
Toward Domain-Neutral Human-Level Metacognition
Michael L. Anderson1,2, Matt Schmill 3, Tim Oates2,3, Don Perlis2

Darsana Josyula2,4, Dean Wright3 and Shomir Wilson2

(1) Department of Psychology, Franklin & Marshall College, Lancaster, PA 17604
(2)Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

(3) Department of Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250
(4) Department of Computer Science, Bowie State University, Bowie MD 20715

Abstract

We have found that implementing ametacognitive loop
(MCL), which gives intelligent systems the ability to self-
monitor their ongoing performance and make targeted
changes to their various action-determining components, can
play an important role in helping systems cope with the un-
expected problems and events that are the inevitable result
of real-world deployment. In this paper, we discuss our work
with MCL-enhanced intelligent systems, and describe the on-
tologies that allow MCL to reason about, appropriately clas-
sify and respond to the perfomance anomalies it detects.

Introduction: The Hardest AI Problem and
the Metacognitive Loop

It is widely agreed that AI has been extremely successful in
the narrow sense: given any of a large variety of well-defined
AI problems, there is (or, so goes the common wisdom, there
could easily be) an implemented solution using reasonably
well-understood techniques. Or at the very least, there are
solutions to similar problems, so that there is much reason
to expect solutions to the problem at hand.

But in the wide sense, AI is a disappointment. Although
many AI systems are at or beyond human-level competence
at the individual tasks for which they were designed (from
chess playing to medical diagnosis), AI systems are nowhere
near human-level competence across the board. This is not
simply a matter of building a system that has numerous sub-
systems, one for each of hundreds or thousands of individual
tasks. The combined skills of a doctor, lawyer, chess-master,
linguist, etc., does not a human make. For humans have, in
addition to whatever number of individual skills, the ability
to do reasonably well when faced with situations for which
they havenot been specifically trained. This general com-
petence, the ability to muddle through when faced with the
unexpected or unfamiliar, we consider to be the the core of
human-level common sense. Indeed, this ability may well
be the key to how we areable to train: we recognize when
we lack an ability, make a decision to gain it, and recognize
when it is time to stop learning—when training is complete;
or complete enough for our purposes; or when it is ineffec-
tive, too slow, too expensive, or no longer important. We

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

also (sometimes!) recognize when we are in over our heads,
and then we ask for help or wisely give up.

It is this general sort of ability that current AI systems
lack, with the result that they tend to be brittle, easily break-
ing when confronted with situations beyond their set of nar-
row competencies. Why is this so? And why has the brittle-
ness problem been so hard to solve? Our hypothesis is this:
while there are well-established and sohpisticated AI tech-
nologies for dealing with change or novelty e.g., machine
learning (ML) and commonsense reasoning (CSR), neither
alone is adequate to the task in question, since each needs the
other to realize its true potential. Thus ML needs reasoned
guidance (a form of CSR) as to when, why, what, and how to
learn; and CSR needs trainable modules (to which ML can
be applied) so that the fruits of such reasoning can be applied
to bring about better future performance. Proper melding of
ML and CSR should, in our view, go a long way toward
solving the brittleness problem and bringing us closer to the
ultimate goal of AI.

What will it take to meld ML and CSR in such a way as
to solve the brittleness problem, i.e., to build a system that
(under a wide range of unforeseen circumstances) adjusts
itself instead of breaking? We have isolated four capacities.

First of all, a system will need to know enough about what
it is doing (its goals, its actions, and their results), so that
it can detect—and then assess—when those goals are not
being achieved (Brachman 2002). This is a key place where
CSR comes into play, in reasoning after the fact about such
goal failures. Other relevant approaches include case-based
reasoning and meta-level planning (Cox 2005; Anderson &
Oates 2007).

Second, it will need to be able to make targeted changes
to itself when there are indications of current inadequacies
in what it is doing. This is where ML can come into play: if
the desired changes involve any sort of training or adapting,
the relevant trainable modules and their associated training
processes must be invoked.

Third, it will need to be able to apply the same first two
capacities to monitor how a given self-change is working
out (thus there is a form of recursion involved). This again
involves CSR in order to assess whether the targeted change
is occurring properly.

And fourth, it will need to do this in real time.
This is a tall order, but the elements are clear enough to



allow progress. This paper reports on our work to date and
where we see it headed. The rest of the paper is organized as
follows: We outline our specific approach to these four ca-
pacities (which we call MCL: the metacognitive loop); we
discuss some early pilot studies; we present three ontolo-
gies that allow MCL to reason about, and appropriately clas-
sify and respond to the perfomance anomolies it detects; we
show how these ontologies have been applied to a simulated
autonomous vehicle domain; and we conclude with some
general considerations and a discussion of future work.

MCL
The metacognitive loop (MCL) is our hypothesized agent’s
means of dealing with surpise, and consists of three parts: (i)
note an anomaly, (ii) assess it, and (iii) guide a response into
place. This seems to be a much-used capacity by humans:
we regularly notice something amiss and make decisions
about it (is it important, can I fix it, etc.) and then choose
a response based on those decisions (ignore the anomaly,
get help, use trial-and-error, etc.).

The Note phase corresponds to the agent’s “self-
awareness”, allowing it to detect discrepancies between its
expectations and its observations, which we call anomolies.
Anomolies are such things as mismatches between intended
and observed consequences of an action, or slower (or faster)
than expected progress on some task. Once MCL detects
such an anomaly, it moves into the Assess phase, where
it reasons about the seriousness and likely cause of the
anomaly. Having fomulated an hypothesis, MCL moves into
the Guide phase, where it selects and implements a targeted
solution to the problem. Having done this, it continues to
monitor its performance on its various tasks, including the
task of fixing the previously noted problem. If the solution
fails, MCL can try another solution, or change its hypothesis
about what the original problem was. It can also decide to
give up and move on to some other task, or ask for help.

MCL has been the basis for much of our recent work.
Our idea is that MCL can be a domain-general solution to
the brittleness problem. We initally explored the feasability
of this idea by applying the MCL paradigm to several very
different domains (see Pilot Studies, below). Since then, we
have taken the idea a step further by developing three special
ontologies—indications, failures, and responses—that are
intended to provide a very general, domain-neutral frame-
work for reasoning about the causes of and possible solu-
tions to any problems that the agent is facing. We describe
these ontologies after presenting the pilot studies.

Pilot studies
MCL-enhanced reinforcement learning
In one early demonstration of the efficacy of MCL, we
built some standard reinforcement learners using Q-learning
(Watkins 1989; Watkins & Dayan 1992), SARSA (Sutton
& Barto 1995) and Prioritized Sweeping (Moore & Atkeson
1993). We placed these learners in an 8x8 world with two
rewards—one in square (1,1) and the other in square (8,8).
The learner was allowed to take 10,000 actions in this ini-
tial world, which was enough in all cases to establish a very

good albeit non-optimal policy. In turn 10,001, the values of
the rewards were abruptly changed.

We found that the perturbation tolerance (i.e. the
post-perturbation performance) of standard reinforcement
learners was negatively correlated to the degree of the
perturbation—the bigger the change, the worse they did.
However, even a simple (and somewhat stupid) MCL-
enhancement, that did no more than generate and monitor
expectations for performance (average reward per turn, av-
erage time between rewards, and amount of reward in each
state) and re-learn its entire policy whenever its expecta-
tions were violated three times, significantly outperformed
standard reinforcement learning in the case of high-degree
perturbations. And a somewhat smarter MCL-enhancement
that, in light of its assessment of the anomalies, chose be-
tween doing nothing, making an on-line adjustment to learn-
ing parameters, or re-learning its policy, out-perfomed stan-
dard reinforcement learners overall, despite some under-
performance in response to mid-range perturbations (Ander-
sonet al. 2006).

MCL-enhanced navigation
Another agent that we developed uses a neural net for nav-
igation; however it also has a monitoring component that
notices when navigational failures (such as collisions) take
place, and records these and their circumstances. It is then
able to use this information to assess the failures and make
targeted changes to the neural net, including starting with a
different set of weights, or re-training on a specific set of in-
puts. The agent exhibits better behavior while training, and
also learns more quickly to navigate effectively (Hennacy,
Swamy, & Perlis 2003).

MCL-enhanced human-computer dialog
One of the most important application areas for MCL has
been natural language human-computer interaction (HCI).
Natural language is complex and ambiguous, and communi-
cation for this reason always contains an element of uncer-
tainty. To manage this uncertainty, human dialog partners
continually monitor the conversation, their own comprehen-
sion, and the apparent comprehension of their interlocutor.
Both partners elicit and provide feedback as the conversa-
tion continues, and make conversational adjustments as nec-
essary. We contend that the ability to engage in such meta-
language, and to use the results of meta-dialogic interactions
to help understand otherwise problematic utterances, is the
source of much of the flexibility displayed by human con-
versation (Perlis, Purang, & Andersen 1998), and we have
demonstrated that enhancing existing HCI systems with a
version of MCL allowing for such exchanges improved per-
formance.

For instance, in one specific case tested, a user of
the natural-language train-control simulation TRAINS-96
(Allen et al. 1996) says “Send the Boston train to New
York” and then, after the system chooses and moves a train,
says “No, send theBostontrain to New York”. Such an ex-
change might occur if there is more than one train at Boston
station, and the system chose a train other than the one
the user meant. Whereas the original TRAINS-96 dialog



system would respond to this apparently contradictory se-
quence of commands by sending the very same train, our
MCL-enhanced HCI system notes the contradiction, and, by
assessing the problem, identifies a possible mistake in its
choice of referent for ‘the Boston train’. Thus, the enhanced
system will choose a different train the second time around,
or if there are no other trains in Boston, it will ask the user
to specify the train by name. The details of the implementa-
tion, as well as a specific account of the reasoning required
for each of these steps, can be found in (Traumet al. 1999).

In more recent years, we have built a dialog system called
ALFRED1, which uses the MCL approach to accurately as-
sess and resolve a broader class of dialog issues. The system
deals with anomalies by setting and monitoring a set of time-
related, feedback-related and content-related expectations.

For instance, if the user does not respond to a system
query with in the expected time limit, then the system rec-
ognizes that there is a problem and tries repeating the query.
However, continuous repetition of the query without a re-
sponse from the user indicates a continuing problem (recall
that it is part of MCL to monitor the progress of solutions),
and causes a re-evaluation of the possible response options.
In this case the system would ask the user whether every-
thing is OK. If there is still no response from the user, the
system will drop its expectation about getting a response
from the user in the near future.

In another scenario, if the user says “Send the Metro to
Boston” and ALFRED notices that it doesn’t know the word
‘Metro’, it will request specific help from the user, saying:
“I don’t know the word ‘Metro’. What does ‘Metro’ mean?”
Once the user tells the system that ‘Metro’ is another word
for ‘Metroliner’, it is able to correctly implement the user’s
request (Josyula 2005).

Ontologies
For MCL to be valuable as a general tool for addressing
brittleness, it must be able to identify anomalous situations,
and deal with them with minimal domain-dependent engi-
neering. MCL must be able to leverage abstract, domain-
independent reasoning to find solutions to problems without
burdening the host system designer with the task of speci-
fying how the host might fail and how to cope with those
failures. To allow for this ability, we have developed three
ontologies that support the required classification and rea-
soning abilities in each of the three MCL phases (Note, As-
sess, Guide). Thecoreof these ontologies contains abstract
and domain-neutral concepts; when an actual anomaly is de-
tected, MCL attempts to map it onto the MCL core so that it
may reason about it abstractly. Nodes in the ontologies are
linked, expressing relationships between the concepts they
represent. There are linkages both within and between the
ontologies, which together allow MCL to perform abstrac-
tion and reasoning about the anomaly being considered.

In our current implementation, each of the three phases
of MCL employs one of the ontologies to do its work. The
Note phase uses an ontology ofindications, where an indica-
tion is a sensory or contextual signifier that the system’s ex-

1ActiveLogicFor ReasonEnhancedDialog

pectations have been violated. Processing in the indication
ontology allows the Assess phase to map nodes in the indi-
cation ontology to nodes in its ownfailure ontology, which
contains nodes that abstractly describe how a system might
fail. Nodes in the failure ontology represent the underlying
cause of expectation violations. Finally, when hypotheses
about the failure type have been generated, the Guide phase
maps that information to its ownresponseontology, which
describes means for dealing with failures at various levels of
abstraction. Through these three phases, reasoning starts at
the concrete, domain-specific level of expectations, becomes
more abstract as MCL moves to the concept of system fail-
ures, and then becomes more concrete again as it selects a
specific system response based on the hypothesized failure.

In the following sections, we will describe in greater de-
tail how the three ontologies are organized and how MCL
gets from expectation violations to responses that can be ex-
ecuted by the host system, using the MCL-enhanced rein-
forcement learning system as an example.

Indications
The indication ontology consists of two types of nodes:
domain-neutralindication nodesand domain-specificexpec-
tation nodes. Indication nodes belong to the MCL core, and
represent general classes of sensory events that MCL might
watch for during the operation of any host system. For ex-
ample, the MCL core contains a node for the class of “spatial
indicators”, which represents all sensory events pertaining to
sensors operating in the spatial realm.

Expectation nodes represent concrete predictions of how
the host system’s sensors and state should behave over a pe-
riod of time and under foreseeable circumstances. Expec-
tations are generated dynamically based on what the host
system is doing; the expectations for an autonomous vehicle
would be different depending on whether it was accelerating
or decelerating, for example. Expectations may be speci-
fied by the system designer or learned by MCL. In either
case, expectations must be linked into the core of indications
when they are generated, since the reasoning performed by
MCL takes place inside the core rather than with system-
level expectations.

expectation

reward=x

expectation

LX = LX-1

expectation

LY = LY

reward

indication

action

effect

spatial

indication

continuous

effect

instantaneous

effect

Figure 1: A fragment of the MCL indication ontology.

Consider the fragment of the indicator ontology pictured



in figure 1. This fragment shows three example expecta-
tions that the enhanced reinforcement learner might produce
when it attempts to move into a grid cell containing a re-
ward. First, a rewardx should be experienced at the end of
the movement. Second, the sensorLY (meant to signify the
agent’sY location in Cartesian space) should not change.
Finally, the sensorLX should decrease by one unit by the
end of the action.

Indication nodes are shown in italics. Note that the con-
crete expectations have been linked to these nodes; linkage
among nodes in the indication hierarchy generally express
the abstractionrelationship, that the source of a link is a
member of the more abstract concept that the destination
represents.

By the linkage of our example expectations in figure 1 to
the MCL core, we see that we have two spatial expectations,
with continuous feedback, and one reward expectation that
will be experienced instantaneously. All three expectations
belong to the abstract class “action effect”, which expresses
that the expectations are linked to the agent’s intentional ac-
tivity (and not to exogenous events).

The metacognitive reasoning process is initiated when an
expectation is violated. MCL monitors all active expecta-
tions as it sits and waits in the Note phase. Once a vio-
lation occurs, the corresponding expectation node isacti-
vated. Reasoning with the MCL ontologies can be likened
to a spreading activationalgorithm. (Anderson 1983), and
through this process, activation spreads into the MCL core
along abstraction links.

Assume in our example that the agent moves, itsLX and
LY sensors change as expected, but no reward is received
because the location of the reward has been changed. The
violation of the reward expectation causes its corresponding
node to become active. The “instantaneous effect”, “action
effect” and “reward indication” nodes are then activated by
their association to the violated expectation. Once all vio-
lated expectations have been noted, and activation through
the indication ontology is finished, the Note phase of MCL
is complete.

Failures

Once the Note phase has been completed, MCL moves to the
Assess phase, in which indications are used to hypothesize
a cause for the expectation violation. The failure ontology
serves as the basis for processing during the Assess phase.

It is worth explaining why MCL does not map directly
from indications to responses. In fact, earlier incarnations
of MCL did derive responses directly from expectation vio-
lations. The failure ontology was added because of the po-
tentially ambiguous nature of indications. In many cases,
a single indication might suggest several potential failures.
Similarly, a given failure might be suspected when any of a
number of indications are present. The mapping between in-
dications and failures, then, might be one-to-many or many-
to-one. This rich connectivity is lost without all three on-
tologies.

Nodes in the failure ontology are initially activated based
on activations in the indication ontology. In addition to

the internal linkage between nodes within the core indi-
cation ontology, there exist links between the ontologies.
These connections, which we callinterontological links, al-
low MCL to infer which nodes in an ontology should be ac-
tivated at initialize time based on which nodes are activated
in the ontology that precede it. In the case of the failure
ontology,diagnostic linksoriginating in the indication on-
tology express which class of failure is plausible given the
indications.

Figure 2 shows a fragment of the MCL core failure on-
tology. Note that there are no concrete nodes in the failure
ontology. It is a purely abstract, situation-independent on-
tology of system failures. Dashed arrows indicate incoming
diagnostic links leading to the “sensor failure” and “model
error” nodes, which are shaded and bold. These nodes rep-
resent the initial activation in the failure ontology in our en-
hanced reinforcement learning example; a reward indication
can be associated with either of these types of failures.

knowledge
error

model
error

sensor
failure

predictive
model
failure

procedural
model
failure

expressivity
failure

model fit
error

sensor
not

reporting

sensor
malfunction

…

Figure 2: A fragment of the MCL failure ontology.

The remaining links in the figure areintraontological, and
expressspecification. A sensor may fail in two ways: it may
fail to report anything, or it may report faulty data. Either
of these is a refinement of the “sensor failure” node. As
such, “sensor not reporting” and “sensor malfunction” are
connected to “sensor failure” with specification links in the
ontology to express this relationship.

As in the Note phase, reasoning occurs on the model of
spreading activation, whereby inference along specification
links activates more specific nodes based on which of the
more abstract nodes are relevant (activated). Of particular
interest in our RL example is the “predictive model failure”
node, which follows from the “model error” hypothesis. The
basis for action in Q-learning is the predictive model (the
action-value function), and the failure to achieve a reward
often indicates that the model no longer fits the domain.

Responses
Once activation in the failure ontology is complete, outgoing
interontological links from active failure nodes allow MCL
to move into the Guide phase. In the Guide phase, potential
responses to hypothesized failures are activated, evaluated,
and implemented in order of their expected utility. Interon-
tological links connecting failures to responses are called



prescriptive linksbecause given a particular failure, such a
link prescribes a class of responses expected to correct the
failure.

Figure 3 shows a fragment of the MCL response ontology.
Pictured are both MCL core responses (in italics) and host-
level responses (in bold). The latter are concrete actions that
can be implemented by the host system. Host system de-
signers specify the concrete ways in which MCL can affect
changes, such as by changing Q-learning parameters as seen
in figure 3.

In the portion of the response ontology shown, prescrip-
tive links from the failure ontology are pictured as dashed
arrows. These links cause initial activation in the nodes
“modify predictive models” and “modify procedural mod-
els”. Like the failure ontology, internal links in the response
ontology are primarilyspecification links. They allow MCL
to move from general response classes to more specific ones,
eventually arriving at concrete responses. In our example,
concrete nodes correspond to either parameter tweaks in Q-
learning, or resetting the action-value function altogether.

modify:
cope

change
parameters

modify
procedural

models

modify
predictive

models

increase
α

parameter

rebuild
models

activate
learning

reset
Q values

increase
ε

parameter

Figure 3: A fragment of the MCL response ontology.

Closing the loop
Once MCL has arrived at a concrete response in the Guide
phase, the host system can implement the response. In our
enhanced RL example, either clearing the Q values and start-
ing over, or boosting theε parameter to increase exploration
will start the agent on the path to recovery. The third pos-
sibility pictured in figure 3, to increaseα, may not (α mod-
ulates the effect of new experience on the current action-
value function). This is why all the activated failures and re-
sponses are only consideredcandidateresponses, and why
MCL must verify that a response is working before it con-
siders an expectation violation addressed.

After a response has been chosen, the state of the three on-
tologies is stored while the necessary action is taken. MCL
re-enters the Note phase, waiting to receive feedback from
the effected repair. If no new expectation violations are re-
ceived, then the changes effected during the repair are made
permanent, and the violation is considered addressed. If the
violation persists, or a new one occurs, then MCL deacti-
vates the invalidated candidate response, and revisits its op-
tions for recovery.

Using the MCL ontologies with WinBolo
WinBolo [www.winbolo.com] is a networked, multiplayer
game where players command simulated tanks on a virtual
battle field. Figure 4 shows a screen shot of WinBolo with
a tank approaching a pillbox. The tanks can be contolled by
human players or be under the control of programs (called
“brains” in the parlance of WinBolo.)

Using WinBolo, we have implemented a tank pro-
grammed to seek out stationary pillboxes and capture them.
The tank uses the following plan: (1) locate the nearest pill-
box, (2) drive to and over it, (3) repeat until all pillboxes are
captured.

This three step plan serves the robot tank well so long as
the pillboxes are unarmored. However, when the world is
modified to include armored pillboxes the brittleness of the
tank’s programming shows itself.

Figure 4: A screenshot of Bolo.

An armored pillbox cannot be driven over and thus cannot
be captured. Also, armored pillboxes will shoot at nearby
tanks, damaging and eventually destroying them. Thus, a
tank equipped with only the three-step plan will drive near
the pillbox, find itself unable to driveover it, yet keep
blindly trying. Meanwhile, it will be repeatedly shot by the
pillbox until the tank is destroyed. Without the ability to no-
tice this problem and change its behavior, it will repeat this
cycle forever (as in most video games, players are given a
new tank after the old one is destroyed).

However, a tank equipped with the same rudimentary
plan, but enhanced with MCL and the linked indication, fail-
ure, and response ontologies performs much better. It starts
with having and monitoring expectations. The enhanced
tank’s MOVE TO action includes the expectation that mov-
ing the tank will not destroy it (a reasonable expectation
for most actions). The concrete expection TANKLIVES
is based on the “newtank” flag of the WinBolo API. If new-
tank is TRUE then the TANKLIVES expectation has been
violated. The TANKLIVES node is linked to the abstract
ExistenceViolation/Death node of the indications ontology
which in turn has interontological links to the ModelError



and Resources/Cost nodes of the failure ontology. These
links represent the assumptions that death could come as the
result of executing a plan that was imperfect or whose cost
for execution was (much) too high. The ontologies for Win-
Bolo are shown in outline in figure 5.

Figure 5: Overview of the MCL ontologies for Bolo.

In the Assess phase of MCL, it follows the link from
the ModelError node to the ProceduralModelError node.
This brings on the Guide phase. The ProceduralModel-
Error failure node is linked to the ModifyProceduralMod-
els node in the response ontology. Once in the Guide
phase, MCL follows a link from ModifyProceduralModels
to AmendController. From there it selects the concrete re-
sponse Hypothesis-Driven Operator Refinement (HDOR),
which works as follows: MCL compares the conditions
(sensor values) on occasions on which the task failed with
those on which it succeeded. If there is more than one dif-
ference, it uses a heuristic ranking method to order them. In
the current case, it notices that the pillbox armor level is dif-
ferent. The next step is to see if the system knows a way to
change armor level. If it does not, it looks for actions where
the effect on armor level isunknown, and tests them until
it finds one that changes armor level. So, either the sys-
tem knows, or eventually discovers, that the FIREON ac-
tion lowers an object’s armor level, and inserts the FIREON
action into the brain’s CAPTUREPILLBOX plan.

With this modified plan, the resurrected tank will shoot
at armored pillboxes until the pillbox armor level is zero,
thereby allowing the MOVETO action to complete success-
fully and the pillbox to be captured. If this response had
not worked—if, for instance the tank still failed even when
armor level was zero—it would revisit its options and try
something different.

Conclusions and Future Work

Although we have had demonstrable success in decreas-
ing the brittleness of different systems with MCL, there
is much more work to do, and many open questions
remain. For instance, the current interontological links
are very sparse, and many more need to be established
before truly general reasoning about anomalies and their
causes and remedies can be implemented. Moreover,
we have yet to address the questions of how to set the
weights of the various internodal links, whether there
is likely to be a great deal of uniformity in weight
assignment across domains, or whether these weights
need to be set (e.g. learned) for each individual system.
More information on this project can be found by going to
http://www.ucl.ac.uk/commonsense07/papers/notes/anderson-
et-al/

References
Allen, J. F.; Miller, B. W.; Ringger, E. K.; and Sikorski,
T. 1996. Robust understanding in a dialogue system. In
Proceedings of the 1996 Annual Meeting of the Association
for Computational Linguistics (ACL’96), 62–70.
Anderson, M. L., and Oates, T. 2007. A review of recent
research in metareasoning and metalearning.AI Magazine
28(1).
Anderson, M. L.; Oates, T.; Chong, W.; and rlis, D. P.
2006. Enhancing reinforcement learning with metacogni-
tive monitoring and control for improved perturbation tol-
erance.Journal of Theoretical and Experimental Artificial
Intelligence18:387–411.
Anderson, J. 1983. A spreading activation theory of
memory. Journal of Verbal Learning and Verbal Behav-
ior 22:261–295.
Brachman, R. J. 2002. Systems that know what they’re
doing. IEEE Intelligent Systems17(6):67–71.
Cox, M. T. 2005. Metacognition in computation: A se-
lected research review.Artificial Intelligence169(2):104–
41.
Hennacy, K.; Swamy, N.; and Perlis, D. 2003. RGL study
in a hybrid real-time system. InProceedings of the IASTED
NCI.
Josyula, D. P. 2005.A Unified Theory of Acting and Agency
for a Universal Interfacing Agent. Ph.D. Dissertation, De-
partment of Computer Science, University of Maryland,
College Park.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning13:103–130.
Perlis, D.; Purang, K.; and Andersen, C. 1998. Conversa-
tional adequacy: mistakes are the essence.Int. J. Human-
Computer Studies48:553–575.
Sutton, R. S., and Barto, A. G. 1995.Reinforcement Learn-
ing: An Introduction. MIT Press.
Traum, D. R.; Andersen, C. F.; Chong, W.; sana Josyula,
D.; Okamoto, Y.; Purang, K.; O’Donovan-Anderson, M.;
and Perlis, D. 1999. Representations of dialogue state for
domain and task independent met a-dialogue.Electronic
Transactions on Artificial Intelligence3:125–152.
Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning8:279–292.
Watkins, C. J. C. H. 1989.Learning from Delayed Re-
wards. Ph.D. Dissertation, Cambridge University, Cam-
bridge, England.


