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Abstract
We report on a natural language agent, originally developed as a command driven interface, that was enhanced with time-dependence,
contradiction tolerance, meta-linguistic abilities, and an overall meta-cognitive awareness. We show how these new capacities together
can make an AI system’s natural language processing more robust and human-like.

1. Introduction
In human-human dialog, if a listener does not hear the

speaker clearly, the listener will typically notice the prob-
lem and take some action to address it. He might ask the
speaker to repeat the statement, or possibly he will ignore
the problem and move on in the hope that its meaning can
be surmised from later context. Of course, potential prob-
lems are not limited to signal reception. Even when a lis-
tener hears the speaker, he may not understand what was
meant, perhaps because an unfamiliar vocabulary word or
an ambiguous phrase was used. Here, too, the listener can
notice that there is an issue and consider possible actions
that could remedy the situation. Again, one such possi-
ble action is to engage in meta-linguistic dialog, i.e., the
listener might temporarily put aside the current conversa-
tion topic and start a new one about the previous dialog in
order to ask for clarification.

When faced with such perturbations in dialog, humans
very effectively note the anomaly, assess how to deal with
it, and guide a response strategy into place. We call this the
N-A-G cycle, and we have tried to model such a N-A-G
cycle in our artificial dialog agent, Alfred, to help improve
the notoriously poor perturbation tolerance of compter di-
alog systems. We believe a dialog agent that maintains and
monitors expectations about the dialog, along with a set of
responses that it can choose from if an expectation were
to fail, will behave more like a human dialog partner, and
will therefore be easier and less frustrating to use. And if
success is to be measured by a comparison to human di-
alog partners, then the agent must also have the ability to
converse about the conversation (and language in general)
when the need arises.

Our approach involves an ample amount of meta-
reasoning: the system must monitor, assess, and in some
cases change ongoing reasoning processes involved in
maintaining the dialog. We therefore call our imple-
mentation of the N-A-G cycle–the Meta-Cognitive Loop,
or, MCL. In addition to MCL, Alfred employs a rea-
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soner called Active Logic that is both time-sensitive and
contradiction-tolerant. This reasoner is instrumental in
getting MCL to work: time-sensitivity allows examination
and manipulation of reasoning processes and a tolerance
of contradictions provides a way to monitor expectations.
In the following sections we outline exactly how Alfred
engages in meta-reasoning and meta-dialog. We describe
Alfred in the next section. Then we turn to a discussion of
MCL followed by a brief introduction to Active Logic. In
the last few sections, we discuss related work and future
goals.

2. Alfred

Alfred is a dialog agent designed to act as an inter-
face between a human user and several different task-
oriented domains. Alfred uses a machine-translation ap-
proach, transforming user instructions in English into
valid, domain-specific commands. For each domain, Al-
fred has a dictionary that lists all of the domain’s possi-
ble commands and objects, as well as specifying the com-
mand syntax required of that domain. Alfred’s basic op-
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Figure 1: Alfred’s plan and sample expectations

eration plan (Figure 1) runs as follows: obtain the user
utterance; parse the utterance; determine the main verb in



the utterance (thus finding the action the user wants per-
formed); find the domain command that best captures the
main verb; determine the syntax of the command, includ-
ing the number and type of objects required for the com-
mand to be valid; map objects (nouns, names, etc.) from
the utterance onto objects in the domain; construct and
send a valid instruction to the domain.

An MCL component in Alfred implements the N-A-G
cycle by monitoring a set of time-related, content-related
and feedback-related expectations. Time-related expecta-
tions set time limits for various things, like completing an
action, finding a solution, or continuing a conversation.
So, for instance, Alfred has initial time-related expecta-
tions that each of the actions in its basic operation plan will
succeed in “reasonable” amounts of time. It also monitors
the dialog by expecting to receive user utterances within
a specified amount of time.1 Since Alfred interprets all
expectation failures as indications of possible failures, if
either of these expectations are violated, it will note the
problem, assess the situation and guide a response strat-
egy into place. In these cases, it may be that Alfred will
say “Please tell me what to do” or ask “Are you there?”

Alfred also has content-related expectations about
what the output of its actions will be. For instance, Alfred
has the expectation that when it engages in trying to “de-
termine the main verb” of the utterance, it will eventually
find the verb and a main verb predicate will be asserted.
Similarly, for the action “determine the objects”, Alfred
has the expectation that an objectstype predicate, which
specifies the number and type of each object associated
with the command, will be asserted. And, for the action
“identify the domain objects”, Alfred expects that the right
number and types of object predicates (as specified by the
objectstype predicate) will be asserted.

Once an expectation is met, MCL notes that fact and
deletes it from the set of monitored expectations. But
if there is an expectation violation, MCL adopts the re-
sponse strategy associated with that particular violation.
In the case where there are multiple strategies specified for
a given violation, MCL attempts each one in succession
until a resolution occurs. Alfred maintains expectations
for any action it takes in response to perturbations, and
thus it can monitor and repair its own repairs. This multi-
layered expectation monitoring helps make Alfred robust
in the face of various kinds of failures, as the following
extended example will show. Suppose Alfred’s knowl-
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Figure 2: Initial Concept Space

edge of a TRAINS-like domain (Allen et al., 1995) is as

1The actual time duration specified in this expectation can be
modified or learned over time.

shown in Figure 2,2 and the user says “Send the Metro
to Boston.” However, as can be seen in Figure 2, Alfred
does not know the train “Metro”. But instead of ignor-
ing the request, or saying “Sorry, I do not understand the
word ‘Metro’,” Alfred engages in the N-A-G cycle in an
effort to fix the problem. Since it was incapable of iden-
tifying the command’s domain object (i.e., the train that
goes with the “send” command), it will fail to fulfill the
expectation that this action will result in an assertion of
object predicates. Alfred easily notes this violation, and
then assesses the problem, determining that the problem
lies in the fact that object V 1 of type train, required by
the “send” command, is missing. Alfred then guides a re-
sponse strategy into place. First, it checks to see whether
it possesses any other knowledge that will allow it to map
the new word onto a domain object by examining the train
instances in the concept space to see if they are linked to a
word “Metro” via a chain of alt name links. If that fails,
(and, there is no such chain in this scenario) Alfred decides
to ask the user for help. When communicating with the
user, however, Alfred is able to use whatever knowledge it
does have to determine that the word “Metro” must name
a train, allowing Alfred to ask a very specific clarification
question: “Which train is Metro?”. Whenever Alfred asks
a question, it maintains expectations about when the user
will reply, and what information the user reply will con-
tain. In this case, the expectations are that the user will
provide a known train name within a reasonable amount
of time.

At this point, if the user were to reply with the sin-
gle word “Subway”, Alfred’s basic operation plan to deal
with user utterances would fail, since there is no verb in
this utterance. When the expectation that a main verb

predicate will be asserted by the “determine main verb”
action is violated, Alfred notes the anomaly and assesses
the situation. In this case, since Alfred is expecting a train
name from the user, Alfred makes the assumption that the
utterance is an elliptical answer to its question, and as-
serts that the main verb of this utterance is “is” (as in
“Metro is Subway”). Thus, the “find command” action
selects the command equil that adds new associations in
Alfreds concept space, and the “identify objects” action
chooses the objects to be included in the association as the
words “Subway” and “Metro”. The execution of the last
action in Alfred’s plan causes the new association to be
stored in the concept space as in Figure 3.
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Figure 3: Concept Space after “Metro = Subway”

During all this activity, the guide phase of the origi-
nal loop through the N-A-G cycle caused by the unknown

2We call Alfred’s knowledge base a “concept space”.



word “Metro” is still active and monitoring the original
response strategy that it adopted, ask the user. Since the
strategy helped gather some information from the user,
Alfred attempts to use this knowledge to repair the orig-
inal command, by associating the word “Subway” with
one of the known trains in the domain. But this also fails,
since there is no train called “Subway” already in the con-
cept space. Hence, the guide phase attempts a repair of
the repair, and asks the user “Which train is Subway?”.
Suppose the user now says “Metroliner”. Alfred will
go through reasoning similar to that for the word “Sub-
way”, and store the association between the word “Sub-
way” and “Metroliner” as shown in Figure 4. Since the
word “Metro” is now linked to an actual train instance
Metroliner in the domain via a chain of alt name links,
the “identify domain objects” action will finally succeed,
and Alfred will be able to construct a valid domain in-
struction (send,metroliner,boston) and send it to the cor-
rect domain. We now turn to the two components which
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Figure 4: Concept Space after “Subway = Metroliner”

are primarily responsible for Alfred’s ability to handle per-
turbations: MCL and Active Logic.

3. MCL
MCL has been applied to other applications like rein-

forcement learning (Anderson et al., 2006) and navigating
in hostile/unknown environments (Anderson et al., 2007).
The success of the MCL strategy on such diverse domains
has led us to believe that MCL can be a general add–on
component which can sit on top of any host AI system.
From there it can monitor the host’s expectations, note
anomalous behavior, assess it, and guide the host to ap-
propriate responses (and then loop around again if neces-
sary). As a general system, however, it must be prepared
for any expectation failure and any (possible) response.
Thus, we propose that all errors and their responses, no
matter what the system or environment, can be categorized
into abstract, domain-independent ontologies.

We have developed a set of three ontologies that aim
to do just that (Schmill et al., 2007). They roughly corre-
spond to the three parts of the N-A-G strategy: an ontol-
ogy of indicators for noticing when expectations fail, an
ontology of failures for assessing the underlying causes,
and an ontology of responses for choosing an appropriate
action that the system can guide into place. Members of
the ontologies are represented as nodes, and links between
members express relationships between the concepts they
represent. Nodes in each ontology are linked to associated
nodes in the other ontologies via inter-ontological links.

System-specific knowledge is introduced through two
sets of fringe nodes. The first serves as an input to MCL

and is connected to the indications ontology. These are
essentially a list of all expectations that must be moni-
tored by MCL. The second set of fringe nodes serves as
an output of MCL and is connnected to the responses on-
tology. These are a list of all possible actions the host
can employ to address failures. The fringe nodes can be
linked by hand into the main ontologies by the system en-
gineer, or the MCL system can go through a training phase
in which it learns to associate domain-specific expecta-
tions with domain-independent indications, and domain-
independent responses to domain-specific actions.

4. Active logic
To implement both Alfred’s MCL component, and its

main dialog reasoner, we use active logic, a time sensitive,
contradiction-tolerant logical formalism (Elgot-Drapkin
and Perlis, 1990; Purang, 2001). To have better insight
into the operation of Alfred and MCL, it is useful to have
some sense of the special properties of this formalism. In
active logic, reasoning progresses one step at a time; that
is, given A, A → B and B → C at step 1, B is obtained at
step 2 whereas C is obtained only at step 3. This involves
step-wise control over inference, and allows the possibil-
ity of examining and manipulating the set of formulas at
each step in order to modify the reasoning process itself.
More generally, new formulas can be added and existing
formulas can be deleted at any step to get a revised set
of formulas in the next step. This feature can be used to
model perception and forgetting, for example.

In addition, in active logic direct contradictions of the
type P , ¬P can be detected at each step. In the version of
active logic that Alfred is based on, a direct contradiction
causes a new formula Contra(P,¬P, t) to be asserted and
causes the existing formulas P , ¬P (as well as the de-
scendants that were obtained in previous steps from P or
¬P ) to be distrusted, preventing their use in further infer-
ence. This is a crucial feature for any logic-based agent
intended for deployment in real-world situations. For, as
the world changes, what is true at one time may not be
true at another, causing inevitable contradictions between
what is currently believed and what may be later observed.
Since in a classical logical formalism, any well-formed
formula follows from a contradiction, the presence of P

and ¬P in the knowledge base can quickly lead to swamp-
ing the knowledge base with vacuously warranted formu-
las. Active logic’s contradiction-detection feature avoids
this swamping problem, and helps maintain a more man-
ageable and trustworthy knowledge base. This feature is
especially relevant to our implementation of MCL since an
expectation violation is very much like a contradiction—
one expects E, but observes ¬E instead. Thus, in active
logic, a newly derived Contra() predicate is an indication
of an anomaly that needs to be dealt with. As currently im-
plemented, Alfred uses the Contra() predicate in just this
way, triggering further reasoning about the causes of and
possible remedies for the observed anomaly.

Finally, the step-wise nature of active logic inferences
provides a natural way to monitor the passage of time,
something that can be important in time-sensitive domains
like natural-language dialog.



5. Related Work
The active logic approach to reasoning was motivated

in part by the observation that all reasoning takes place
in time. Other approaches such as (Bibel, 1998) and
(Khalil, 2002) incorporate step-wise, time-dependent rea-
soning into their systems as well. Active logic, however,
allows us to use contradictions as a way of monitoring ex-
pectations (expect E, but observe ¬E). Thus, active logic
serves as the perfect reasoning system for MCL.

The problems that MCL tries to tackle are not new—
Making systems that are flexible enough to handle un-
expected situations has been a preoccupation of AI re-
searchers for decades.3 Systems as early as Shakey (Fikes
and Nilsson, 1971), for instance, were designed to re-plan
when encountered with failures or unmet preconditions.
More recently, (Fox, 1995) and (Leake, 1996) have imple-
mented case-based reasoning systems capable of learning
about and modifying their own reasoning processes, and
(Stroulia, 1994; Ulam et al., 2005) and others associated
with Ashok Goel’s lab have designed systems that engage
in “reflective learning”. These systems are quite similar
in spirit to MCL; they can compare their own behavior to
a self-model to monitor problems. Any differences trig-
ger an analysis of the anomaly, which includes examining
the history of the actions that lead to it, localization of
the causes, and subsequent modification of the KB and/or
reasoning rules. The work of Goel and his colleagues fo-
cuses on developing frameworks for representing reason-
ing that can be analyzed for causes and subsequently mod-
ified. Their work, however, is very domain specific. In
this way, our work is complementary: our attempt to build
a broad, general MCL implementation can build on the
insights presented by the depth of their work.

Despite such work in other domains, we have found
virtually no previous work using meta-language and meta-
reasoning to accurately parse sentences that include meta-
linguistic objects like spellings (His name is spelled E L
M O), quotations (‘Elmo’ has four letters), reference to
objects that are part of the discourse (I didn’t catch that
last sentence...could you repeat it?) or meanings (‘Metro’
means the same thing as ‘Metroliner’), etc. The closest we
have found is (J. G. Neal, 1987), in which the SNePS se-
mantic network formalism (Shapiro, 2000) is used to rep-
resent certain knowledge about natural language in an at-
tempt to endow a system with the ability to converse about
that knowledge. The system allowed a human to use (a
rather stilted form of) English to add syntactic categories
and rewrite rules to its KB which could then be used by the
system in subsequent natural language processing. But its
overall meta-linguistic capabilities were rather limited in
that it could only interpret meta-language about syntactic
categories and rewrite rules. Furthermore, this system was
confined to only talking about its language skills (which
might trigger adjusting them), but it did not reason about
its language in the way that Alfred does. For instance,
Alfred can notice if a word is not in its dictionary, or if
it cannot parse a sentence, or if a phrase is ambiguous as

3See (Brachman, 2006) for an enlightening characterization
of these problems.

to its referent. These skills involve meta-reasoning about
language, not just conversing with meta-language.

6. Future Work
Our plans for Alfred include adding a new MCL com-

ponent that is domain-independent (rather than the task-
specific MCL that is currently integrated into Alfred’s
code.) This will make it easier for MCL to monitor all
aspects of Alfred’s behavior, as well making it easier
to add MCL to other dissimilar systems. This domain-
independent MCL has the potential to make Alfred a flex-
ible, autonomous dialog agent – but only if we provide
Alfred with the ability to “know” when its representations
of concepts (specifically, its linguistic concepts) are not
wholly appropriate for whatever task is at hand, and thus
need modification. That is, an enhanced MCL/Alfred must
have meta-linguistic knowledge and skills that permeate
every level of language processing, from dialog manage-
ment to orthographic identification.4

This knowledge is important. (Perlis et al., 1998) ar-
gues that meta-linguistic talk is perhaps one of the central
methods by which human conversation partners manage
conversations, and (Anderson and Lee, 2005) reports that
more than 50% of dialog management is meta-linguistic.
Alfred needs to have significant meta-linguistic reasoning
and speaking abilities if it is to fully engage in and com-
prehend the conversations it has with humans. In order
to achieve this level of meta-knowledge about language,
Alfred’s KB must contain all pertinent information about
its language skills and how they have been employed in
past conversations. In other words, the grammar of En-
glish must be represented as a concept, in the concept
space, using the same formalisms as other concepts. In
this way, Alfred can have concepts like Metroliner and
New York and maintain relationships between those con-
cepts and others. For instance, the former is a train, it
is silver, it often participates in events of sending as the
thing that is sent, etc. But Alfred must also maintain con-
cepts of the words ‘Metroliner’ and ‘New York’ in its KB.
These are related to the concepts Metroliner and New York,
5 and yet they are distinct: the word ‘Metroliner’ starts
with the letter ‘M’, is a noun, and a token of it was used in
a previous sentence, etc. But the concept Metroliner isn’t
spelled at all, it isn’t a noun, and it wasn’t used in a previ-
ous sentence (although a token of it would have been in-
voked when Alfred interpreted the previous sentence that
contained a token of the word ’Metro’). This differs from
Alfred’s current incarnation in that right now Alfred’s con-
cept space does not separate the word ‘Metroliner’ and the
idea that it represents, or the sentence “Send Metroliner to
Boston” and the idea that it represents. Once this distinc-
tion is made, Alfred can truly refer to these items and pro-
cess sentences like ‘Metroliner’ starts with the letter ‘M’
and I wasn’t supposed to ask you to do that, so ignore the
previous command.

4Alfred currently only takes input from a keyboard, necessi-
tating orthographic knowledge rather than phonetic knowledge,
but we also have plans to expand Alfred’s abilities to include
analyzing speech.

5We say that the word ‘Metroliner’ has content Metroliner.



In summary, what we want for Alfred is the ability
to meta-reason about every step of its dialog manage-
ment, from interpreting user utterances, fitting them into
larger conversational structure, learning new things about
language, and forming the actual domain specific com-
mand. We believe the capacity to think and speak meta-
cognitively will make Alfred much more human-like.

7. Conclusion
In this article, we have described our most recent ef-

forts in applying MCL and the N-A-G cycle to the task of
natural language processing. This project was spurred on
by the observation that humans employ the N-A-G cycle,
not only in many general circumstances, but also when
they are managing conversations. For instance, we main-
tain a tacit expectation that all words used in a conversa-
tion will be in our mental lexicon. We also expect our
questions to be followed by answers. When these expec-
tations are not met, we are quick to notice, and assess
the situation, and then respond in an appropriate way, of-
ten asking our conversation partners for help by engag-
ing in meta-language (i.e., I don’t know that word, could
you tell me what it means?) That is, humans employ
meta-linguistic reasoning to monitor and appropriately ad-
just their language use, and they engage in meta-language
speech when it is necessary to maintain a conversation.

We believe that in order for computer dialog agents to
be more human-like, they must also be able to monitor,
adjust, reason about, and talk about their language skills.
To this end, we have added an MCL component to Al-
fred, our natural language agent. Alfred knows about its
language skills. It forms expectations when they are em-
ployed, and MCL monitors them. If any are not met, MCL
notices, assesses the cause(s), and guides a response into
place. That response might mean that Alfred must engage
in meta-language with the user, which it is fully equipped
to do.

These abilities certainly make Alfred more
perturbation-tolerant than other dialog systems; as
these abilities become more developed, we hope they will
make Alfred more human-like, as well.
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