
Grounding the Foundations of Ontology Mapping
on the Neglected Interoperability Ambition

Hamid Haidarian Shahri *, James Hendler +, Donald Perlis *

* Department of Computer Science

University of Maryland, College Park, USA
{hamid, perlis}@cs.umd.edu

+ Tetherless World Research Constellation
Department of Computer Science

Rensselaer Polytechnic Institute, Troy, USA
hendler@cs.rpi.edu

Abstract

The problem of ontology mapping has attracted
considerable attention over the last few years, as the
usage of ontologies is increasing. In this paper, we
revisit the fundamental assumptions that drive the
mapping process. Based on real-world use cases, we
identify two distinct goals for mapping, which are: (i)
ontology development and (ii) facilitating
interoperability. Most of current research on ontology
mapping has been focused on ontology development
and is rooted in the seminal work of McGuinness and
Noy in 2000. For example, the well studied problem
of ontology merging is an ontology development task.
Note that with the increase in the number of
information systems that utilize ontologies, facilitating
interoperability between these systems is becoming
more critical. We compare interoperability to the
information integration problem in databases. As a
result of this comparison, class matching is
emphasized, as opposed to the matching of other
entities in an ontology. To the best of our knowledge,
this is the first work that distinguishes facilitating
interoperability, from ontology development and
merging.

1. Introduction
The need for communicating between autonomous and
distributed information systems is increasing with the wide
usage of the Web. Nowadays, the issue of sharing data
across resources and enterprises is no longer a desirable
feature, but a necessity. Considerable amount of research
on data integration and schema mapping over the past
decades have lead to significant improvements in this area
[Rah01]. The difficulty of finding correspondences
between schemas originates from the fact that the
conceptual models, used for data representation, do not
capture the semantics of the data with enough precision.
For example, it is very difficult to infer that area in one
schema and location in another schema refer to the same
real-world entity, as the meaning of attributes in the
schema is not encoded explicitly. This problem is referred
to as semantic heterogeneity.

Ontologies encode the specification of concepts more
accurately, than schemas. The rich set of relationships
defined between concepts in ontologies, help in mitigating
the semantic heterogeneity problem. Since different
ontologies exist and are being used by various
organizations, it is necessary to find correspondences
between these ontologies. The terms: ontology mapping,
matching, alignment, integration, and merging, in the
research literature, relate to this issue in various ways! In
fact, unifying the interpretation of this diverse terminology
is quite challenging. Usually, the goals of the task of
finding correspondences in ontologies are not explicitly
stated. Moreover, there is considerable vagueness on how
the task should be performed, as the problem is often
stated for some specific setting, or a theoretical one.
Generally, there exists no consensus on what solution to
use and under what circumstances, as evident by the
variety of the terminology used. Nevertheless, previous
research [Kal03, Noy04, McG00] is very valuable for
developing the foundations of the ontology mapping
problem.

In our opinion, this vagueness can only be resolved by
observing the use cases of the problem. To the best of our
knowledge, this is one of the very first attempts to put the
previous research, on ontology mapping, in a unified
context. This study revisits the ontology mapping problem
in various settings, to furnish generality, and at the same
time avoids theoretical assumptions, by adhering to real-
world use cases.

The contributions of this paper are as follows: (i)
Different use cases of ontology mapping are explored and
clarified with real-world motivating examples. (ii) Two
separate goals of the ontology mapping problem are
identified, based on the use cases. They are interoperability
and ontology development. (iii) Interoperability is
highlighted as a major goal in ontology mapping, and the
problem is revisited in this context, as opposed to the usual
ontology development context. (iv) We provide an in-
depth comparison to the information integration problem
in databases. Based on this comparison, class matching is
emphasized as the main ingredient in ontology mapping
for facilitating interoperability. This is different from
finding all matching entities, which is the focus of
ontology development efforts.

2. Revisiting Ontology Mapping Goals with
Motivating Examples

Currently, there are many ontologies that have been
designed by different organizations and communities, and
hence there is a need for a mapping between them. There
are two quite distinct goals for ontology mapping. These
goals are based on the types of use cases that we have
identified, and will clarify in this section with motivating
examples. Although, there are similarities between the use
cases, one can differentiate the subtle requirements that
arise from these examples, with careful observation. One
possible goal of mapping is ontology development, when
an ontology is being designed or engineered by an
organization. The other possible goal of mapping is
interoperability, when there are various parties, which are
using different ontologies and the parties need a
mechanism to be able to communicate and exchange
information. This distinction has seldom been addressed,
in previous research on ontology mapping. Clearly,
interoperability is of considerable importance, as will be
explained in this section.

2.1. Ontology Development
Since ontology is an abstraction for representing
knowledge and all concepts that fit into the domain of
human knowledge are connected together in some fashion,
it is very hard to limit an ontology in terms of what it
represents. This decision is usually made based on
business needs, i.e. the ontology designer decides not to
include some concepts, as they seem irrelevant to current
organizational demands. Assume that an organization is
currently using a host ontology, H.

Over time, as business models change and evolve, the
ontology H also needs to be changed and often extended.
Sometimes, the new business models, or some fragments
of the changes that are required in the ontology, have
already been captured by ontologies that are being used in
other organizations. In this case, the required extensions to
host ontology H, are existent in some other guest ontology,
G. Now, the ontology designer of H, needs to: 1) find the
correspondences between ontologies H and G, 2) decide on
what concepts, relations, and instances of G, need to be
added to H, based on the correspondences found in the
previous step. This use case closely resembles the problem
that has been analyzed in the context of merging two
ontologies, in the literature [Noy00, McG00, Stu01].

Example 1: Consider two organizations offering various
products and using two different ontologies O1 and O2
shown in Figure 1(a) and 1(b), respectively. O1 is shown
with ovals, while O2 is shown with rectangles. The orange
color represents the corresponding concepts between O1
and O2. In Figure 1, since class Videos in ontology O1 is
defined in a very similar context to class Movies in
ontology O2, it is conceivable to merge the two ontologies
and produce a more comprehensive ontology. In essence,

O1 is being extended with O2 and the merged ontology is a
mix of ovals and rectangles, as shown in Figure 1(c).

Both organizations may need to make changes in their
operation, in order to use the merged ontology.
Furthermore, merging can be problematic, if the ontologies
are defining the classes in different contexts, as merging
would easily lead to irresolvable inconsistencies. Assume
that Electronic Equipment in O1 also has Toys as a
subclass. Now, the merged ontology would have two Toys
concepts, one of which is a subclass of Sale Items (Figure
1c) and the other is a subclass of Electronic Equipment
(not shown). Even combining the two Toys concepts may
not have the desired effect.

Fig. 1. Two ontologies O1 and O2 shown in (a) and (b). The
merged result is shown in (c).

Important points arise from the study of this use case,
which are as followed:
1. When ontologies are being merged, there is potential for

inconsistencies and the ontology designer needs to make
complex decisions in various steps of the process.
Hence, the merging process can only be semi-automated
[Noy03] and no algorithmic solution exists. Moreover,
the process must be interactive, to allow the designer to
verify the changes.

2. The nature of the merging problem is such that the host
ontology is usually not only being extended, but also
needs to evolve, to accommodate the neighboring
classes of the corresponding class in the guest ontology.
For example, if the class Movies did not have a parent
class, a simple extension would have sufficed, but now
we must accommodate the Products class as well.

3. Finding correspondences between ontologies is
necessary for ontology development, as illustrated by
this use case.

2.2. Interoperability
Different enterprises use their proprietary and autonomous
systems and are often not willing to change their business
models and operations. On the other hand, they also need
to exchange information. In many circumstances, users
need to query these distributed and autonomous sources of

information, and retrieve data from all of them, as if all the
information resides in a unified source.

Let us define this scenario more formally. Various
autonomous ontologies, O1, O2, O3, …, On, are designed
and being used by n different organizations, also known as
parties. Each ontology Oi is designed based on the
business model that governs the operations of the
organization that it belongs to. Hence, the ontology being
used by each party can not be changed or extended. To
facilitate interoperability, in this scenario, two steps are
required: 1) correspondences between the ontologies of
different parties have to be determined, 2) a skeleton S,
must be developed, to represent these correspondences.

Example 2: Consider two universities in which faculties
and departments within the faculties are structured
differently, as shown in Figure 2(a) and 2(c). The
ontologies O1 and O2 for the two universities are
represented with ovals. There are six corresponding
concepts in O1 and O2, namely: University, Science, Maths,
CS, Physics, and Chemistry, shown with an orange color.
Note that these six concepts appear in different places in
O1 and O2. These six concepts are used in skeleton S, as
shown in Figure 2(b), and represented with rectangles.

When creating the skeleton, the shape of the skeleton is
determined by one of the original ontologies (parties). The
shape of the skeleton is in fact the relationship between the
concepts in the skeleton. In this example, the shape of the
skeleton is the same as ontology O1. Then, each concept in
skeleton S is connected to its corresponding concepts in the
original ontologies O1 and O2, with a subclass relationship.
Figure 2 only shows such connections for the University
concept, with red dotted arrows, and other such
connections are not drawn for more readability. In
Example 2, each organization’s ontology (i.e. O1 and O2)
remains intact, unlike Example 1.

Notice that the two use cases in Section 2.1 and 2.2 are
very different. In Figure 2, consider that each of the
departments of CS in O1 and Computer Science in O2
contain instances of courses being offered in those
departments. In the interoperability use case, we would
like to query for all courses related to computer science
and retrieve results from both universities. In Figure 2,
with the skeleton, we can query for CS courses in ontology
O1 and using query expansion, we move to the
corresponding concept in the skeleton (which is CS), and
then also retrieve the relevant courses from the Computer
Science class in ontology O2. Therefore, the query would
return the results, as if all data resides in a unified source.
Now assume that course abc is offered in the CS
department in O1, while a different course, named efg, is
offered in the Computer Science department in O2.
Merging of these two departments (as done in Figure 1, for
the ontology development goal) would imply that abc is
being offered in both Univeristy1 and University2, which is
not correct. Using the owl:equivalentClass construct
(instead of creating a skeleton) for the purpose of

interoperability is not acceptable for the same reason.
Stating that Class1 and Class2 are equivalent classes using
owl:equivalentClass, implies that every instance of Class1
is also an instance of Class2. This is a very strong
statement, and not generally applicable for facilitating
interoperability between systems.

Fig. 2. O1 and O2 shown in (a) and (c) are the ontologies of two
autonomous organizations. Skeleton S connecting the ontologies
is shown in (b), in the middle.

The following observations can be made by careful
examination of Example 2, and comparing it to Example 1:
1. Isolation: Creating the skeleton S, to represent ontology

mappings is much more flexible than merging, and the
autonomous ontologies Oi, are isolated from any further
changes. This is very desirable, since autonomous
organizations, which are using the ontologies, are
usually not willing to change their business practices for
the sole purpose of communicating with other
organizations. Hence, interoperability must be facilitated
by other means.

2. Class Matching: For interoperability, determining
correspondences between two ontologies should be
focused on the classes that match, in the original
ontologies. Section 3 will elaborate on why class
matching should be the focus. Nevertheless, matching of
corresponding properties and instances can provide
auxiliary information for the ultimate task of class
matching.

3. Tractability: The creation of skeleton S, is more tractable
and comprehensible, and leads to fewer inconsistencies
than the merging process. Therefore, it can be
streamlined and tackled algorithmically.
The above use cases and the discussion in this section

demonstrate that interoperability (i.e. facilitating the

exchange of information between organizations) is a very
important goal in ontology mapping. This goal is quite
similar to what the database community is trying to
achieve, in the context of information integration research
and schema matching [Rah01, Len02]. However, current
solutions to the ontology mapping problem have not
addressed this goal, and are primarily focused on the
merging of ontologies. The merging process is geared
towards the development of an ontology, which is the other
goal identified in this section. In the following section, we
will concentrate on the interoperability goal, compare it to
information integration, and describe its implications on
the ontology mapping problem.

3. Class Matching: The Main Ingredient of
Ontology Mapping for Interoperability

In the previous section, by observing the use cases, we
illustrated that correspondence between ontologies need to
be determined. In this section, we will show that for
interoperability, the process of determining
correspondences should be focused on classes. Note that
the class matching objective does not imply that the
matching of other entities is not used for class matching.

3.1. Information Integration
The problem of combining heterogeneous data sources
under a single query interface is commonly known as “data
integration” or “information integration” in the database
community. Here, the idea is to provide a uniform query
interface over a mediated schema. This query is then
transformed into specialized queries over the original
databases. This process can also be called view based
query answering, because we can consider each of the data
sources to be a view over the mediated schema. Formally
such an approach is called Local As View (LAV), where
“Local” refers to the local sources/databases. An alternate
model of integration is one where the mediated schema is
designed to be a view over the sources. This approach is
called Global As View (GAV), where “Global” refers to
the global (mediated) schema [Len02].

Figure 3 shows an example of the information
integration problem in databases. Here, the goal is to
generate a mapping between columns (Town and City) in
different local schemas (S and T), by mapping them to
some global schema. The local schemas usually reside in
separate autonomous data sources (DataSource1 and
DataSource2). Figure 3 illustrates one example mapping
between schema S and schema T. More details about the
information integration process in databases can be found
in [Len02]. This is a simple, but critical example, and will
be used later in this section to demonstrate how ontology
mapping should be performed to facilitate interoperability,
and how ontology mapping for interoperability relates to
schema mapping (i.e. information integration).

Fig. 3. Example of the information integration problem in
databases. The goal is to generate a mapping between columns
(Town and City) in different local schemas (S and T), by mapping
them to some global schema. The local schemas usually reside in
separate autonomous data sources (DataSource1 and
DataSource2).

3.2. Interoperability
Following the description of information integration
above, it is important to point out that, the term
“integration” is vague to some extent, since it may be
interpreted as some type of “merging” of schemas. This is
not what actually occurs in databases, as the schemas in
each local data source are handled autonomously and need
to be kept separately. The local data sources are often
administered by different organizations and are not merged
(integrated). In fact organizations are not willing to change
their business models and everyday operations.

The ultimate goal of information integration is to
provide interoperability between various systems, which is
the exact same goal that we identified in section 2.2. The
term “interoperability” is much clearer, for describing the
motivations and objectives of the process. By analogy, in
ontology mapping, there is no merging of ontologies
involved, when we are trying to achieve interoperability
between organizations, which use different ontologies (see
Section 2.2).

3.3. Expression of Simple Facts in the RDF Model
Simple facts in the RDF model indicate a relationship
between two things. Such a fact may be represented as an
RDF triple in which the predicate (i.e. property) names the
relationship, and the subject and object denote the two
things. Figure 4(a) shows the predicate hasAuthor, which
is the relationship between the subject and the object. The
subject is an instance of class Book, while the object is an
instance of class Author. The classes are depicted as ovals.
For example, The Art of Computer Programming (which is
a book) hasAuthor Donald Knuth (who is an author).

The use of extensible URI-based vocabularies in RDF
facilitates the expression of facts about arbitrary subjects;
i.e. assertions of named properties about specific named
things. A URI can be constructed for any thing that can be
named, so RDF facts can be about any such things. The

use of Universal Resources Identifiers (URIs) in the RDF
model provides a very powerful mechanism for facilitating
interoperability. Consider that the success and scalability
of the current WWW infrastructure, is a vivid illustration
of the tremendous potential of the idea of “using links”
(which seems like a simple idea at first glance).

3.4. Expression of Simple Facts in the Relational
Model
A familiar representation of a fact in the relational model
in databases is a row in a table. The terms row and table
are also known as tuple and relation, respectively. A table
has a number of columns (also known as attributes). Figure
4(b) shows the hasAuthor table. The table has two
columns, namely Book and Author. A row for example
indicates that, The Art of Computer Programming (which
is a book) hasAuthor Donald Knuth (who is an author).

Fig. 4. Correspondence between the RDF and relational models.
(a) The predicate hasAuthor, which is the relationship between
the instances of class Book and the instances of class Author, in
the RDF model. (b) The table hasAuthor, which has two
columns, namely Book and Author, in the relational model.

3.5. The Analogy between the RDF and Relational
Models
Comparing the explanation of the RDF and relational
models above, and observing Figure 4, demonstrate that
the classes Book and Author (in RDF) correspond to the
columns Book and Author (in relational). The
correspondence between classes and columns is an
important one and will be used later in this section. The
correspondence is also depicted in Figure 5. The other
substantial correspondence is between instances of a class
in RDF, with column values in relational.

In the above discussion, description of the relational
model was constrained, such that a table only contained
two columns. Now, we consider the general case where a
table contains more than two columns. In Figure 6(b), the
table in the relational model has three columns, namely
Book, Author and Publisher. Then, the RDF model would
also have three corresponding classes, as shown in Figure
6(a). The correspondence between classes and columns
still holds. It is essential to realize that the name of the
table in the relational model is arbitrary. We used
TableName in Figure 6(b). Additionally, two predicates,
namely hasAuthor and hasPublisher, are now used in the

RDF model (Figure 6(a)). The name of the two predicates
in RDF is arbitrary and could be anything.

Notice that from Figure 4, we do not infer a
correspondence between the name of the table (hasAuthor
in relational) and the name of the predicate (hasAuthor in
RDF), as this correspondence has no real substance. The
comparison in Figure 6 actually eliminates the role of the
table name in the relational model.

Therefore, the substantial correspondence is between
classes and instances in RDF, with columns and column
values in relational, respectively. There is no
correspondence for predicate (i.e. property) names in the
relational model. This is a side effect of the fact that: In the
RDF model, relations are encoded explicitly. These issues
have rarely been mentioned in the ontology mapping
literature in the Semantic Web community, and are
essential for a better understanding of the ontology
mapping process, as explained in Section 3.1.6.

Fig. 5. The correspondence between classes (in the RDF model)
and columns (in the relational model). There is also a
correspondence between instances of a class (in RDF) and
column values (in relational).

Fig. 6. A more general correspondence between the RDF and
relational models. (a) The three classes in RDF are Book, Author,
and Publisher. The name of the two predicates (hasAuthor,
hasPublisher) in RDF is arbitrary and could be anything. (b) A
table in the relational model, which has three columns, namely
Book, Author, and Publisher. The name of the table (TableName)
is arbitrary.

3.6. Class Matching: Why
Section 3.1 showed that in databases, the final output of
the information integration process is a mapping between
columns in different local schemas (see Figure 3). In
Section 3.5, we illustrated that columns in the relational

model correspond to classes in the RDF model (see Figure
4 and 5). Therefore, to facilitate interoperability between
ontologies, the classes in the ontologies need to be mapped
to each other.

In RDF, the data is the instances of classes. The ultimate
objective of interoperability is to query and correctly
retrieve these data instances, across various ontologies.
The data resides in classes in the ontologies. Notice that as
long as a correct mapping between the classes in the
ontologies exists, users can query and correctly retrieve the
data instances, across various ontologies. For example, in
Figure 2, users would like to retrieve course instances from
both CS class in Univeristy1 and Computer Science class in
Univeristy2. By analogy, in the relational model, the data is
the values in the columns. A correct mapping between the
columns in the schemas enables users to correctly retrieve
column values across various schemas.

The detailed comparison in this section clarifies that the
main ingredient of ontology mapping for facilitating
interoperability is the matching of classes. The class
matching objective directly facilitates interoperability.
Identifying this objective is a helpful guideline, when
performing the mapping, and has not been emphasized
previously in the literature. This is one of the critical
implications of focusing on the context of interoperability
in ontology mapping. The class matching objective does
not imply that other entities are not used for class
matching. In fact, matching of other entities is usually
helpful for the matching of classes.

4. Related Work
Many of the solutions to ontology mapping produce a
merged ontology as the final output [McG00, Noy03,
Stu01], and all this work is in the context of ontology
development. Our work on ontology mapping for
interoperability does not merge the ontologies. However,
finding the matching classes is necessary in our approach,
which is somewhat similar to the matching of various
entities, in ontology merging. [Kal03] provides a good
survey of various ontology mapping systems. Many
systems look at finding lexical matches between ontologies
and use dictionaries for this task. Chimaera is one of the
early ontology merging tools, which considers structures
such as subclass and superclass relations and slot
attachments [McG00]. [Noy03] provides interactive
support for merging ontologies and uses the graph
structure of ontologies to provide suggestions. [Stu01] uses
the set of shared instances or the set of shared documents
annotated with concepts of two ontologies and generates a
lattice to relate the concepts of the ontologies using formal
concept analysis. [Dou03] is a system that merges
ontologies and is proposed to be used by agents on the
semantic web. [Mit00] proposes the use of rules across
ontologies to create linkage between systems, and handle
user queries. These rules are generated by a domain expert

semi-automatically, and represented using a graph oriented
model which is extended with set operators.

5. Conclusions
In this paper, we identify two goals for ontology mapping
and distinguish them, for the first time, using real-world
use cases. The goals are ontology development and
facilitating interoperability. Much of current research in
ontology mapping has been focused on ontology
development and is rooted in the seminal work of [McG00,
Noy00] in 2000. Clearly, today, providing interoperability
between autonomous organizations is critical, considering
the increase in the number enterprises that use ontologies
in their information systems. Unfortunately, the ontology
mapping problem has been mainly studied in the context
ontology merging (i.e. ontology development).

We showed that the merging of ontologies is an
ontology development task. Moreover, we compared the
interoperability goal to the information integration
problem in databases. As a result, for facilitating
interoperability, class matching was emphasized, as
opposed to the matching of other entities in an ontology.

References
[Dou03] Dou, D., McDermott, D., Qi, P., “Ontology Translation

on the Semantic Web”. Proceedings of International
Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE’03). LNCS 2888, 2003.

[Kal03] Kalfoglou, Y., Schorlemmer, M., “Ontology Mapping:
The State of the Art”. Knowledge Engineering Review, Vol.
18(1), pp. 1-31, 2003.

[Len02] Lenzerini, M., “Data Integration: A Theoretical
Perspective”. Proceedings of 21st ACM Symposium on
Principles of Database Systems (PODS’02), June 3-5,
Madison, Wisconsin, USA, pp. 233-246, 2002.

[McG00] McGuinness, D.L., Fikes, R., Rice, J., Wilder, S., “An
Environment for Merging and Testing Large Ontologies”.
Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning
(KR’00), Breckenridge, Colorado, USA, 2000.

[Mit00] Mitra, P., Kersten, M., and Wiederhold, G., “A Graph-
Oriented Model for Articulation of Ontology
Interdependencies”. Proc. 7th Int. Conference on Extending
Database Technology (EDBT’00), Konstanz, Germany, 2000.

[Noy00] Noy, N.F, Musen, M., “PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment”.
Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI'00), Austin, TX, USA, July 2000.

[Noy03] Noy, N.F, Musen, M., “The PROMPT Suite: Interactive
Tools For Ontology Merging And Mapping”. International
Journal of Human-Computer Studies, Vol. 59(6), pp. 983-
1024, 2003.

[Noy04] Noy, N.F., “Semantic Integration: A Survey of
Ontology-Based Approaches”. SIGMOD Record, Vol. 33(4),
pp. 65-70, 2004.

[Rah01] Rahm, E., Bernstein, P.A., “A survey of approaches to
automatic schema matching”. VLDB Journal, Vol. 10(4), pp.
334-350, 2001.

[Stu01] Stumme, G., Maedche, A., “FCA-merge: Bottomup
merging of ontologies”. IJCAI 2001, pp. 225-234, 2001.

