
Ontologies for Reasoning about Failures in AI
Systems

Matthew D. Schmill2, Darsana Josyula1,4, Michael L. Anderson1,3,
Shomir Wilson1, Tim Oates1,2, Don Perlis1, Dean Wright2, and Scott Fults1

1 University of Maryland
College Park, MD 20742 USA

perlis@cs.umd.edu, shomir@cs.umd.edu, scott.fults@gmail.com
2 University of Maryland Baltimore County

Baltimore, MD 21250 USA
oates@cs.umbc.edu, matt@schmill.net

3 Franklin & Marshall College
Lancaster, PA 17604 USA

michael.anderson@fandm.edu
4 Bowie State University
Bowie, MD 20715 USA
darsana@cs.umd.edu

Abstract. Brittleness is a common problem among AI systems. Au-
tonomous systems, including those that learn, may be faced with unan-
ticipated situations that cause decreased performance, or in the worst-
case, catastrophic failures from which the system cannot recover. In this
paper, we describe a construct called the metacognitive loop (MCL) that
allows AI systems to monitor their own behavior, generate expectations
about their own progress and performance, and verify that they are met.
When expectations are violated, the metacognitive loop attempts to rea-
son in a domain-general way about why expectations were not met and
how to recover. The basis for reasoning is a set of ontologies that encode
abstract diagnosic and prescriptive processes for coping with failures.

1 Introduction

We are interested in the brittleness of AI systems. A system is considered brit-
tle when unanticipated perturbations in its domain cause significant losses in
performance, or worse, complete system failure. How can brittleness be avoided
without asking the designer of an AI system to enumerate and plan for all pos-
sible perturbations?

It is generally agreed that AI has produced success stories in the narrow: for
large variety of well-defined AI problems, there are implemented solutions using
reasonably well-understood techniques. At the very least, there are promising
approaches to similar problems that give us reason to expect solutions to the
problem on the way.

But in the wide sense, AI is a disappointment. Although many AI systems
are at or beyond human-level competence at the individual tasks for which they



were designed, AI systems are nowhere near human-level competence across the
board. Importantly, this does not seem to be a matter of building a system that
has numerous subsystems, one for each of hundreds or thousands of individual
tasks. Humans have, in addition to all these individual capacities, the ability
to do reasonably well when faced with situations we are not trained in or even
familiar with. Indeed, this ability may well be key to how we are able to become
trained. We recognize when we lack an ability, we reason about how to gain
it, and we recognize when we possess the necessary competence. Alternatively,
we recognize when it is ineffective, too expensive, or no longer important to
continue. We also (sometimes) recognize when we are in over our heads, and
then we ask for help or wisely give up.

Solving the brittleness problem might be characterized as the goal of wide
AI: automated human-level competence in both familiar and novel situations.
In general, no system designer, whether we are talking about a learning system,
a planning system, or any other AI technology, can enumerate all the possible
contingencies his or her system will encounter. This is not a unique observation.
Such a view has been pointed out before (e.g, by Brachman [1]). We propose that
at some level of abstraction, the ways in which a system can fail are finite. Thus, a
domain-general metareasoning component can be developed and equipped with
knowledge of how systems fail (and how to recover from these failures) that,
when integrated with an existing AI system (which we will call the host), will
allow that system to become less brittle.

We have identified four primary qualifications for such a reasoning system
to provide relief from brittleness. First, the metareasoner will need access to
enough information about what its host is doing (its sensors, actions, and their
results), so that it can detect – and then assess – when expectations about the
host’s behavior are being violated in a systematic and problematic way.

Second, the metareasoner must be able to make recommendations of targeted
changes to the host system to address expectation violations. Here, there must be
some synergy between the metareasoner and the host; either the reasoner must
have enough access to the host’s internals to effect the changes itself, or the
host must have pre-existing mechanisms to implement general recommendations
(such as “reactivate learning” or “replan”) from the metareasoner.

Third, the metareasoner must be able to use the first two capabilities to
monitor how well a recommended change has addressed the problem. It must
integrate a failed recommendation into its reasoning process to suggest alterna-
tives.

And fourth, all this needs to be done in real time. This paper presents our
architecture, called the metacognitive loop (MCL), the progress we have made to
date in implementing and testing it, and outlines promising avenues for future
research.



2 Related Work

There has been some progress in the literature towards integrating the differ-
ent subspecialities of AI to move towards the goal of artificial intelligence in
the wide sense. For instance, Goodwin [2] integrates decision theory with plan-
ning techniques to create plans with higher expected utility, using a meta-level
control mechanism that mediates the allocation of computational resources be-
tween planning and the expected utility calculation. Other work by Fox [3] and
Leake [4] integrates learning, planning and reasoning in introspective CBR sys-
tems that can learn about (and modify) their reasoning processes as well as their
domains. Wilson [5] integrates learning and reasoning to detect and respond to
situations in which the reuse of experiences in case-based reasoning goes awry
due to changes in task and domain characteristics. These techniques revolve
around performing computations about some aspect of a system’s own process-
ing (i.e., meta-reasoning); here, metareasoning has been applied in specialized
ways to deal with the brittleness problem.

Some of the more prominent systems that might be said to employ more
general forms of metareasoning include PRODIGY [6], SNePS [7], and PRS [8].
The two of these that, to the best of our knowledge, come closest to our work
are SNePS and PRS, each of which has some explicit knowledge of certain types
of limitations, and tools for responding when those limitations are challenged.
However, unlike MCL, neither has a metareasoning component that actively and
continually scans the ongoing processes for anomalies in general.

Work by Stroulia [9], Ulam [10], Ashok Goel, and others is most similar to
ours in spirit. This work centers around reflective learning: learning based on
models of a system’s own reasoning process. The strength of much of this work
is its concentration on determining the system component responsible for fail-
ures, a task called credit assignment, and developing frameworks for representing
reasoning that can be analyzed and reconfigured to address problems. We feel
the MCL work is a strong complement to these systems. Our goal is to build a
domain general metareasoner that leverages many of the lessons that the depth
of their approach provides.

2.1 The Metacognitive Loop

The metacognitive loop (MCL) is a meta-reasoner that provides AI systems with
a means to detect, diagnose, and recover from unexpected perturbations. The
process of dealing with a perturbation consists of three steps: (i) note an anomaly,
(ii) assess it (its probable cause, severity, etc.), and (iii) guide a response into
place. This seems to be a much-used capacity by humans: we regularly notice
something amiss and make decisions about it (its importance, how to fix it, etc.)
and then choose a course of action based on those decisions.

The Note phase corresponds to an agent’s “self-awareness”. As an agent
accumulates experience with its own actions, it develops expectations about
how they unfold. An agent might expect an internal state to change to a new
value, for a sensor to increase at some rate, or for an action to achieve a goal



before some deadline. As the agent engages in a familiar behavior, deviations
from expectations (anomalies) cause surprise, and initiate the assess phase.

In the assessment stage of MCL, a profile of the anomaly is generated. How
severe is the anomaly? Must it be dealt with immediately? What is the likely
cause? This anomaly profile enables MCL to move on to the guide state, where a
response will be selected to either help the agent recover from the failure, prevent
it from happening in the future, or both. Once this response is guided into place
by the host system, MCL can continue to monitor the situation to determine
whether or not the response has succeeded. Should MCL determine its initial
response has failed, it can move down its list of hypothesized responses until it
experiences success.

The basic idea of the metacognitive loop – a system that manages expecta-
tions about a host system’s processes, notices when they are and are not met, and
reasons about what went wrong when they are violated – has been the subject
of much of our recent work. In these pilot studies, the metacognitive loop was
developed alongside of and integrated with the host system. MCL had knowl-
edge of important details of how the host system worked, and incorporated that
knowledge into the reasoning process. In these prior incarnations of MCL, the
boundary between the metacognitive loop and its host system was not sharply
defined. There, the reasoning process that moves MCL through the note-assess-
guide (NAG) cycle used a knowledge-rich, rule-based approach to diagnosis and
recovery.

In more current work, we have shifted the focus from developing individual
MCL-endowed systems from scratch to creating a single domain-general incar-
nation of MCL that can be layered on top of existing systems. This focus on
generality has led us to postulate three special sets of ontologies – indications,
failures, and responses – that are intended to provide a very general framework
for reasoning about anomalies. The ontologies codify hierarchies of knowledge
about system failures that allow MCL to map host-level expectation violations
to more abstract concepts that are general across domains. We will return to
these ontologies, and our most current work, in section 4.

3 Pilot Studies with MCL

In previous work, we have demonstrated the utility of the metacognitive loop
as a means for improving performance in potentially brittle AI systems. In one
such study we deployed MCL in a standard reinforcement learner [11]. There,
learned reward functions in a simple 8x8 grid world formed the bases for expec-
tations 5. When reward conditions in the grid world were changed, MCL noted
the violation, and would respond in a number of ways appropriate to re-learning
or adapting policies in RL systems. In a variety of settings, the MCL-enhanced
learner outperformed standard reinforcement learners when perturbations were
made to the world’s reward structure.

5 Q-learning [12], SARSA [13] and Prioritized Sweeping [14] were used.



The goal of more recent work is to establish the generality of the approach
by enhancing other systems with the metacognitive loop. Two recent MCL de-
ployments – one in a game-player, and one in a human-computer dialog agent –
we present here.

3.1 A Bolo Game-Player

Bolo6 is a 2-dimensional multiplayer game where players command simulated
tanks on a virtual battle field. The goal of the game is to achieve dominance
on a map by capturing refueling bases and protecting them by capturing and
deploying defensive sentries called pillboxes. Tanks have offensive capabilities as
well as a limited capacity for terraforming to produce defensive structures for
protecting assets. Tanks in Bolo can be controlled by human players or be under
the control of an external program (called a “brain” by the Bolo designers.)

The Bolo domain is surprisingly rich, supplying the brain programmer with
16 sensors pertaining to the tank, 13 terrain types on a 256x256 map, and a
variable-sized array of object-property sensors that changes as objects move in
and out of sensor range. Building a capable Bolo player is challenging; the best
existing players are generally demolished by human players and use hand-coded
routines for carrying out simple tasks like taking pillboxes and building primitive
defensive structures. These brains have very limited adaptivity and are easily
exploited by setting traps for which they were not programmed to avoid.

We have built a Bolo player that – while not necessarily more sophisticated –
is significantly more flexible than existing brains. Its control is based on simple
controllers that are organized into declarative, STRIPS-style plans [15]. Plans
for simple tasks, such as capturing neutral refueling bases and pillboxes, are
hand-coded and provided to the Bolo player. Algorithms for modifying plans by
adding steps and changing pre- and post-conditions are also provided, making
our Bolo player adaptable to changing or unforeseen conditions.

The basis for our brain is a simple plan that seeks out pillboxes and captures
them by moving over them. This plan allows the brain to collect neutral pillboxes
successfully. We then perturbed the basic environment of the Bolo player by
making some of the pillboxes “angry” (in Bolo-speak). So-called angry pillboxes
have armor, meaning the Bolo player cannot move over them to pick them up.
Angry pillboxes also fire on any tank within range. The simple find-and-collect
plan does not work here, and results in the tank being destroyed.

The Bolo metacognitive loop monitors several expectations for the Bolo
player, chief among them that the player expects that the tank will not be
destroyed 7. By monitoring these expectations, MCL will identify that a pertur-
bation has occurred as soon as it reaches its first angry pillbox and is destroyed
by it.

6 The game of Bolo is described in detail at http://www.lgm.com/bolo/
7 There is a sensor for detecting this, and as with most computer games, the player is

issued a new tank when its original one is destroyed.



The MCL-enhanced Bolo player has several responses when faced with a per-
turbation. Its two primary responses initiate replanning: one based on means-
ends analysis and operator models, and another model-free response called hy-
pothesis driven operator refinement (HDOR). These responses allow MCL to
identify what has changed after the perturbation (that the pillbox is angry),
select an operator to add to the simple plan (firing on the pillbox disables it),
and re-test the new plan. Our MCL-enhanced Bolo player does indeed identify
angry pillboxes as anomalies, and amends its plans (and operator models) as
necessary to dispatch with angry pillboxes.

3.2 MCL-enhanced human-computer dialog

Another application area for MCL is natural language human-computer inter-
action (HCI). Natural language is complex and ambiguous, and communica-
tion for this reason always contains an element of uncertainty. To manage this
uncertainty, human dialog partners continually monitor the conversation, their
own comprehension, and the apparent comprehension of their interlocutor. Both
partners elicit and provide feedback as the conversation continues, and make
conversational adjustments as necessary. We contend that the ability to engage
in such meta-language, and to use the results of meta-dialogic interactions to
help understand otherwise problematic utterances, is the source of much of the
flexibility displayed by human conversation [16], and we have demonstrated that
enhancing existing HCI systems with a version of MCL allowing for such ex-
changes improved performance.

For instance, in one specific case tested, a user of the natural-language train-
control simulation TRAINS-96 [17] says “Send the Boston train to New York”
and then, after the system chooses and moves a train, says “No, send the Boston
train to New York”. Such an exchange might occur if there is more than one
train at Boston station, and the system chose a train other than the one the
user meant. Whereas the original TRAINS-96 dialog system would respond to
this apparently contradictory sequence of commands by sending the very same
train, our MCL-enhanced HCI system notes the contradiction, and, by assessing
the problem, identifies a possible mistake in its choice of referent for ‘the Boston
train’. Thus, the enhanced system will choose a different train the second time
around, or if there are no other trains in Boston, it will ask the user to specify the
train by name. The details of the implementation, as well as a specific account
of the reasoning required for each of these steps, can be found in [18].

In more recent years, we have built a dialog system called ALFRED8, which
uses the MCL approach to accurately assess and resolve a broader class of dialog
issues. The system deals with anomalies by setting and monitoring a set of time-
related, feedback-related and content-related expectations.

In another scenario, if the user says “Send the Metro to Boston” and AL-
FRED notices that it doesn’t know the word ‘Metro’, it will request specific
help from the user, saying: “I don’t know the word ‘Metro’. What does ‘Metro’

8 Active Logic For Reason Enhanced Dialog



mean?” Once the user tells the system that ‘Metro’ is another word for ‘Metro-
liner’, it is able to correctly implement the user’s request [19].

4 Ontologies for the Metacognitive Loop

Moving forward, we believe the value of MCL is attached to its generality. MCL
must be able to leverage abstract, domain-independent reasoning to find solu-
tions to problems without burdening a host system designer with the task of
enumerating specific ways in which the host might fail. In this end, MCL im-
plements three ontologies that describe different aspects of perturbations and
their prescribed coping mechanisms. The core of these ontologies contain ab-
stract and domain-general concepts. When an actual perturbation is detected
in the host, MCL attempts to map it into the MCL core so that it may reason
about it abstractly. Nodes in the ontologies are linked, expressing relationships
between the concepts they represent. The linkage both within the ontologies
and between them allows MCL to perform abstraction and reasoning using a
spreading activation-type algorithm. [20].

Fig. 1. Overview of the MCL ontologies for Bolo.

Each of the three phases of MCL (note, assess, guide) employs one of the
ontologies to do its work. A flow diagram is shown in figure 1. The note phase
uses an ontology of indications. An indication is a sensory or contextual cue
that the system has been perturbed. Processing in the indication ontology al-
lows the assess phase to hypothesize underlying causes by reasoning over its
failure ontology. This ontology contains nodes that describe the general ways
in which a system might fail. Finally, when failure types for an indication have
been hypothesized, the guide phase maps that information to its own response
ontology. This ontology describes means for dealing with failures at various lev-
els of abstraction. Through these three phases, reasoning starts at the concrete,
domain-specific level of expectations, becomes more abstract as MCL moves to
the concept of a system failure, and then becomes more concrete again as it must
realize an actionable response based on the hypothesized failure.

In the following sections, we will describe in greater detail how the three
ontologies are organized and how MCL gets from expectation violations to re-
sponses that can be executed by the host system, using the MCL-enhanced
reinforcement learning system as an example.



4.1 Indications

A fragment of the MCL indication ontology is pictured in figure 2. The indi-
cation ontology consists of two types of nodes: domain independent indication
nodes shown above the dashed line, and domain-specific expectation nodes show
below the line. Indication nodes belong to the MCL core, and represent general
classes of sensory events and expectation types that may help MCL disambiguate
anomalies when they occur. Furthermore, there are two types of indication nodes:
fringe nodes and event nodes. Fringe nodes zero in on specific properties of ex-
pectations and sensors. For example, a fringe node might denote what type of
sensor is being monitored: internal state, time, or reward. Event nodes synthesize
information in the fringe nodes to represent specific instances of an indicator,
for example reward not received.

Expectation nodes (shown below the dashed line) represent host-level predic-
tions of how sensor, state, and other values are expected to behave. Expectations
are created and destroyed based on what the host system is doing. Expectations
may be specified by the system designer or learned by MCL, and are linked
dynamically into indication fringe nodes when they are created.

Fig. 2. A fragment of the MCL indication ontology.

Consider the ontology fragment pictured in figure 2. This fragment shows
three example expectations that the enhanced reinforcement learner might pro-
duce when it attempts to move into a grid cell containing a reward. First, a
reward x should be experienced at the end of the movement. Second, the sensor
LY should not change, and lastly, the sensor LX should decrease by one unit
by the end of the action.

Suppose that no reward is administered, but LY and LX behave as expected.
Activation in the fragment is denoted by boldface in the figure. The reward ex-
pectation node that has been directly violated is activated first. It is dynamically
linked into the fringe nodes reward and unchanged, which are in turn acti-
vated. From there, activation is propagated along abstraction links within the



indication core (activating the sensor node and others). Finally, fringe-event
links combine the activation of individual fringe nodes into specifically indicated
events. In figure 2, the reward not received node is activated. Once all vi-
olated expectations have been noted, and activation is finished, the note phase
of MCL is complete.

4.2 Failures

Once the note state has been completed, MCL moves to the assess stage, in
which indications are used to hypothesize a cause of the expectation violation.
The failure ontology serves as the basis for processing at the assess stage.

It is worth explaining why MCL does not map directly from indications to
responses. In fact, earlier incarnations of MCL did derive responses directly from
expectation violations. The failure ontology was added because of the potentially
ambiguous nature of indications. In many cases, a single indication might sug-
gest several potential failures. Similarly, a single failure might only be suspected
when a subset of indications are present. The mapping between indications to
failures, then, might be one-to-many or many-to-one. This rich connectivity is
lost without all three ontologies.

Nodes in the failure ontology are initially activated based on activation in
the indication ontology. Indication event nodes are linked to failure nodes via in-
terontological links called diagnostic links. They express which classes of failures
are plausible given the active indication events.

knowledge
error

model

error

sensor

failure

predictive

model
failure

procedural

model
failure

expressivity

failure

model fit

error

sensor

not
reporting

sensor
malfunction

…

Fig. 3. A fragment of the MCL failure ontology.

Figure 3 shows a fragment of the MCL failure ontology. Dashed arrows indi-
cate diagnostic links from the indications ontology leading to the sensor fail-
ure and model error nodes, which are shaded and bold. These nodes repre-
sent the initial activation in the failure ontology in our enhanced reinforcement
learning example; a reward indication can be associated with either of these



types of failure. The remaining links in the figure are intraontological, and ex-
press specification. For example, a sensor may fail in two ways: it may fail to
report anything, or it may report faulty data. Either of these is a refinement
of the sensor failure node. As such, sensor not reporting and sensor
malfunction are connected to sensor failure with specification links in the
ontology to express this relationship.

As in the note phase, reasoning follows a kind of spreading activation, where
inference is made along specification links to activate more specific nodes based
on the activation of related abstract nodes. Of particular interest in our RL
example is the predictive model failure node, which follows from the model
error hypothesis. The basis for action in Q-learning is the predictive model (the
Q function), and failure to achieve a reward often indicates that the model no
longer fits the domain.

4.3 Responses

Outgoing interontological links from active failure nodes allow MCL to move into
the guide state. In the guide state, potential responses to hypothesized failures
are activated, evaluated, and implemented in order of their expected utility. In-
terontological links connecting failures to responses are called prescriptive links.

Figure 4 shows a fragment of the MCL response ontology. Pictured are both
MCL core responses (pictured in italics) and host-level responses (pictured in
bold), which are concrete actions that can be implemented by the host sys-
tem. Host system designers specify the concrete ways in which MCL can affect
changes, such as by changing Q-learning parameters as seen in figure 4.

In the portion of the response ontology pictured, prescriptive links from the
failure ontology are pictured as dashed arrows. These links cause initial acti-
vation in the nodes modify predictive models and modify procedural
models. Like the failure ontology, internal links in the response ontology are
primarily specialization links. They allow MCL to move from general response
classes to more specific ones, eventually arriving at concrete responses. In our
example, concrete nodes correspond to either parameter tweaks in Q-learning,
or resetting the Q function altogether.

4.4 Closing the Loop

Once MCL has arrived at a concrete response in the guide phase, the host system
can implement the response. In our enhanced RL example, either clearing the
Q values and starting over, or boosting the α parameter to increase exploration
will start the agent on the path to recovery. The third possibility pictured in
figure 4, to increase ε, may not. This is why all the activated ontology nodes
are considered hypotheses; MCL will not always have enough information to
arrive at an unambiguously correct response. MCL must verify that a response
is working before it considers the case of an anomaly closed.

When a response fails, MCL re-enters and updates the ontologies in two
ways. First, it inhibits the activation of the failed response node, and feeds back



modify:
cope

change
parameters

modify
procedural
models

modify
predictive
models

increase
α

parameter

rebuild
models

activate
learning

reset
Q values

increase
ε

parameter

Fig. 4. A fragment of the MCL response ontology.

through the network an inhibitory signal. This dampens the activation of nodes
that preceded it in the path from indications to response. Next, it feeds the new
indications (those on which the failure of the response was based) into the indi-
cations ontology and the spreading activation algorithm is run to convergence.
This may result in not only the original response being deactivated, but also
hypotheses in the failure ontology being abandoned. The next most highly rated
response is then chosen and implemented. Once a response is implemented and
no new expectation violations are received, then the changes affected during the
repair are made permanent, and the violation is considered addressed.

5 Bolo and Alfred Revisited

It is now possible to describe anomalies in different domains by the activation
patterns they produce in the MCL ontologies. The goal in redesigning the MCL
core was to identify levels of abstraction that are general enough to apply across
a variety of domains and yet retain enough detail that they could be reasoned
with to arrive at useful results. We will now revisit the Bolo game player and the
human-computer dialog agent Alfred to illustrate how anomalies in these differ-
ent systems leverage a mixture of domain-general and domain-specific knowledge
to recover from perturbations.

5.1 Ontologies for Playing Bolo

To understand how the MCL ontologies apply to our Bolo player, it is important
to understand the key components to the player that provide expectations and
can be modified to cope with anomalies. Our Bolo player has a number of sensors
available to it, including internal states and representations of the world around
it. Since it is a real-time game, our player can also measure time. Expectations
can be expressed in terms of those sensors, states, object properties, and time.



Our Bolo player also has a hierarchical control structure that includes primi-
tive controllers (for moving, firing the tank’s gun, and so on) and plans that
sequence those controllers to achieve goals. Our player also has declarative mod-
els of its actions. Both the procedural (plans) and declarative (operator models)
representations can be modified to accommodate new or changing information.

A typical perturbation our Bolo player might experience is the appearance of
an “angry pillbox”, which we introduced in section 3.1. Recall that a pillbox that
is “angry” cannot be taken until it is disabled by firing on it, and will open fire
on the player’s tank when it is in range. Repeated hits by pillbox fire will destroy
the tank, violating a basic expectation that our Bolo player has: it expects that
its tank will not be destroyed (there is a state variable for this).

MCL signals that an anomaly has occurred as soon as the tank-destroyed
flag is set. It enters the note phase, where the expectation violation is dynami-
cally linked into the indication fringe based on the properties of the expectation,
the sensor(s) it is built on, and the nature of the violation. In this case, fringe
nodes such as state variable, aberration (indicating that the state’s value
changed but was not supposed to), and boolean (indicating the state’s data
type) will be dynamically activated. For space reasons, these nodes are not shown
in figure 2; the ontologies contain many nodes in order to cover the possible in-
puts an arbitrary system might have. The active fringe nodes combine in the
indication core to activate a concrete indicator. In this case, that node might be
called unanticipated state change.

The unanticipated state change node is linked to a number of nodes
in the failure ontology. The event might be the result of a faulty state sensor
(though it is not likely) or the result of a model error: either a predictive model
(on which the expectation is generated), a procedural model (from which the
plan is generated), or both. These candidates, and possibly others, are activated
due to their relationship with the unanticipated state change node.

Finally, each of the active failure nodes will prescribe responses based on
their links to the response ontology. These will be general, such as reactivate
learning or amend procedural models, and not all responses will be ap-
plicable in all hosts. However, both of these nodes would be candidates in our
example based on MCL’s hypothesized failures. Here, MCL will attempt to re-
fine these general responses down to concrete, actionable responses based on the
specialization links within the response ontology and what it knows about the
domain (and its ability to implement responses). Since our system has a plan-
ner, the nodes invoke MEA planner9 and rebuild declarative models
are both appropriate to the anomaly and the host system. In fact, the latter
(build a model for the angry pillbox) followed by the former (build a better plan
that disables the angry pillbox before attempting to capture it) is the correct
course of recovery in this situation.

9 MEA refers to means-ends analysis, a problem-solving algorithm. See [15].



5.2 Ontologies for Human-Computer Dialog

The job of a dialog agent is to act as an intermediary between an untrained user
and an AI system (which we will call the target) whose native interface might be
difficult for the user to learn quickly. Our dialog agent (named ALFRED, intro-
duced in section 3.2) accepts natural language input from a user and attempts to
interpret his or her instructions. ALFRED performs this task by first identifying
the command (verb) in the utterance (e.g., “Send”), and then determining the
objects that are involved in the command (e.g., train = “Metroliner”, city =
“Baltimore”). The user’s command may be something for ALFRED to execute
(e.g., learn a new word), or for ALFRED to interpret and execute on the target
system. As ALFRED accepts instructions from the user, it attempts to maintain
a declarative model of the user’s intentions.

What the dialog agent actually does in order to act on the user’s intentions
depends on whether the command is meant for ALFRED or for its target system.
In the former case the dialog agent is responsible for performing the action,
whereas in the latter case the dialog agent is only responsible for issuing the
proper command to the task-oriented system. As such, there may be expectations
within the ALFRED system, the target system, and in the juncture between the
two. The system can consequently be perturbed in a number of ways. Among
the possible perturbations: a direct contradiction may appear in the agent’s
knowledge base, or the actions involved in implementing any of the sub-plans
may fail, take too long, or produce unexpected results.

In the example introduced in Section 3.2 where ALFRED sends the wrong
train to Boston, the dialog agent interprets the user’s interjection “No” (in re-
sponse to seeing the wrong train being dispatched) as the negation of his or her
previous intention. This results in contradictory assertions existing in the user
intention model. Since MCL expects the intention model to be consistent, this
causes MCL to signal a violation. The indication fringe nodes that this anomaly
will activate include state variable and aberration (indicating that the
state of the knowledge base changed from being free of direct contradictions to
the state of having directly contradicting data). These active fringe nodes cause
the indication core node unanticipated state change to become activate.

The unanticipated state change node will activate those nodes in the
failure ontology that are related to the unanticipated state change node.
Candidate nodes that get activated in the failure ontology include the predic-
tive model error node (referring to, in this case, the user intention model),
and procedural model error (in this case, referring to the commands AL-
FRED has executed on behalf of the user).

Each of the active failure nodes will activate the response nodes that they
are linked to. Candidate nodes that are activated in this example include the
corrective response nodes rebuild predictive models and amend procedu-
ral models. The former will cause the dialog agent to update its user-intention
model to retain the current user intention and eliminate the previous (contra-
dictory) user intention; thereby, the knowledge base of the agent returns to
an acceptable state (without direct contradictions). This constitutes a recovery



from the anomaly (in that ALFRED can proceed), but not a repair (it has not
prevented the problem from occurring again).

ALFRED will then ask for a new command. If the user repeats ”Send the
Boston train to New York”, the same processing causes another contradiction.
But as MCL re-enters the ontologies a second time, the alternative failure pro-
cedural model error will be the focus of attention. This will cause the re-
sponse candidate amend procedural model and subsequently cause amend
controller and revisit initial assumptions to get activated. It is, in fact,
the assumption that any of the Boston trains would suffice that was the source
of the anomaly, and revisiting those assumptions will lead to a different train to
be chosen for the second “Send” instruction.

The domains of Bolo and human-computer dialog are quite different. And yet,
there is a level of abstraction at which anomalies in both domains require shared
concepts. The anomalies presented here, in both Bolo and ALFRED, boil down
to model errors. Though the actual indications that appear with the anomalies
are different, and the concrete way in which the responses are executed differ,
essential parts of coping with unexpected events are domain-general.

6 Conclusions and Future Work

We have presented a metacognitive architecture for decreasing the brittleness
of AI systems. We have had demonstrable success with the metacognitive loop
(MCL) as an integrated component in a variety of AI domains including learning,
realtime game playing, and human-computer interaction. Our ongoing work is
to improve the domain generality of this tool, and in that end we have begun the
development of a triad of ontologies that encode knowledge used in identifying,
diagnosing, and recovering from anomalies in AI systems. Reasoning over these
ontologies encompasses abstraction, specification, and inference, and allows MCL
to work in a concept space that is abstract enough for a single class of indications,
failures, or responses to be appropriate for application in a variety of specific
domains. We presented examples of how this reasoning would proceed in two
domains we work with, human-computer dialog and realtime gameplaying.

Our ontologies are still very much under development. We believe that to ar-
rive at a high degree of domain generality, many such examples must be worked
through, revising the ontologies and their linkage, and verifying that they pro-
vide adequate problem-solving behavior when the system is in operation. These
ontologies and the reasoning that occurs over them are also well suited to algo-
rithms for probabilistic reasoning on belief (Bayesian) networks. This is a topic
of ongoing research, and a promising candidate for improving the ability of MCL
to arrive at appropriate responses to anomalies more efficiently.

References

1. Brachman, R.J.: (AA)AI, More Than the Sum of its Parts. AI Magazine 27(4)
(2006) AAAI Presidential Address



2. Goodwin, R.: Meta-Level Control for Decision-Theoretic Planners. PhD thesis,
School of Computer Science, Carnegie Mellon University (1996)

3. Fox, S.: Introspective Learning for Case-Based Reasoning. PhD thesis, Indiana
University (1995)

4. Leake, D.B.: Experience, introspection, and expertise: Learning to refine the case-
based reasoning process. Journal of Experimental and Theoretical Artificial Intel-
ligence 8(3-4) (1996) 319–339

5. Wilson, D.C.: Case-Base Maintenance: The Husbandry of Experience. PhD thesis,
Indiana University (2001)

6. Veloso, M., Carbonell, J., Pe’rez, A., Borrajo, D., Fink, E., Blythe, J.: Integrated
planning and learning: The prodigy architecture. Journal of Experimental and
Theoretical Artifcial Intelligence 7(1) (1995)

7. Shapiro, S.C.: Sneps: A logic for natural language understanding and commonsense
reasoning. In Iwan’ska, L., Shapiro, S.C., eds.: Natural Language Processing and
Knowledge Representation: Language for Knowledge and Knowledge for Language.
AAAI Press/MIT Press, Menlo Park/Cambridge (2000)

8. Georgeff, M.P., Ingrand, F.F.: Decision-making in an embedded reasoning sys-
tem. In: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence. (1989)

9. Stroulia, E.: Failure-Driven Learning as Model-Based Self Redesign. PhD thesis,
Georgia Institute of Technoloy (1994)

10. Ulam, P., Goel, A., Jones, J., Murdoch, W.: Using model-based reflection to guide
reinforcement learning. In: IJCAI Workshop on Reasoning, Representation and
Learning in Computer Games. (2005)

11. Anderson, M.L., Oates, T., Chong, W., Perlis, D.: Enhancing reinforcement learn-
ing with metacognitive monitoring and control for improved perturbation tolerance
(under review)

12. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279–292
13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press

(1995)
14. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with

less data and less time. Machine Learning 13 (1993) 103–130
15. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem

proving. Artificial Intelligence Journal 2 (1971) 189–208
16. Perlis, D., Purang, K., Andersen, C.: Conversational adequacy: mistakes are the

essence. Int. J. Human-Computer Studies 48 (1998) 553–575
17. Allen, J.F., Miller, B.W., Ringger, E.K., Sikorski, T.: Robust understanding in a

dialogue system. In: Proceedings of the 1996 Annual Meeting of the Association
for Computational Linguistics (ACL’96). (1996) 62–70

18. Traum, D.R., Andersen, C.F., Chong, W., Josyula, D., Okamoto, Y., Purang, K.,
O’Donovan-Anderson, M., Perlis, D.: Representations of dialogue state for do-
main and task independent meta-dialogue. Electronic Transactions on Artificial
Intelligence 3 (1999) 125–152

19. Josyula, D.P.: A Unified Theory of Acting and Agency for a Universal Interfacing
Agent. PhD thesis, Department of Computer Science, University of Maryland,
College Park (2005)

20. Anderson, J.: A spreading activation theory of memory. Journal of Verbal Learning
and Verbal Behavior 22 (1983) 261–295


