgments of the relative
difficulty of the material, using these to frame study strategies (Nelson ez al. 1994,

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 389

Nelson and Dunlosky 1994). Not surprisingly, in these cases, accuracy of
metacognitive judgments correlates with academic performance. Moreover, neuro-
physiological findings indicate that the frontal lobe has specialized responsibility
for metacognitive behavior (Nelson 1996). For instance, patients with frontal lobe
damage have trouble handling a “‘reversal shift”’, which involves (1) recognizing that
a word or concept one has learned to apply to, say, big things, is now being used
by others to refer to small things, and (2) making the appropriate adjustment
(Kendler and Kendler, 1962, 1969).

Thus, our approach to the very general problem of perturbation tolerance has
been to equip artificial agents with MCL: the ability to notice when something
is amiss, assess the anomalyf, and guide a solution into place (Anderson and Perlis
2005). In our view, this is largely what perturbation-tolerant commonsense reasoning
consists of, rather than finding special clever solutions to thorny problems. After all,
performance in the face of unexpected perturbations can be enhanced even when one
cannot figure out exactly what is wrong, or what to do about it, so long as one is able
to realize that something is wrong, and ask for help, or use trial-and-error, or even
give up and work on something else. In our ongoing work, we have found that
including an MCL component can enhance the performance of many different types
of systems, including commonsense reasoners (Elgot-Drapkin and Perlis 1990,
Purang 2001), deadline-coupled planning systems (Kraus ef al. 1990, Nirkhe 1994,
Nirkhe et al. 1997), natural language human—computer interfaces (HCI)
(Traum et al. 1999, Anderson et al. 2003, Josyula et al. 2003), robotic navigation
(Hennacy et al. 2003), and reinforcement learners (see subsequently).

2. What is MCL?

In the next sections, we will detail specific examples of systems where
MCL-enhanced versions perform better than non-MCL systems. But before
moving on to the examples, it is perhaps worthwhile to get a bit clearer on what
MCL is, what it means for the design of intelligent systems, and when it is likely
to prove beneficial.

2.1 The nature of MCL

What, then, is MCL? MCL is two closely related things. First, it is an approach
to the design of intelligent systems that makes self-monitoring, self-control,
and self-improvement a central, fundamental part of the system’s architecture.
The overall impact of the MCL approach—and, more generally, of the intensive use
of expectations generated and monitored by the system itself—on system design is an
important issue that deserves wider attention. General design principles and practices
are needed. In our view, systems should have expectations attached to (generated for)
every action they take, both locally (at the level of system components), and globally
(for actions taken by the system), as well as more general expectations for the sorts
of things that should happen when they are operating properly—that is, they should

+In accordance with the given approach to perturbations, we define an anomaly as a deviation
from expectations for performance or outcomes.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

390 M. L. Anderson et al.

have general expectations for their performance. Ideally, the system would have
specific solutions for specific violations of these expectations, as well as more
generic strategies for dealing with novel problems. But it is important to note (as we
will emphasize throughout) that having specific, targeted solutions for every problem
is not a necessary condition for improving performance. In many cases, a system
that, noticing a problem it cannot address, could move itself into some “safe” state,
where it will neither harm itself or anything else, and call for help would be
a significant improvement over the state of the art.

Second, MCL is not just a design philosophy, it is also a specific hypothesis
about how to achieve perturbation tolerance, and what form metacognitive
monitoring and control should take. This hypothesis has two parts. One is the
note—assess—guide structure of the metacognitive loop itself, and the other is the
notion that a limited number of metacognitive strategies will suffice for the vast
majority of problems. Thus, we expect that the components that implement the
MCL portion of a larger intelligent system can be kept fairly fast and lightweight.

Our more general claim is that the practice of self-monitoring for anomalies,
assessing, and responding to those anomalies is a better, more efficient, and
ultimately more effective approach to perturbation tolerance than are any of:
(1) ignoring the problem, (2) building everything in at the outset or (3) trying to
continually monitor and model a sizable portion of the world.

Perhaps, the claim that ignoring the problem is a poor response can be allowed
to stand without argument. But why cannot the “MCL” part be handled at design
time by the system designer, who will consider all the likely problems a system will
encounter, and build in the solutions? The simple answer is that this very common
strategy has repeatedly, and often spectacularly, failed. A recent entry in the
DARPA Grand Challenge—a robotic maze-running/road-race contest—ran into a
fence that it was unable to see. As it could not see the fence, it did not register it as
an obstacle, and it continued to try to move forward. Eventually, the system had to
be shut down lest it burn out its motors. Likewise, consider the case of a satellite
that was given the command to turn away from Earth and examine a distant star.
The maneuver pointed the satellite’s communications dish away from Earth, and
mission control had neglected to include the command to eventually turn back
toward Earth in the original command sequence—and, since the satellite was
pointing away from Earth, it could no longer receive communications from Earth.
The result was the loss of the satellite, as mission control waited for months for the
satellite’s orbit to put it in position to receive more commands. Systems that had
some built-in expectations—either for what to expect as a result of certain actions
(e.g., forward progress), or more general expectations for its own operation, based
on the sort of thing it was (e.g., frequent contact with Earth)—might have noticed
the violation of these expectations, and set about trying to figure out what was
going on.

Furthermore, in support of the notion that self-monitoring is more effective
for this purpose than is world-monitoring, consider that the world is vast,
indefinitely detailed, and dynamic. It is impossible to model all of it; but it is
likewise impossible to always know in advance which changes in, and which aspects
of, the world are important to monitor. In contrast, the system is relatively
small, its performance variables are known, and accurate modeling poses much
less of a challenge. If the world changes in ways that affect performance, monitoring

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 391

for anomalies will indicate such changes; and when the world changes in ways that
do not affect performance, why waste resources noting the fact? Furthermore,
although it will always be the case that world monitoring is an important aspect
of ensuring the overall performance of a system, allowing the monitoring to be
directed by the known current needs of the system can help ensure its tractability.
Thus, for instance, when the system has undertaken an action, it will monitor the
outcomes of that action, and compare them with expectations, making appropriate
adjustments in light of environmental feedback. Likewise, in the case of an anomaly,
it may well be that solving (or even assessing) the anomaly requires world
monitoring—for instance, if there arises a contradiction between beliefs that might
be adjudicated by gathering further evidence—but in such a case the monitoring
task is limited and tractable, amounting to a kind of directed search.

2.2 The value of MCL

This brings us to the question of when—under what circumstances—MCL is likely
to be beneficial. One way to get a sense of this has to do with the imagined degree
of a perturbation. In general, the bigger, more serious or more extensive a change,
the larger impact it would be expected to have on performance. Intuitively, then,
the more serious the perturbation, the more important it is to be able to specifically
assess and respond to it, thus bringing about a faster recovery. This intuition was
borne out in the reinforcement learning experiments detailed below: the greater
the degree of the perturbation, the greater was the relative impact of MCL on the
post-perturbation performance. On the other side of the coin, the opposite intuition
was also borne out: it is often better to do little or nothing in response to very small
perturbations. Taking drastic corrective actions in these cases can actually decrease
relative post-perturbation performance. What this means is that MCL must be made
sophisticated enough to in fact do little or nothing in response to small degree
perturbations, thereby not harming relative post-perturbation performance.
Still, from the standpoint of a system that would have done nothing anyway,
time and resources spent in deciding to do nothing are wasted. As in all choices
about implementation, the overall benefits to be gained in the expected environments
must be weighed against overall costs.

Another class of situations in which MCL can be helpful is in the face of what
might be called barrier perturbations. There are some perturbations where, although
it may be difficult or inappropriate to measure their degree, they nevertheless
represent an impediment to further progress on a task. For instance, an incorrect or
missing fact can prevent further reasoning on a topic; and the emergence of a direct
contradiction in the system’s knowledge base likewise threatens further valid
inference. Whatever the degree of such perturbations may be, explicitly addressing
them is nevertheless necessary for the system to move forward on its relevant goals.
One instance of a barrier perturbation, discussed below, is the case where a natural
language HCI system does not know one of the main words uttered by a user,
and therefore cannot complete the user’s request. In such a case, an MCL system can
recognize this fact, and take steps to learn the word, or, if that proves too difficult,
to get the user to rephrase the utterance. In such cases, it is clear that doing nothing
is not a valid option.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

392 M. L. Anderson et al.

2.3 Measuring the value of MCL

Based on the above considerations, we expect that MCL will prove a good general
expedient for enhancing the perturbation tolerance of intelligent systems. But, again,
this does not mean that MCL is helpful in every case, nor that anomaly detection and
assessment-guided response is an infallible method of dealing with perturbations.
For, as described, MCL rests on two fundamental events, both of which can be
in error: detections and interventions. The system can fail to detect perturbations
that matter, or falsely detect perturbations; likewise, the system can fail to intervene
properly when an intervention is called for, or intervene when doing nothing would
have been better. MCL has been shown to be effective in cases where a change in the
world negatively impacts the measured performance of the system (see subsequently).
However, it will obviously be less effective in cases where changes increase
the opportunity for high performance without impacting actual performance.
For instance, in the case where a change occurs in a region of the environment
that the system has reasons to avoid, and is thus outside of the awareness of the
system, naturally the system will not, in general, be able to take advantage of such
a change, even if such a change represents an increased potential reward. This would
be an example of a failure in detection.f

Thus, one important issue in determining the costs, benefits, and applicability
of MCL involves the likelihood that environments with noise (stochastic processes)
will generate false anomaly detections, and result in unnecessary interventions.
Naturally, the chance of a false positive is a function of the discernment/
sophistication of the MCL detection mechanism, and the amount of variation in
the environment. However, we can roll these into one variable, Cgp, the chance
of a false positive. On the other hand, on the assumption that the environment does
sometimes undergo actual performance impacting changes (perturbations), there is
a probability of true detections. As above, the chance of a true positive is a function
of the discernment/sophistication of the MCL detection mechanism, and the amount
of perturbation in the environment. We can likewise roll this into the variable Crp.
In both cases, over any specified length of time, these two variables yield a single
number of false positives F and true detections D.

For each false positive F), there is a cost, which is a measure of the area between
the (hypothetical) performance curve (performance over time) had no unnecessary
intervention occurred, and the actual performance of the system, which, for any
given intervention, will temporarily degrade. Of course, different interventions will
have different costs; in the case of reinforcement learning, throwing out an
established policy and starting over is more costly than simply raising € for a time.
However, if each such intervention has a fixed cost, and a probability of being
implemented, then a weighted average can be calculated to yield a constant average
cost per incident /.

Likewise, for each true positive there is a value, which is a measure of the area
between the hypothetical performance curve had the given intervention not occurred,
and the actual performance of the MCL system. That is, the value of an intervention
depends on such things as the amount of impact on performance and the amount

+Still, it should be noted that the problem of imperfect knowledge, however important to
MCL, is not important only or even especially to MCL.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 393

of time it takes, in the absence of an intervention, to bring performance up to
previous values. However, here too it seems that, if there is a definite value associated
with each kind or degree of perturbation, and these occur with a given frequency,
then a weighted average can likewise be generated to give a constant average value
per incident V.

Finally, there is the cost of MCL itself, measured as the amount of resources
(time, memory, clock cycles) required to achieve a given level of performance. One
way to think of this is if the non-MCL system requires R; clock cycles to achieve
performance P, and the MCL system R, clock cycles to achieve performance P,
then the relative efficiency of the two systems at getting performance is (P/R;) vs
(P2/R3). However, one also has to consider that there is some relative value between
a unit of performance and a unit of resource. If resources are valuable compared with
performance, then efficiency is valuable; if however, resources are cheap compared
with performance, then efficiency is less of a concern. For instance, if each unit of
performance is worth $1.00, and each unit of resource costs $0.10, then even if
(P1/Ry) vs (P2/Ry) = (1/1) vs (2/10), because a unit of performance is 10 times as
valuable as a unit of resource, the relative value of the two systems is not 5:1, but 1:2.
Let us call the relative value of performance and resources Q.

The overall relative cost or benefit of MCL, then, can be calculated as the total
performance P of a non-MCL system, over a given interval ¢z, minus the number
of false positives F in that interval times their cost I, plus the number of true
positives D in that interval times their value V, divided by the resources required R,
and multiplied by the relative value of performance and resources Q:
(P—(FxD)+(D=V))*(Q/R).

Focusing initially just on those cases where MCL systems outperform non-MCL
systems, and putting aside for the moment whether this increased performance
is worth the cost, it is clear that MCL enhances performance whenever
D*xV)>(F=x*1I).

3. Background work

The considerations above provide a general idea of what MCL is, and when to
expect MCL systems to outperform their non-MCL counterparts. In the next
sections, we will detail specific examples of MCL-enhanced systems that outperform
their non-MCL counterparts. First, we discuss some past work in the areas
of automated, non-monotonic reasoning, and natural language HCI. Then, in
section 4, we will report on new work demonstrating the performance improvements
that can be gained by enhancing reinforcement learning with MCL.

3.1 Reasoning with contradictions

The challenge of dealing with a dynamic world is especially acute for symbolic
reasoners, for as the world changes, the reasoner will inevitably encounter
conflicts—often in the form of direct contradictionst—between the information it

+ “Direct contradiction’ here means a conflict between P and — P, as opposed to more general
inconsistencies which can be very hard to detect.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

394 M. L. Anderson et al.

gathers from the world, and the beliefs resident in its knowledge base (KB). One
simple approach to this problem might be to always trust the sensors, and
automatically update the relevant portions of the KB with sensory information, thus
side-stepping any contradictions between sensory information and the KB. But,
in addition to suffering from a certain naiveté about the reliability of sensors, such
an approach ignores the fact that sensory information might not only directly
contradict a given proposition in the KB, but might entail conflicts with other
elements of the KB. And the trouble is that for any sufficiently complex KB which
was not produced by logical rules from a database known to be consistent, and/or to
which non-entailed facts are to be added (e.g., from sensory information), it is not
generally possible to know that it is consistent, nor to use principled methods to
maintain consistency (Perlis 1986). This is the consistency check problem.
Contradictions are in this sense practically inevitable.

This brings us to another problem, the swamping problem: for, in addition to the
obvious reasons for wanting to maintain consistency (if we are to query our KB,
we would generally prefer to get an answer, and not an answer and its negation),
there is a more theoretical issue: from a contradiction, everything follows.
More technically, given a contradiction, all well-formed formulas (wffs) are entailed
as theorems.T It perhaps goes without saying that a system that will eventually
come to believe every possible sentence in its language is unlikely to be a very
effective agent.

Active logic is a formalism that has been developed with such challenges in mind
(Elgot-Drapkin 1988, Elgot-Drapkin and Perlis 1990, Elgot-Drapkin et al. 1993).
Motivating its design is the thought that one of the factors that supports the
flexibility of human reasoning is that it takes place step-wise, in time. This allows the
agent to maintain control over, and track, its own reasoning processes. Moreover,
agents will sometimes need to be able to examine, and have beliefs about their own
beliefs—for instance, about whether, and why, they are warranted, and whether they
should still be trusted. As will be detailed below, active logic provides a way to
monitor the ongoing reasoning process, note anomalies in the form of contra-
dictions, and take specific steps to adjudicate those contradictions, or, at the very
least, to stop reasoning with the contradictory pair.

Each “step” in an active logic proof itself takes one active logic time-step; thus,
inference always moves into the future at least one step and this fact can be recorded
in the logic. In active logic, beliefs are held at times, and the KB is therefore
considered to be a temporally embedded and evolving set of formulas. Thus,
the meaning of an inference rule such as equation (1) (an active logic analogue to
modus ponens), is that if 4 and 4 — B are in the KB at time (step number) i, then
B will be added to the KB at time i + 1.

i :AA—> B

i+1: B ()

+ Paraconsistent logics offer one approach to the swamping problem (also known as the
explosion problem, or ex contradictione quodlibet (ECQ) (Priest et al. 1989, Priest 2002)).
However, most paraconsistent logics tend to sidestep, rather than note and deal with,
contradictions. We believe, in contrast, that it can be useful to confront and reason about
contradictions as they arise. See subsequently.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 395

In active logic, since the notion of inference is time-dependent, it follows
that at any given time only those inferences that have actually been carried out so
far can affect the present state of the agent’s knowledge. As a result, even if
directly contradictory wffs, P and — P, are in the agent’s KB at time t, it need not
be the case that those wffs have been used by time t to derive any other wff, Q.
Indeed, it may be that t is the first moment at which both P and —P have
simultaneously been in the KB.

By endowing an active logic with a “‘conflict-recognition” inference rule such
as that in (2), direct contradictions can be recognized as soon as they occur, and
further reasoning can be initiated to repair the contradiction, or at least to adopt a
strategy with respect to it, such as simply avoiding the use of either of the
contradictands for the time being. The Contra predicate is a metapredicate: it is
about the course of reasoning itself (and yet, is also part of that same evolving
history).

i : P,—P
i+1: Contra(i,P,—P)

2)

The idea then is that, although an indirect contradiction may lurk undetected
in the KB, it may be sufficient for many purposes to deal only with direct
contradictions. Sooner or later, if an indirect contradiction causes trouble, it may
reveal itself in the form of a direct contradiction. After all, a real agent has no choice
but to reason only with whatever it has been able to come up with so far, rather than
with implicit but not yet performed inferences. Moreover, since consistency (i.c., the
lack of direct or indirect contradictions) is, in general, undecidable, all agents with
sufficiently expressive languages will be forced to make do with a hit-or-miss
approach to contradiction detection. The best that can be hoped for, then, seems
to be an ability to reason effectively in the presence of contradictions, taking action
with respect to them only when they become revealed in the course of inference
(which itself might be directed toward finding contradictions, to be sure).

These temporal and metacognitive aspects make active logic systems more
flexible—more perturbation tolerant—than traditional Al systems and therefore
more suitable for reasoning in noisy, dynamic and inconsistent environments. Active
logic systems have been developed which can reason in the presence of, and in some
cases automatically resolve, contradictory information (Elgot-Drapkin and Perlis
1990, Elgot-Drapkin et al. 1993, Purang 2001), and have also been applied to such
related areas as deadline-coupled planning (Miller and Perlis 1993).

3.2 Noting and fixing errors in dialog

One of the most important application areas for active logic has been natural
language HCI. Natural language is complex and ambiguous, and communication for
this reason always contains an element of uncertainty. To manage this uncertainty,
human dialog partners continually monitor the conversation, their own comprehen-
sion, and the apparent comprehension of their interlocutor. Both partners elicit
and provide feedback as the conversation continues, and make conversational
adjustments as necessary. The feedback might be as simple as “Got it?”, eliciting
a simple “yes”, or as complex as “Wait. I don’t think I understand the concept

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

396 M. L. Anderson et al.

of hidden variables”, which could result in a long digression. We contend that the
ability to engage in such metalanguage, and to use the results of metadialogic
interactions to help understand otherwise problematic utterances, is the source
of much of the flexibility displayed by human conversation (Perlis et al. 1998).
Although there are other ways of managing uncertainty (and other types of
uncertainty to be managed), we have demonstrated that improved performance
can be achieved by enhancing existing HCI systems with the ability to self-monitor,
note anomalies such as contradictions, misinterpretations or unknown words, and
fix the problems by, among other things, engaging in meta-dialog with the user.

One achievement was the design and implementation of a model of action-
directive exchanges (task-oriented requests) based on an the active logic model
of inference. Our model works via a step-wise transformation of the literal request
made by a user (e.g., “Send the Boston train to New York”™) into a specific request
for an action that can be performed by the system or domain. In the case of
‘the Boston train’, the system we have implemented is able to interpret this as
‘the train in Boston’, and then further disambiguate this into a specific train currently
at Boston station, which it will send to New York. Information about each step
in the transformation is maintained, to accommodate any repairs that might be
required in the case of negative feedback (if for instance, the system picks the wrong
train, and the user says ‘“No” in response to the action). This implementation
represents an advance not just in its ability to reason initially about the user’s
intention (e.g., by ‘the Boston train’ the user means . . .) but in its ability to respond
in a context-sensitive way to post-action user feedback, and use that feedback to aid
in the interpretation of the user’s original and future intentions. For instance, in one
specific case tested, the user says “Send the Boston train to New York™ and then,
after the system choses and moves a train, says ‘“No, send the Boston train to
New York”. Such an exchange might occur if there is more than one train at Boston
station, and the system chose a train other than the one the user meant. Whereas
the original TRAINS-96 dialog system (Allen ef al. 1995) would respond to this
apparently contradictory sequence of commands by sending the very same train, our
enhanced HCI system notes the contradiction, and, by assessing the problem,
identifies a possible mistake in its choice of referent for ‘the Boston train’. Thus, the
enhanced system will choose a different train the second time around, or if there
are no other trains in Boston, it will ask the user to specify the train by name
(Traum et al. 1999, Traum and Andersen 1999).

More recently we have made further progress along these lines, by enhancing the
ability of our HCI system to more accurately assess the nature of dialog problems,
and to engage in metadialog with the user to help resolve the problem. For instance,
if the user says ““Send the Metro to Boston”, the original system would have
responded with the unhelpful fact that it was unable to process this request.
Our system, in contrast, notices that it does not know the word ‘Metro’, and will
instead request specific help from the user, saying: “I don’t know the word ‘Metro’.
What does ‘Metro” mean?”” Once the user tells the system that ‘Metro’ is another
word for ‘Metroliner’, it is able to correctly implement the user’s request
(Anderson et al. 2003, Josyula et al. 2003).

The two key rules that help note such perturbations in the reasoning are a rule
for detecting contradictions (which is a standard feature of active logic), and the
ability to set and monitor expectations. As with the derivation of a contradiction,

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 397

if an agent notices that an expectation has not been achieved, this causes the agent
to recognize a potential problem, and thus provides an opportunity for the agent to
assess the different options it has to fix the problem. For instance, if the user does not
respond to a system query within the expected time limit, then the system recognizes
that there is a problem and tries different methods for fixing it (and, not incidentally,
it also monitors the effectiveness of the solutions, and will change strategies if they
appear to be ineffective).

In the same spirit as the above work, we have turned our attention to the
possibility of enhancing traditional machine learning with metacognitive monitoring
and control. In the next sections, we describe the particulars of our approach in
that case, and the results so far.

4. Perturbation tolerance and reinforcement learning

Recently, we have been investigating approaches to the problem of dealing with
a dynamic world that centrally involve various methods of reinforcement learning.
Using learning techniques to address the problem of change is sensible for two
closely related reasons. First, the current state of the world may be unknown, or may
differ from one’s initial representations or expectations, and it therefore makes
sense to equip an agent with the ability to adjust its representations, expectations,
and policies for acting, so these can better fit the world as it actually is. Second, if it
is possible for the world to change even after a period of initial learning and
adjustment, the agent ought to be able to learn about these later changes, too.
The continuous learning approach is to equip agents with learning algorithms that
use feedback to constantly adjust to the world, so as to keep one’s representations
and policies for acting as current as possible.

4.1 Q-learning

One particularly popular reinforcement learning algorithm is Q-learning. As is
well-known, the basic idea behind Q-learning is to try to determine which actions,
taken from which states, lead to rewards for the agent (however these are defined),
and which actions, from which states, lead to the states from which the said rewards
are available, and so on. The value of each action which could be taken in each
state—its Q-value—is a time-discounted measure of the maximum reward available
to the agent by following a path through state space of which the action in question
is a part. In the simplest form of Q-learning, 1-step Q-learning, the Q-value of each
state—action pair is constantly updated, as the agent acts in the world, according
to the following equation:

O(s, a) = O(s, @) + ax (r + (v * max Q(s', b)) — O(s. a)) (€)

In this equation, Q(s, a) is the Q-value of taking action a from state s, o is
a learning rate, which controls the speed with which new experience changes the
existing Q-value, r is the reward (if any) received for taking a from s, and max Q(s', b)
is the Q-value of the highest-value action (b) from state (s'), which is the state
resulting from taking a from s. max Q(s, b) is multiplied by the discount factor
y to satisfy the intuition that later rewards are less valuable than current ones. o and
y are assigned values between 0 and 1.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

398 M. L. Anderson et al.

In table-based Q-learning, the end of this iterative updating is a list of all
state—action pairs, and their Q-values. This table is used to determine the agent’s
policy, its assessment of what it should do in each state to achieve maximum utility.
Because the Q-values are constantly adjusting according to Equation 3, any changes
in the reward structure of the world will eventually be reflected in the agent’s policy.
In addition, most implementations of Q-learning build in an exploration factor e.
A Q-learner will take the action recommended by its policy (the so-called “‘greedy
action”) with probability (1 — €), and will take a random action with probability e.
This helps ensure that the agent comprehensively and continuously explores
its world, learning the effect of all the actions it can take from all possible states,
rather than sticking to what it already knows will bring rewards.

The Q-learning algorithm is guaranteed, in a static world, to eventually converge
on an optimal policy (Watkins 1989, Watkins and Dayan 1992), regardless of
the initial state of the Q-learning policy and the reward structure of the world.
Moreover, if the world changes slowly, Q-learning is guaranteed to converge on
near-optimal policies (Szita et a/. 2002). This is to say that Q-learners are already
somewhat perturbation tolerant. However, we found that the actual performance
of a Q-learner in the face of perturbations varies considerably, and, indeed,
that post-perturbation performance is negatively correlated to the degree of the
perturbation. In addition, we showed that enhancing Q-learning with even simple
forms of MCL could improve its perturbation tolerance.

4.1.1 The perturbation tolerance of standard Q-learning. To determine the
perturbation tolerance of Q-learning, we built a standard table-based 1-step
Q-learner, with the settings o =0.5, ¥y =0.9, and ¢ =0.05. Starting with all
Q-values =0, the Q-learner was placed in an 8 x 8 grid-world—the possible states
being locations in the grid—with reward 1 (rl) in square (1,1) and reward 2 (r2)
in square (8,8). Before continuing with a description of the experimental design,
allow us to acknowledge that this is a relatively simple domain. However, two points
need to be made in this regard. First, although it is typical to describe such a domain
as if it were a model of a small, flat plain with a couple of fruit trees, such a
description is in fact an oversimplification. The 8 x 8 2-reward grid-world domain
is simple, but given four possible actions from 64 distinct states and 248 possible
state-to-state transitions (only four of which yield rewards), it will support a much
more complicated description than “open plain with two fruit trees”—it would be
just as appropriate to offer the more complex-sounding story that the agent, to find
a treasure, must: climb the waterfall, open the red door, pick up the gold key, turn
the lock, open the green door, climb the ladder, pick up the silver key, turn the lock,
and open the chest. In any event, whenever one is applying reinforcement learning
(RL) to a domain, what one is interested in discovering and modeling are the states
and the state-to-state transitions; a grid-world is, in essence, just a simple way of
defining a world consisting of states and transitions; however, those states and
transitions map onto the “real”” world. Second, we chose such a simple domain not
to make it easier to find a problem that we could then fix, but to make it sarder. Our
working assumption is that recovering from perturbations will in fact become harder
as the domain becomes more complex; thus, the simpler the domain in which
perturbation tolerance is an issue, the more common the problem is likely to be.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 399

Table 1. Ideal average reward/turn for different
reward structures.

Structure Ideal average
[10, —10] 1.43
25, 5] 3.57
35, 15] 5.69
[19,21] 4.46

The initial reward structure [rl,12] of the world was one of the following:
[10,—10]; [25, 5]; [35, 15]; [19, 21]; [15, 35]; [5, 25]. The Q-learner was allowed to take
10,000 actions in this initial world, which was enough in all cases to establish a very
good albeit non-optimal policy. After receiving a reward, the Q-learner was
randomly assigned to one of the non-reward-bearing squares in the grid. In turn
10,001, the reward structure was abruptly switched to one of the following: [25, 5];
[35,15]; [19, 21]7; [15, 35]; [5, 25], [—10, 10]. Taking all possible cases of perturbation
so described, and omitting duplicates, gives 22 possible perturbations. Each case
was run 20 times, and the results averaged over these 20 runs.

We defined the performance of the Q-learner as the ratio of actual average
reward per action taken (henceforth, per turn) to the ideal average reward per turn,
i.e., the average reward per turn theoretically available to a Q-learner following
an optimal policy in the given environment.] Actual average reward per turn,
for each turn ¢, was calculated using a 200 turn window ranging from ¢ to ¢ + 200.

The ideal average reward per turn was calculated by finding the set of squares
in the grid from which it would be preferable to go to each reward, determining
the average distance (number of turns) d to the reward from that set of squares,
and dividing the value of the reward by d. Note that in some cases, it is always
preferable to go to one reward over another, no matter where in the world the agent
is. Table 1 shows the ideal average reward per turn available, for each reward
structure, in an 8 x 8 world.

Given these values, the performance of the Q-learner can be plotted against
turn number, to give a graph like that shown in figure 1.

Figure 1 shows the performance of a standard Q-learner, over 20,000 turns, with
an initial reward structure of [—10, 10] and a post-perturbation reward structure
of [10, —10]. The case was run 20 times, and the results were averaged.

For the current study, we were interested primarily in the post-perturbation
performance of the Q-learner, and in comparing this with the degree of the
perturbation. For this comparison we defined the post-perturbation performance as
the average performance/turn, for all turns taken after the perturbation.

To estimate the degree of perturbation, we first considered that for each square
in the grid (state in the policy), the policy instructs the learner to go toward one
reward (up or left) or the other (down or right). One element of the difference

+ Except when the initial structure was [19, 21], in which case the post-perturbation structure
was [21, 19].

1 Note that so long as €>0 it is not possible to achieve the theoretical ideal average reward
per turn.

New XML Template (2006) [29.8.2006-1:25pm] [387-411]
(tfuk} TETA/TETA_I_18_03/TETA_A_192523.3d (TETA) [Invalid folder]

400 M. L. Anderson et al.

Non-MCL ——

Average reward

-0.1 L L L L 1 L L L L
0 2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 2,0000

Step

Figure 1. Performance of a standard Q-learner, with perturbation at step 10,001.

between worlds before and after a perturbation is the number of states where this
instruction will need to change. Thus, for instance, to go from the policy for reward
structure [10, —10] (go up or to the left in every state) to the policy for reward
structure [—10, 10] (go down or to the right in every state) involves 641 changes
of instruction, but going from [19,21] to [21,19] requires no such change.

Another factor in measuring the degree of perturbation we considered was any
valence change in the rewards. A valence change makes the perturbation greater
for two reasons. First, a negative reward which becomes positive (V) is masked
from the agent because the policy is strongly biased against visiting that state. In fact,
the chance of the agent discovering the reward (C,), given a policy biased against
visiting the relevant state, is equal to the chance (¢) of it being in an adjacent state (s),
times ¢, times the inverse of the number of actions the agent can take (4,):

C,=cxex(1/4,) 4)

The chance ¢ of it being in an adjacent state s varies somewhat with the
implementation, but is generally equal to the inverse of the number of states in the
world (S),), minus the number of states containing rewards (R,) (that is, the chance
of the agent being assigned to s randomly after it receives a reward), plus (once
again) the chance (¢) of its having been in an adjacent state (s') to s, and having
randomly chosen to go to state s. Each of these factors must be multiplied by the
adjacency (j) of the state space, that is, the number of possible states that are
adjacent to the reward state, and to s:

¢ = (1/(Sy = R)+ (¢ 5 % (1/4,))) (5)

+ We count all 64 states for simplicity.

i Depending on the shape of the state space, the adjacency value may be the same for all states,
or vary depending on the state in question. For simplicity of expression, we are assuming the
former.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 401

To solve this equation, it must be modified by an appropriate substitution for ¢/
(itself based on Equation 5), and so on, until all the possibilities in the state space
have been covered. It takes us too far afield to resolve this series of equations in the
current case, but it should be clear that they add up to a pretty low value. Second,
a positive reward which becomes negative (}'7) creates a situation in which, although
the agent is locally repulsed by the reward, it is still globally attracted to it. Until
the negative reward value propagates fully through its policy, the policy will contain
non-rewarding transitional attractors, that is, states to which the agent is attracted,
despite the fact that they contain no reward.

In light of the above considerations, we devised the following equation to
estimate the degree of perturbation (D,) in each of the 22 cases tested:

D, =T/16+3V" + V" (6)

The post-perturbation performance of the standard Q-learner, as a function
of degree of perturbation, is summarized in figure 2. As can be seen from the
graph, not only did the post-perturbation performance vary considerably, but it was
negatively correlated with the degree of perturbation (R = —0.85, p < 0.01).

4.1.2 The perturbation tolerance of enhanced Q-learning. Given our past work
on MCL mentioned above, we hypothesized that the perturbation tolerance of
Q-learners could be improved by enhancing them with metacognitive monitoring
and control. In order to make the results as clear as possible, and to keep the
computational overhead involved in MCL at a minimum, we first tested the simplest
MCL algorithm we could think of: if the expected reward is not received three times
in a row, throw out the policy and start over. Thus, we built a simple MCL-enhanced
Q-learner, with exactly the same settings as the standard Q-learner used in the
previous case, and ran it through exactly the same protocol as described earlier.

0.7}

o+

0.6F N + * '

0.5 +

4

0.4}

03

Post-perturbation performance

0.2}

01 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Degree of perturbation

Figure 2. Post-perturbation performance of a standard Q-learner, as a function of degree
of perturbation.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

402 M. L. Anderson et al.

The simple MCL-enhanced Q-learner, although not entirely unaffected by certain
perturbations, performs about equally well in all cases. This is not particularly
surprising if one reflects that the simple MCL-enhanced Q-learner starts from the
scratch when it detects a perturbation. Thus, in the ideal case, the post-perturbation
performance graph should look exactly like the initial performance. However, the
simple MCL-enhanced Q-learner, like the standard Q-learner, has a certain amount
of trouble with valence changes, and for similar reasons. It will not visit a positive
reward turned negative more than twice, except by chance, nor will it visit
the negative reward turned positive, except by chance. As the probability here is
low—governed by the series of equations defined by Equations 4 and 5—it can
take some time for it to receive the required three unexpected rewards. This
explains why, in figure 3, the post-perturbation performance graph deviates from
the initial performance. More sophisticated perturbation-detection mechanisms
(see subsequently) improve performance in this case.

Like figure 1, figure 3 shows the performance of the enhanced Q-learner over
20,000 turns, with an initial reward structure of [—10, 10] and a post-perturbation
reward structure of [10,—10]. The case was run 20 times, and the results were
averaged.

Figure 4 shows figure 1 and figure 3 superimposed, for easy comparison.

The [10, —10] to [—10, 10] perturbation is a high-degree perturbation (value 8),
and shows a dramatic difference in post-perturbation performance. The results
are not so dramatic in all cases, nor do they always favor simple-MCL-enhanced
Q-learning. Figure 5, for instance, shows a low-degree perturbation (value 0), from
[19,21] to [21, 19]. Note that, because simple MCL throws out its policy and begins
again, there is a period where it significantly under-performs standard Q-learning.

Thus, comparing the overall performance of simple MCL-enhanced Q-learning
to standard Q-learning reveals a slight under-performance when the degree of

MCL ——

Average reward

—-0.1 ! ! ! ! ! ! ! ! !
0 2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000

Step

Figure 3. Performance of an MCL-enhanced Q-learner, with perturbation at step 10,001.

New XML Template (2006) [29.8.2006-1:25pm] [387-411]
(tfuk} TETA/TETA_I_18_03/TETA_A_192523.3d (TETA) [Invalid folder]

Metacognitive monitoring and control 403

MCL——
Non-MCL -------

Average reward

0 2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000
Step

Figure 4. Superimposition of figures 1 and 3, to compare the performance of a standard
and an MCL-enhanced Q-learner, with perturbation at step 10,001.

Average reward

0 2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 20,000
Step

Figure 5. Performance of standard and simple MCL-enhanced Q-learning, with 0-degree
perturbation at step 10,001.

perturbation is small, but significant performance gains as the degree of perturbation
increases. The comparative performance results are summarized in figure 6.

The results show a high degree of correlation between the degree of the
perturbation and the ratio of MCL to non-MCL performance (R = 0.79, p<0.01).
These results are fairly striking, especially given the simplicity of the MCL
enhancement. However, there are two areas where improvement is called for.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

404 M. L. Anderson et al.

4.5

3.5}

2571

1.5}

+
1t + . ¥

* +

0.5

MCL/non-MCL post-perturbation performance

0 1 2 3 4 5 6 7 8
Degree of perturbation

Figure 6. Ratio of MCL/non-MCL post-perturbation performance, as a function of the
degree of perturbation.

First, as noted above, simple MCL has a difficult time detecting certain
perturbations, and so is slow to react in some cases. Second, simple MCL-enhanced
Q-learning under-performs standard Q-learning in response to low-degree perturba-
tions. We addressed the first of these problems by improving MCL’s ability to detect
perturbations, and the second of these by devising methods of responding to
perturbations somewhat more subtle than simply throwing out an established policy
and starting over. Results are given subsequently.

4.1.3 Sensitive MCL. In order to address the problem that simple MCL had
in detecting certain kinds of perturbations, we developed an MCL component that
was able to track not just expected reward values, but expected time to reward and
expected average reward/turn, and was thus much more sensitive to perturbations
than simple MCL. The “three strikes” and throw out the policy approach was
retained, but a perturbation could be any of the following: (1) an unexpected reward,
(2) the number of turns between rewards was three times the expected value,
or (3) the average reward per turn dropped to 85% of the expected value. This
“sensitive-MCL” component did indeed outperform simple MCL on high-degree
perturbations, as it reacted more quickly, but otherwise performed the same as,
or perhaps very slightly under-performed, simple MCL, since its increased sensitivity
caused it to over-react to minor problems, and not just the experimentally caused
perturbation. This caused it to throw out its policy too readily; in some cases,
the learner went through three or four policies in a single run (all experiments were
run according to the same protocol described earlier). Figure 7 compares the
performance of standard Q-learning with simple MCL and sensitive MCL-enhanced
Q-learning, as a function of the degree of perturbation.

4.1.4 € variations. The other outstanding issue with simple MCL was the fact that
it under-performed standard Q-learning after low-degree perturbations. This is

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 405
0.7 :
Non-MCL——
Simple MCL ---+--
0.6 Sensitive MCL - |

0.4} .

Post-perturbation performance

021 J

0.1 .
0 1 2 3 4 5 6 7 8

Degree of perturbation

Figure 7. Post-perturbation performance of standard Q-learning, simple-MCL and sensitive-
MCL, as a function of degree of perturbation.

0.7 T T T T T T T
Non-MCL—

Steady-E -+
g 0.6 += Decay-E - |
c
®©
€
s 05Ff J
©
<

Pl
S o04f ST
T
2
£
o 03f 1
@
o
o o2t g J
0.1 L L L L L L L
0 1 2 3 4 5 6 7 8

Degree of perturbation

Figure 8. Post-perturbation performance of Q-learning, steady-e¢ and decaying-¢, as a function
of the degree of perturbation.

clearly a result of the single, drastic response available to simple MCL of throwing
out its policy and starting over. One possible alternative to this is to temporarily raise
€, the exploration factor. Using sensitive MCL and the “three-strikes” approach,
we tested two versions of this strategy, one in which (after three perturbation
detections) € was fixed at 0.8 for 2000 turns, and then returned to 0.05, and another
in which € was initially set to 0.8, and then allowed to decay linearly to 0.05 over
2000 turns (figure 8).

The results are interesting in a number of ways. First of all, the runs where ¢
is changed tracks standard Q-learning pretty closely, which is somewhat surprising,

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

406 M. L. Anderson et al.

Table 2. Post-perturbation performance,
averaged over last 2000 turns for all runs.

MCL type Performance
Standard Q-learning 0.60
Sensitive-MCL 0.64
Decaying-¢ 0.66
Steady-€ 0.70

as one might expect some improvement from the increased exploration. However,
a closer look shows that the near equality is the result of the tradeoff between
exploration and exploitation: naturally, when the balance is toward exploration,
average reward per turn suffers, and so Q-learners with high € values will initially
under-perform those with low e values. However, the importance of exploration
is that one can have a more accurate picture of the environment, and thus one
would expect later exploitation to be more efficient. This is indeed the case here.
If one focuses on the last 2000 turns of each run (table 2), it is quite clear that
the Q-learners that took more time to explore significantly outperform those that
did little exploration. In the 10,000 turns after the perturbation during which
performance was measured, the cost and advantages of an initially high € generally
balanced out. However, it appears that over a longer run, the value of a high initial
€ would eventually emerge.

4.1.5 Sophisticated MCL. From the results above, it looks as if it should be
possible, with a good assessment of the perturbation, to perform well in response
to high-degree perturbations by throwing out one’s policy and starting over, and in
response to low-degree perturbations by temporarily raising €. We tried to address
this by developing a “‘sophisticated MCL” component that took a more nuanced
approach to evaluating and dealing with perturbations. Like the other systems,
it waited to react until it detected three perturbations, but unlike those systems,
it chose its reaction based on an evaluation of the seriousness of those perturbations.
For instance, a perturbation where a high-value reward (a reward expected to be
higher than the average reward received) decreased significantly would be cons-
idered more serious than a large but positive change in the expected reward, or
a significantly increased time to reward. If its estimation of the seriousness of
the perturbations reached a given threshold, it would throw out its policy and start
again; otherwise it would take the less drastic step of temporarily increasing e,
and allowing it to decay linearly over 2000 turns.

Sophisticated MCL utilized a decision tree to make its determination of the
degree of each of the three detected perturbations, and added the totals to get an
estimate of the overall seriousness of the problem. As with sensitive MCL there were
three types of perturbations: increased time to reward (in the case tested, three times
the average time to reward); decreased average performance (<80% of the expected
performance); and an unexpected reward value. The first two types of perturbation

New XML Template (2006) [29.8.2006-1:25pm] [387-411]
(tfuk} TETA/TETA_I_18_03/TETA_A_192523.3d (TETA) [Invalid folder]

Metacognitive monitoring and control 407

were always assigned a degree of two. In the case of an unexpected reward value,
sophisticated MCL assessed its seriousness as follows:

Is there a valence change?
Yes: Is it - to +?
Yes: degree 4
No: Is the expected reward > average reward?
Yes: degree 4
No: degree 2
No: Is the expected reward > average reward and > actual reward?
Yes: Is actual reward / expected reward < .757?
Yes: degree 3
No: degree 1
No: degree 1

After three perturbations had been noted and assessed, if the combined degree
of perturbation exceeded seven, the policy was thrown out; otherwise, € was raised
in the amount of the estimated degree of the perturbation divided by 10, and allowed
to decay linearly over 2000 turns. In addition, two different damping mechanisms
were used to counteract the volatility of sensitive MCL. First, in the case of
detections of increased time to reward and decreased performance, other detections
of these types of perturbations occurring within 50 turns were ignored. Second, after
a response to the perturbation had been implemented (after three detections),
sophisticated MCL waited for 2000 turns before responding to further perturbations,
in order to give its solution time to work.

The results show that sophisticated MCL does as well or better than standard
Q-learning in all cases (figure 9). However, in response to high-degree perturbations,
especially those involving valence changes, sophisticated MCL can under-perform

0.7 T T T T T T T
Non-MCL—
e Sensitive MCL---+---
0.6 Sophisticated MCL - -

Post-perturbation performance

0.4+]
03} o]
02}]
0.1

0 1 2 3 4 5 6 7 8

Degree of perturbation

Figure 9. Post-perturbation performance of standard Q-learning, sensitive-MCL and
sophisticated-MCL, as a function of degree of perturbation.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

408 M. L. Anderson et al.

Table 3. Post-perturbation performance,
averaged over all turns for all runs.

MCL type Performance
Standard Q-learning 0.530
Simple-MCL 0.545
Sensitive-MCL 0.546
Steady-¢ 0.510
Decaying-¢ 0.526
Sophisticated-MCL 0.567

sensitive MCL. This is because in these cases, for the same set of reasons discussed
above, it can be difficult for a Q-learner, relying on its own experience, to get a good
assessment of how the world has changed, for instance, if it is biased by its current
policy against visiting a certain region of its world. Thus, having only partial
information, it can assess a given perturbation as being less serious than it actually is,
and, rather than throwing out its policy and starting again (which it probably
should do) it instead responds by temporarily raising €.

Possibly it is the case that this particular issue could be overcome by
implementing a special directed exploration strategy, which MCL could trigger
in the case of a perturbation, that would force the agent to visit particular states
(or perhaps all states), regardless of the bias of its policy. Something similar to this
has been suggested by Leslie Kaelbling, whereby, for exploration, the chance
of taking a given action from a given state was inversely proportional to the number
of times that action had been taken from that state in the past.

Still, even given this issue, averaging post-perturbation performance over all runs
shows that sophisticated MCL outperforms all the other systems overall (table 3).

Before moving on to the next sections, it is worth noting that although the
rewards in these cases were deterministic, there is no reason in principle why
these techniques would not work in a non-deterministic world. For instance, while
the expected reward values in the above case were simple numbers, they could
just as easily have been models of expected values over time. As with the case
of monitoring expected time to reward, if experience deviated sufficiently from the
expected model for reward, this would count as a perturbation.

Furthermore, we would like to emphasize the general finding that noting,
assessing, and differentially responding to anomalies gives better performance than
either ignoring them, or always doing the same thing in response to them. Although
there is little doubt that response strategies can be developed that are more effective
than the ones we tested (for instance, the directed exploration strategy suggested
above, or a method for zeroing out selected portions of a policy, or some
combination of these and others), we expect the effectiveness of the note—assess—
guide strategy to stand.

4.2 Other RL techniques

Although we worked most extensively with Q-learning, we have also run similar
experiments with both SARSA (Sutton and Barto 1995) and Proritized Sweeping
(Moore and Atkeson 1993). We have found that the post-perturbation performance

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 409

of these algorithms is very similar to that of Q-learning, and we therefore conclude
that agents using these algorithms would benefit equally from MCL enhancement.

Note that in the reinforcement learning studies, none of the perturbations were
what we earlier defined as barrier perturbations. This is in part because the systems
tested were all continuously learning and exploring, and so changes in the world will
all eventually be reflected in their action policies. Although MCL can be helpful
in these cases, it is not necessary. However—and this brings up an important class
of cases where MCL can be helpful—it is not always feasible to deploy a system that
is continuously learning and exploring. In some cases, continuous learning could
cause unwanted drift (in pattern recognition or concept learning, for instance,
exposure to a long string of marginal cases can change the definitions in undesirable
ways). Likewise, taking random, exploratory actions can have disastrous con-
sequences in some environments. Hence, does National Aeronautics and Space
Administration (NASA), for instance, discourage random innovation and deviation
from established protocols. In such cases, where systems are equipped with fixed
action-guiding components, it can be especially important to monitor actual
performance, because, insofar as the system will not automatically adjust,
perturbations will continually impact or impede performance unless and until
specific remedial action is taken.

5. Comparison to related research

In general, what is distinctive about our approach is its insistence on the general
applicability of the note—assess—guide strategy embodied in MCL, and, in particular,
on the value of the first step: noting that there is a problem in the first place.
After all, performance in the face of unexpected perturbations can be enhanced even
when one cannot figure out exactly what is wrong, or what to do about it, so long as
one is able to realize that something is wrong, and ask for help, or use trial-and-error,
or even give up and work on something else. And in those cases where it is possible
to determine precisely what is wrong, and take specific remedial action (as in the case
of realizing that one does not know a given word, and taking steps to learn it),
still the necessary first step is crucial: admitting there is a problem to be addressed.

For instance, many techniques under the general topic of reinforcement learning
(Sutton and Barto 1995), such as neuro-dynamic programming (Bertsekas and
Tsitsiklis 1996), have been developed for acting under uncertainty. However, these
techniques are very different from the proposed work in that they focus on action
selection itself, not monitoring or reasoning about the action selection process or
its performance, and they adapt to non-stationarity only by continually training.
The latter requires continual exploration, or deviation from the optimal action
policy, whereas MCL systems can act optimally until they notice that something
is wrong and then take remedial actions focused on the problem at hand. Alternately,
a different purely stochastic technique might be to factor uncertainty about rewards
directly into the model; if it were known ahead of time that the world might undergo
a random perturbation in the future, this knowledge could be accounted for in the
form of a probability model and included in the decision-making optimization.
Here again, it seems that insofar as some non-actual possible future model of the
world was taken account of in deriving an action policy, the result of this would be

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:25pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

410 M. L. Anderson et al.

a policy that was sub-optimal for the current state of the world. In contrast, the MCL
approach is to allow the policy to optimize for current circumstances, but to monitor
performance and make on-line adjustment in the case of problems. Furthermore,
as noted, the stochastic technique would depend on having advance knowledge
(and even perhaps a model) of the possibility for change. The MCL approach can
respond equally to anticipated and unanticipated events.

Tsumori and Ozawa (2003) showed that in cyclical environments, reinforcement
learning performance could be enhanced with a long-term memory, and a “change
detector”, which would recall stored policies when a given known environment
reappeared. This work is in the spirit of MCL, although we think it is important to
monitor one’s own performance and not only the environment.

Another approach to the problem of using reinforcement learning in dynamic
environments is to explicitly include information about the state of all dynamic
objects in the domain, monitor those states, and change the relevant information and
learn a new policy when these states change (Wiering 2001). This can be a useful
expedient when one knows up front which objects, and which states of which objects,
are likely to change, but the technique would likely be difficult to generalize to
poorly known domains, or unexpected changes. Here again, monitoring one’s own
performance is a more general expedient, which can help one detect when something
unexpected has occurred. Finally, model-based approaches can be computationally
expensive, whereas the version of MCL tested here requires virtually no additional
overhead.

6. Conclusion

In this article we described a general approach to the problem of perturbation
tolerance in intelligent systems. Our approach centrally involves system self-
monitoring and self-alteration, and, more specifically, rests on the notion that
systems should have specific expectations for their own performance, and the
outcomes of their actions, and should watch for violations of these expectations.
We call the practice of noting failed expectations (anomalies), assessing the options
for responding, and guiding a response into effect the metacognitive loop (MCL).
In addition, we discussed several ongoing projects, presenting both past findings
and new results that demonstrate the value of metacognitive monitoring and control
in improving the performance of intelligent systems. We believe that the variety
of the systems enhanced suggests the wide applicability of metacognitive approaches
in general, and MCL in particular.

References

J.E. Allen, L.K. Schubert, G. Ferguson, P. Heeman, C.H. Hwang, T. Kato, M. Light, N. Martin,
B. Miller, M. Poesio and D.R. Traum, “The TRAINS project: a case study in building
a conversational planning agent”, J. Exp. Theor. Artifi. Int., 8, pp. 7-48, 1995.

E. Amir, “Toward a formalization of elaboration tolerance: Adding and deleting axioms”, in Frontiers
of Belief Revision, M. Williams and H. Rott, Eds, Dordrecht: Kluwer, 2000, pp. 147-162.

M.L. Anderson, D. Josyula and D. Perlis, “Talking to computers”, in Proceedings of the Workshop on
Mixed Initiative Intelligent Systems, Acapulco, Mexico: IJCAI-03, 2003, pp. 1-8.

N
(tfuk} TETA/T

ew XML Template (2006) [29.8.2006-1:26pm] [387-411]
ETA_I_18 03/TETA_A_192523.3d (TETA)

[Invalid folder]

Metacognitive monitoring and control 411

M.L. Anderson and D. Perlis, “Logic, self-awareness and self-improvement: The metacognitive loop and
the problem of brittleness”, J. Logic Comput., 15, pp. 21-40, 2005.

D.P. Bertsekas and J.N. Tsitsiklis, Neuro-Dynamic Programming, Nashua, NH: Athena Scientific, 1996.

J. Elgot-Drapkin and D. Perlis, “Reasoning situated in time I: Basic concepts”, J. Exp. Theor. Artif. Int.,
2, pp. 75-98, 1990.

J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe and D. Perlis, “Active logics: A unified formal
approach to episodic reasoning”, Technical Report UMIACS-TR # 99-65, CS-TR # 4072,
College Park, MD: University of Maryland, College Park, 1993.

J. Elgot-Drapkin, “Step-logic: Reasoning Situated in Time”. PhD thesis, Department of Computer
Science, University of Maryland, College Park, 1988.

K. Hennacy, N. Swamy and D. Perlis, “RGL study in a hybrid real-time system”, in Proceedings of
IASTED NCI 2003, Mexico, Cancun, 2003, pp. 203-208.

D. Josyula, M.L. Anderson and D. Perlis, “Towards domain-independent, task-oriented, conversational
adequacy”, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(1JCAI-03), 2003, pp. 1637-1638.

H.H. Kendler and T.S. Kendler, “Vertical and horizontal processes in problem solving”, Psychol. Rev.,
69, pp. 1-16, 1962.

H.H. Kendler and T.S. Kendler, “Reversal-shift behavior: Some basic issues”, Psychol. Bull., 72,
pp. 229-232, 1969.

S. Kraus, M. Nirkhe and D. Perlis, “‘Deadline-coupled real-time planning”, Proceedings of 1990 DARPA
workshop on Innovative Approaches to Planning, Scheduling and Control, 1990, pp. 100-108.

J. McCarthy, “Elaboration tolerance”, in Proceedings of the Fourth Symposium on Logical Formalizations
of Commonsense Reasoning, 1998.

M. Miller and D. Perlis, “‘Presentations and this and that: Logic in action”, in Proceedings of the 15th
Annual Conference of the Cognitive Science Society, 1993.

A.W. Moore and C.G. Atkeson, ‘““Prioritized sweeping: Reinforcement learning with less data and less
time”, Mach. Learn., 13, pp. 103130, 1993.

T.O. Nelson and J. Dunlosky, “Norms of paired-associate recall during multitrial learning of Swabhili-
english translation equivalents”, Memory, 2, pp. 325-335, 1994.

T.O. Nelson, J. Dunlosky, A. Graf and L. Narens, “Utilization of metacognitive judgments in the
allocation of study during multitrial learning”, Psychol. Sci., 4, pp. 207-213, 1994.

T.O. Nelson, “Consciousness and metacognition”, Am. Psychol., 51, pp. 102-116, 1996.

M. Nirkhe, S. Kraus, M. Miller and D. Perlis, “How to (plan to) meet a deadline between now and then”,
J. Logic Comput., 7, pp. 109-156, 1997.

M. Nirkhe, “Time-situated reasoning within tight deadlines and realistic space and computation bounds”,
PhD thesis, Department of Computer Science, University of Maryland, College Park, 1994.

D. Perlis, K. Purang and C. Andersen, “Conversational adequacy: mistakes are the essence”, International
Journal of Human-Computer Studies, 48, pp. 553-575, 1998.

D. Perlis, “On the consistency of commonsense reasoning”, Comput. Intelli., 2, pp. 180-190, 1986.

G. Priest, R. Routley, J. Norman, ‘“‘Paraconsistent Logic: Essays on the Inconsistent”, Philosophia
Verlag, Munchen, 1989.

G. Priest, “Paraconsistent logic”, in Handbook of Philosophical Logic, 2nd ed., D. Gabbay and
F. Guenther, Eds, Dordrecht: Kluwer Academic Publishers, 2002, pp. 287-393.

K. Purang, “Systems that detect and repair their own mistakes”, PhD thesis, Department of Computer
Science, University of Maryland, College Park, 2001.

R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1995.

I. Szita, B. Takacs and A. Lorincz, “e-MDPs: Learning in varying environments”, Journal of Machine
Learning Research, 3, pp. 145-174, 2002.

D. Traum and C. Andersen, “‘Representations of dialogue state for domain and task independent meta-
dialogue”, Proceedings of the IJCAI99 workshop: Knowledge And Reasoning in Practical Dialogue
Systems, pp. 113-120, 1999.

D. Traum, C. Andersen, Y. Chong, D. Josyula, M. O’Donovan-Anderson, Y. Okamoto, K. Purang and
D. Perlis, “Representations of dialogue state for domain and task independent meta-dialogue™,
Electronic Transactions on Artificial Intelligence, 3, pp. 125-152, 1999.

K. Tsumori and S. Ozawa, “Incremental learning in dynamic environments using neural network with
long-term memory”, Proceedings of the International Conference on Neural Networks,
pp. 2583-2588, 2003.

C.J.C.H. Watkins and P. Dayan, “Q-learning”, Mach. Learn., 8, pp. 279-292, 1992.

C.J.C.H. Watkins, “Learning from Delayed Rewards”, PhD thesis, Cambridge University, Cambridge,
England, 1989.

M.A. Wiering, “Reinforcement learning in dynamic environments using instantiated information”,
Proceedings of the Eighth International Conference on Machine Learning, pp. 585-592, 2001.

