
The Role of Metacognition in Robust AI Systems
Matthew D. Schmill and Tim Oates

University of Maryland Baltimore County
Baltimore, MD 21250 USA

Michael L. Anderson
Franklin & Marshall College
Lancaster, PA 17604 USA

Darsana Josyula
Bowie State University
Bowie, MD 20715 USA

Don Perlis and Shomir Wilson and Scott Fults
University of Maryland

College Park, MD 20742 USA

Abstract

As automated systems become more complex, their propen-
sity to fail in unexpected ways increases. As humans, we
often notice their failures with the same ease that we recog-
nize our own plans going awry. Yet the systems themselves
are frequently oblivious that the function they are designed
to perform is no longer being performed. This is because
humans have explicit expectations – about both the system’s
behavior and our own behaviors – that allow us to notice an
unexpected event. In this paper, we propose a way for AI
systems to generate expectations about their own behavior,
monitor them, and attempt to diagnose the underlying fail-
ures that cause them. Once a cause has been hypothesized,
attempts at recovery can be made. The process is naturally
meta-cognitive in that the system must reason about its own
cognitive processes to arrive at an accurate and useful re-
sponse. We present an architecture called the Meta-Cognitive
Loop (MCL), which attempts to tackle robustness in cognitive
systems in a domain general way, as a plug-in component to
decrease the brittleness of AI systems.

Introduction
Murphy’s Law states, “if anything can go wrong, it will”.
Though it is more of an adage than a law, it is surprisingly
predictive. For each of the fifteen participants in the 2004
DARPA Grand Challenge driverless car competition, Mur-
phy’s Law held true. Each of the entries was an impressive
engineering feat; to receive an invitation each team’s vehi-
cle had to navigate a mile-long preliminary obstacle course.
Yet in the longer course, every one of the driverless vehicles
encountered a situation for which it was unprepared: some
experienced mechanical failures, while others wandered off
course and into an obstacle their programming could not sur-
mount (Hooper 2004).

The DARPA Grand Challenge highlights the enormity of
thedefensive designtask. In this design paradigm, the engi-
neer must attempt to enumerate the ways in which a system
might fail so that they can be appropriately managed. For so-
phisticated computer systems, particularly autonomous sys-
tems operating in the real world, this is a great challenge.
Systems that learn and adapt attempt to address this, but
learning processes themselves are also constrained to work

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in the space for which they were designed. Learning sys-
tems can improve robustness, but only in the situations for
which they are designed.

Consider, though, a driverless vehicle that has become
stuck on an embankment (a fate of several of the partici-
pants in the grand challenge). If that vehicle had aself model
that allowed it to reason about its own control and sensing
capabilities, it may have been in a position to notice, and
diagnose its own failure. Such a system would also have
the ability to reason about which of its cognitive compo-
nents, whether they be controllers, learning algorithms, or
planners, might allow the system to recover from the current
failure, or at least prevent it from happening the next time.

Systems with self models, and the ability to reason about
their own internal representations and processes possess
metacognitivecapabilities that we suggest allow them to be
more robust, and simpler to implement, than the sum of their
cognitive parts.

In this paper we present an architecture for generalized
metacognition aimed at making AI systems more robust.
The key to this enhancement is to characterize a system by
its expectationseach time it engages in activity, to watch for
violations of system expectations, and attempt to reason in a
application-general way about the violation to arrive at a di-
agnosis and plan for recovery. Our architecture is called the
Meta-Cognitive Loop (MCL), and we present it here, along
with details of its implementation, and an example of an ap-
plication of MCL to a complete end-to-end system consist-
ing of several distinct components.

The Meta-Cognitive Loop
A system is considered brittle when unanticipated perturba-
tions in its domain cause significant losses in performance
or, worse, complete system failure. But, as noted in the dis-
cussion of the DARPA Grand Challenge above, defensive
design is often a losing battle. How can the designer of an AI
system hope to enumerate and plan for all possible perturba-
tions, especially as the systems’ capabilities and interactions
with the real world get more and more sophisticated?

Human intelligence manages to work not just in everyday
situations, but also in novel situations, and even significantly
perturbedsituations. A perturbation is defined by Merriam-
Webster as “a disturbance of motion, course, arrangement,
or state of equilibrium.” For our purposes, a perturbation

163



is a change in conditions under which an agent (human or
artificial) has obtained competency.

Suppose someone who has spent their entire life in the
desert is suddenly dropped in the middle of a skating rink.
This person has learned to walk, but never on ice. Their
usual gait will not produce the desired result. In coping with
this new situation, they start bynoticingthat the propriocep-
tive feedback they are receiving is unusual in the context of
walking. They must become more aware of what they are
doing and reason sensibly about the situation. This allows
them toassesswhat has changed or gone awry. Once they
have made an assessment, they mustrespondto the pertur-
bation by modifying their usual behavior: become more cau-
tious and deliberate, attempt to learn the dynamics of walk-
ing on ice, etc.

Dealing with perturbations invariably involves reasoning
about one’s own self: about one’s abilities, expectations, and
adaptiveness. We recognize when we possess a necessary
capacity or whether we need to acquire it. What would be
required of a computer system that endeavored to have that
same level of robustness?

An AI system capable of reasoning about its own capabili-
ties is said to possess the ability of metareasoning. A typical
metareasoner can be laid out as in figure 1 (Cox and Raja
2007), consisting of a sensorimotor subsystem, shown in the
figure as theground leveland responsible for sensing and ef-
fecting changes in an environment, a reasoning subsystem,
shown as theobject leveland responsible for processing sen-
sory information and orginizing actions at the ground level,
and a metareasoning component, shown as themeta level
and responsible for monitoring and controlling the applica-
tion of components at the object level.

Figure 1: An overview of a typical metareasoning system.

We are developing an embedded, general-purpose meta-
reasoner based on this basic architecture. The Meta-
Cognitive Loop (MCL) is a meta-level component that en-
dows AI systems with self-modeling, monitoring, and repair
capabilities. An overview of an MCL-enhanced system can
be seen in figure 2. A reasoning system that employs MCL
(called thehostsystem) makes explicit its components, ca-
pabilities, actions, percepts, and internal state information to
compile the infrastructure necessary for a self-model. Ad-
ditionally, the host declaresexpectationsabout how its ac-

tivities will impact the perceptual and state information it
has access to. MCL monitors the operation of the host (in-
cluding it’s actions and sensory feedback) against its expec-
tations, waiting for violations to occur. When a violation
of expectations is detected, it employs a combination of a
domain-general problem solver and the host’s self-model to
make recommendations on how to devote computational re-
sources to anomalous host behavior.

Figure 2: An overview of an MCL-enhanced AI system.

The operation of MCL is analogous to the thought pro-
cess of the human walking on ice presented above. It can
be thought of as a background process consisting of three
steps: (i) monitoring for, and noticing anomalies, (ii) assess-
ing them (probable causes, severity, etc.) and (iii) guiding
an appropriate response into place.

The Note phase corresponds to an agent’s “self-
awareness”. As an agent accumulates experience with its
own actions, it develops expectations about how they un-
fold. An agent might expect an internal state to change to
a new value, for a sensor to increase at some rate, or for an
action to achieve a goal before some deadline. As the agent
engages in a familiar behavior, deviations from expectations
(anomalies) cause surprise, and initiate the assess phase.

In the assessment stage of MCL, a profile of the anomaly
is generated. How severe is the anomaly? Must it be dealt
with immediately? What is the likely cause? This anomaly
profile enables MCL to move on to the guide state, where
a response will be selected to either help the agent recover
from the failure, prevent it from happening in the future, or
both. Once this response is guided into place by the host sys-
tem, MCL can continue to monitor the situation to determine
whether or not the response has succeeded. Should MCL de-
termine that its initial response has failed, it can move down
its list of possible responses until it succeeds, or decides to
ask for help or move on to work on something else.

In previous work, we have demonstrated the general use-
fulness of MCL-like metareasoning in specific applications.
In one such study we deployed MCL in a standard rein-
forcement learner (Anderson et al. under review). There,
learned reward functions in a simple 8x8 grid world formed
the bases for expectations1. When reward conditions in

1Q-learning (Watkins and Dayan 1992), SARSA (Sutton and

164



the grid world were changed, MCL noted the violation,
and would respond in a number of ways appropriate to re-
learning or adapting policies in RL systems. In a variety of
settings, the MCL-enhanced learner outperformed standard
reinforcement learners when perturbations were made to the
world’s reward structure.

In other work, we applied an MCL approach to construct-
ing a Bolo player. Bolo2 is a 2-dimensional multiplayer
video game in which players command simulated tanks on
a virtual battlefield. In this domain, we implemented a sim-
ple planner capable of sequencing simple closed-loop con-
trollers for moving, firing, and performing other terraform-
ing operations available in the game. Rather than devote our
time to perfecting the planner, we used a simplistic approach
in which plan refinement and modification was possible, and
added a metareasoning component that could strategically
deploy those capabilities when the simple plans failed. The
combination of a simple planner and a self-aware metarea-
soning component provided an enhanced flexibility for the
Bolo player to cope with changes in the Bolo battlefield.

Domain-General MCL
Implementing the MCL-enhanced applications discussed
above has provided two key insights into building robust
AI systems. First, building systems that employ a meta-
cognitive loop embodies an engineering practice that re-
quires a structured understanding of how their programs
work. The capabilities of an automated, adaptive sys-
tem must be made explicit enough for the metareasoner
to know when to use them. Expectations for the behav-
iors executed at the object level must be known, or learn-
able such that the metareasoner can detect when a pertur-
bation has occurred. Indeed, in similar work great atten-
tion is paid to the methodologies that enable self-modeling
and robust behavior in AI (Ulam et al. 2005; Stroulia 1994;
Williams and Nayak 1999), and in the literature of Fault De-
tection, Isolation, and Recovery (FDIR) (Wesley et al. 1995;
Tinos and Terra 2002).

The second insight is that while there may be many dif-
ferent perturbations possible in a given domain, there are a
limited number of distinct ways in which they may create
system failures, and generally an even smaller number of
coping strategies. Can we produce a taxonomy of the ways
in which AI systems fail, and reason about failures using
the general concepts present in that taxonomy, such that one
general-purpose reasoner can be useful to a wide variety of
host systems and domains? Indeed, our primary scientific
hypothesis is that the answer to this question is “yes”, and
our current research seeks to determine whether we are cor-
rect or incorrect, and to what degree.

It is useful to consider two different forms of generalized
utility here. A system/domain generalMCL would be cou-
pled “out-of-the-box” with any of a wide variety of host sys-
tems and in a wide variety of domains; the host would at

Barto 1995) and Prioritized Sweeping (Moore and Atkeson 1993)
were used.

2The game of Bolo is described in detail at
http://www.lgm.com/bolo/

a minimum need only provide MCL with expectations and
monitoring information and specify any tunable actions it
might have. Ananomaly-generalMCL would have a suf-
ficiently high-level typology of anomalies such that virtu-
ally all specific anomalies would fall into one type or an-
other. Since actual instances of anomalies tend to be system
or domain specific, the two dimensions are not totally in-
dependent. However, a system/domain-general MCL would
have a protocol design facilitating a kind of “plug and play”
symbiotic hook-up, where the system/host need only pro-
vide and receive data from MCL in a specified format, even
if MCL might not be equipped to handle anomalies in some
domains. An anomaly-general MCL, by contrast, would be
equipped to process virtually any anomaly for any system
or domain, even if it might be tedious to provide the add-on
interface between them. Combining the two gives the best
of both worlds: easy hook-up to any host (as long as the
designer follows the communication protocol) and ability to
deal flexibly with whatever comes its way.

The current generation of MCL implements such a gen-
eralized taxonomy and uses it to reason through anomalies
that a host system experiences. MCL breaks the universe of
failures down into three ontologies that describe different as-
pects of anomalies, how they manifest in AI agents, and their
prescribed coping mechanisms. Thecore of these ontolo-
gies contain abstract and domain-general concepts. When
an actual perturbation is detected in the host, MCL attempts
to map it into the MCL core so that it may reason about it
abstractly. Nodes in the ontologies are linked, expressing
relationships between the concepts they represent. The link-
age both within the ontologies and between them provides
the basis that MCL uses to reason about failures.

Though the hierarchical network structure of the ontolo-
gies lends itself to any of a number of graph-based algo-
rithms, our implementation represents the ontologies as a
Bayesian network. This allows us to express beliefs about
individual concepts within the ontologies by probability val-
ues, to model the influence that the belief in one concept has
on the others, and to use any of the many Bayesian infer-
ence algorithms to update beliefs across the ontologies as
new observations are made by MCL. The core of our imple-
mentation is based on the SMILE reasoning engine.3

Each of the three phases of MCL (note, assess, guide) em-
ploys one of the ontologies to do its work. A flow diagram
is shown in figure 3. The note phase uses an ontology ofin-
dications. An indication is a sensory or contextual cue that
the system has been perturbed. Processing in the indication
ontology allows the assess phase to hypothesize underlying
causes by reasoning over itsfailure ontology. This ontol-
ogy contains nodes that describe the general ways in which
a system might fail: its models are out-of-date, for example.
Finally, when failure types for an indication have been hy-
pothesized, the guide phase maps that information to its own
responseontology. This ontology encodes the means avail-
able to a host for dealing with failures at various levels of

3The SMILE engine for graphical probabilistic model con-
tributed to the community by the Decision Systems Laboratory,
University of Pittsburgh (http://dsl.sis.pitt.edu).

165



abstraction. Through these three phases, reasoning starts at
the concrete, domain-specific level of expectations, becomes
more abstract as MCL moves to the concept of a system fail-
ure, and then becomes more concrete again as it must realize
an actionable response based on the hypothesized failure.

Figure 3: Overview of the MCL ontologies.

In the following sections, we will describe in greater de-
tail how the three ontologies are organized and how MCL
gets from expectation violations to responses that can be ex-
ecuted by the host system, using the MCL-enhanced rein-
forcement learning system as an example.

Indications
A fragment of the MCL indication ontology is pictured in
figure 4. The indication ontology consists of two types of
nodes: domain independentindication nodesshown above
the dashed line, and domain-specificexpectation nodes
shown below the line. Indication nodes belong to the MCL
core, and represent general classes of sensory events and ex-
pectation types that may help MCL disambiguate anomalies
when they occur. Furthermore, there are two types of indi-
cation nodes:fringe nodesandevent nodes. Fringe nodes
zero in on specific properties of expectations and sensors.
For example, a fringe node might denote what type of sen-
sor is being monitored: internal state, time, or reward. Event
nodes synthesize information in the fringe nodes to represent
specific instances of an indicator, for exampleREWARD NOT
RECEIVED.

Expectation nodes (shown below the dashed line) repre-
sent host-level expectations of how sensor, state, and other
values are known to behave. Expectations are created and
destroyed based on what the host system is doing and what it
believes the context is. Expectations may be specified by the
system designer or learned by MCL, and are linked dynam-
ically into indication fringe nodes when they are created.

Consider the ontology fragment pictured in figure 4. This
fragment shows three example expectations that the en-
hanced reinforcement learner might produce when it at-
tempts to move into a grid cell containing a reward. First,
a rewardx should be experienced at the end of the move-
ment. Second, the sensorLY should not change. Lastly, the
sensorLX should decrease by one unit.

Suppose that someone has moved the location of the re-
ward, butLY andLX behave as if the reward were still in
the original position. MCL will notice an expectation vio-
lation for the reward sensor, and create a fresh copy of the
three ontologies to be used as a basis for reasoning through
a repair. Based on the specifics of the violation, appropri-
ate evidence will be entered into the indication fringe to
reflect the fact that a violation occurred: a change in a re-
ward sensor was expected, but the change never occured.

Figure 4: A fragment of the MCL indication ontology.

The relevant expectation node in the fragment in figure 4 is
denoted by boldface, and its influence on associated nodes
in the indication ontology are denoted by heavy arrows.
Through the conditional probability tables maintained by the
Bayesian implementation of the ontology, MCL’s belief in
fringe nodesREWARD and UNCHANGED will be boosted.
From there, influence is propagated alongabstraction links
within the indication core (activating theSENSORnode and
others). Finally,fringe event linkscombine the individual
beliefs of the seperate fringe nodes into specifically indi-
cated events. In figure 4, theREWARD NOT RECEIVED
node is believed to be more probable due to the evidence for
upstream nodes. Once all violated expectations have been
noted, and inference is finished, the note phase of MCL is
complete.

Failures
The note stage having been completed, MCL can move to
the assess stage, in which indication events are used to hy-
pothesize a cause of the anomaly experienced. The fail-
ure ontology serves as the basis for processing at the assess
stage.

It is worth explaining why MCL does not map directly
from indications to responses. In fact, earlier incarnations
of MCL did derive responses directly from expectation vio-
lations. The failure ontology was added because of the po-
tentially ambiguous nature of indications. In many cases,
a single indication might suggest several potential failures.
Similarly, a single failure might only be suspected when a
subset of indications is present. The mapping between indi-
cations to failures, then, might be one-to-many or many-to-
one. This rich connectivity is lost without all three ontolo-
gies.

Belief values for nodes in the failure ontology are updated
based on activation in the indication ontology. Indication
event nodes are linked to failure nodes via interontological
links calleddiagnostic links. They express which classes of
failures are plausible given the active indication events and
the conditional probabilities associated with those relation-
ships.

Figure 5 shows a fragment of the MCL failure ontology.
Dashed arrows indicate diagnostic links from the indications

166



knowledge
error

model

error

sensor

failure

predictive

model
failure

procedural

model
failure

expressivity

failure

model fit

error

sensor

not
reporting

sensor
malfunction

…

Figure 5: A fragment of the MCL failure ontology.

ontology leading to theSENSOR FAILUREandMODEL ER-
ROR nodes, which are shaded and bold. These nodes rep-
resent the nodes directly influenced by updates in the indi-
cations ontology during the note phase in our enhanced re-
inforcement learning example; aREWARD NOT RECEIVED
event can be associated with either of these types of failure.
The remaining links in the figure are intraontological, and
expressspecialization. For example, a sensor may fail in
two ways: it may fail to report anything, or it may report
faulty data. Either of these is a refinement of theSENSOR
FAILURE node. As such,SENSOR NOT REPORTINGand
SENSOR MALFUNCTION are connected toSENSOR FAIL-
URE with specialization links in the ontology to express this
relationship.

As in the note phase, influence is passed along special-
ization links to activate more specific nodes based on the
probabilities of related abstract nodes and priors. Of partic-
ular interest in our RL example is thePREDICTIVE MODEL
FAILURE node, which follows from theMODEL ERRORhy-
pothesis. The basis for action in Q-learning is the predictive
model (the Q function), and failure to achieve a reward often
indicates that the model is no longer a match for the domain.

Responses
Outgoing interontological links from probably failure nodes
allow MCL to move into the guide phase. In the guide
phase, potential responses to hypothesized failures are ac-
tivated, evaluated, and implemented in reverse order of their
expected cost. Expected cost for a concrete response is com-
puted as the cost of the node, as declared by the host, mul-
tiplied by one minus the belief value of the node, which is
taken as the probability that the response will correct the
anomaly. Interontological links connecting failures to re-
sponses are calledprescriptive links.

Figure 6 shows a fragment of the MCL response ontol-
ogy. Pictured are both MCL core responses (which are ab-
stract, and shown in italics) and host-level responses (pic-
tured in bold), which are concrete actions that can be im-
plemented by a host system. Host system designers specify
the appropriate ways in which MCL can effect changes by
declaring properties (such asEMPLOYS REINFORCEMENT
LEARNING) that are incorporated into the conditional prob-

ability tables for the response nodes. DeclaringEMPLOYS
REINFORCEMENT LEARNING, for example, will make non-
zero the prior belief that responses, such asRESETQ VAL -
UES as seen in figure 6, will be useful.

In the portion of the response ontology pictured, prescrip-
tive links from the failure ontology are pictured as dashed
arrows. These links allow influence to be propogated to the
nodesMODIFY PREDICTIVE MODELSandMODIFY PROCE-
DURAL MODELS. Like the failure ontology, internal links
in the response ontology are primarily specialization links.
They allow MCL to move from general response classes to
more specific ones, eventually arriving at responses that are
appropriate to the host. In our example, concrete nodes cor-
respond to either parameter tweaks in Q-learning, or reset-
ting the Q function altogether.

modify:

cope

change
parameters

modify

procedural
models

modify

predictive
models

increase
α

parameter

rebuild

models

activate

learning

reset
Q values

increase
ε

parameter

Figure 6: A fragment of the MCL response ontology.

Iterative and Interactive Repairs

Once MCL has arrived at a concrete response in the guide
phase, the host system can implement that response. In our
enhanced RL example, this may mean clearing the Q val-
ues and starting over, or boosting theǫ parameter to increase
exploration or theα parameter to learn faster. A hybrid sys-
tem, with many components, may have several probable re-
sponses to any given indication. This is why all the activated
ontology nodes are considered hypotheses with associated
conditional probabilities. MCL will not always have enough
information to arrive at an unambiguously correct response.
MCL must verify that a response is working before it con-
siders the case of an anomaly closed.

When a response is found to have failed, either by explicit
feedback from the host, or implicitly by recurrence of expec-
tation violations, MCL must recover its record of the origi-
nal violation and reinitiate the reasoning process. The deci-
sion of when to recover a reasoning process is actually quite
complex: repairs may be durative (requiring time to work),
interactive (requiring feedback from the host), or stochas-
tic. Making this decision remains a topic of our ongoing
research. Once the decision has been made that a response
has failed, MCLre-entersand updates the ontologies in two
ways. First, it revises down the belief that the failed response
node will solve the problem, possibly driving it to zero. The

167



inference algorithm is run and the influence of having dis-
counted the failed response is propogated throughout the on-
tologies. Next, it feeds any new indications that may have
occurred during the execution of the original response into
the indications ontology and again executes the inference al-
gorithm. Then utility values for concrete responses are re-
computed and the next most highly rated response is chosen
and recommended for implementation by the host. Once a
successful response is implemented and no new expectation
violations are received, the changes effected during the re-
pair can be made permanent, and the violation is considered
addressed.

An MCL Testbed
Metacognition of the type employed by the metacognitive
loop is in a sense only as interesting as the collection of cog-
nitive capabilities its host possesses. Our running example
of a reinforcement learner provides relatively few sources
of failure and perhaps even fewer possible responses. The
reasoning performed by MCL, and the ontology nodes that
come into play are consequently limited. Indeed, with so
few distinct choices to be made at the object level, all of the
metacognition in this example could easily be anticipated
and hardcoded into the learner, blurring the lines between
the object and metacognitive levels.

For the benefits of metacognition to be made clear, there
must be significant choices to be made at the meta level
that produce concrete benefits to overall system competency.
In this section, we describe a new system architecture we
are developing that has the requisite complexity to highlight
how a metareasoner can contribute to a more robust system.
Through this system we also hope to demonstrate the gener-
ality of the reasoner, as MCL will have to cope with a variety
of problems encountered as the various system components
the at object level interact.

An overview of our system architecture is pictured in fig-
ure 7. At the ground level are “assets” – simulated agents
with sensing and possibly effecting capabilities that operate
in a simulated environment. The architecture is designed to
be configurable; the assets might be rover units operating in
a simulated Mars environment, or unmaned aerial vehicles
operating in a virtual battlefield. The core of the simulation
was built based on the Mars Rover simulation introduced in
(Coddington 2007), and is currently discrete, although an
obvious development path would be to transition to a 2 or 3
dimensional, continuous world, and eventually actual robots
acting in the real world. For the purpose of this discussion,
we will use the simulated Mars Rover as an example.

At the object level of the testbed system are three ma-
jor cognitive components. First is the monitor and control
system of each asset. It is responsible for sequencing exe-
cution of effecting and sensing actions on the actual assets.
Our Mars Rover controller contains a simple planner that
performs route planning to navigate between waypoints on
a map, while taking reasonable measures to attend to the
rover’s resource constraints. The rover controller can also
learn operator models for the mars environment, in a form
similar to those found in STRIPS (Fikes and Nilsson 1971).

The second object-level component is a human-computer
interface that accepts natural language commands from hu-
man users. Users specify their goals to the language pro-
cessor, which converts them to a goal language usable by
the rover controller. The Rover controller in turn generates
ground level plans to achieve the user’s goals, and also man-
ages the inevitable competition for limited asset resources.

Finally, the system contains a security broker. The secu-
rity broker places constraints on both the assets and users’
access to them. For example, the security broker may state
that two rovers may not perform science in the same zone,
or the security broker may state that userU may access
panoramic images taken by the rover, but not specific sci-
entific measurements in a particular zone.

The three object-level components get at three distinct
classes of AI problems. The rover controller is, obviously, a
classic AI control problem. It requires the use of planning,
scheduling, and learning, and the coordination of those ca-
pabilities to maximize the utility of the system assets. The
user/asset interface is a classic AI natural language under-
standing, learning, and dialog management problem. Fi-
nally, the security broker introduces security policies as a
constraints, as well as information fusion.

The domain presents many possibilities for perturbations
and associated system failures. Each path between the
ground and object level represents a conceptual boundary,
wereby one component asserts control and has exepctations
about the result. Consider a few possible perturbations: the
human user may use unknown lexical or syntactic construc-
cts, the user may be denied access to imagery due to con-
flicting security policies, or the rover may generate useless
observations due to unforseen changes in the Mars environ-
ment. Each interaction and its associated expectations will
be monitored by MCL, and any violation will be mapped to
the core ontologies. Possible explanations and repairs will
be considered in an order consistent with prior and learned
probabilities in an attempt to prevent further violations.

Figure 7: An overview of an end-to-end MCL-enhanced AI
system.

168



As of the time of writing, a simulated Mars rover, and
a monitor and control system as described above, is im-
plemented in our testbed architecture. It generates simple
expectations based on operator models and these expecta-
tions are monitored as it executes scripts loaded with sci-
ence goals for the rover. Where the proverbial rubber hits
the road, the rover has 7 actions, and a mix of 8 sensors and
state variables, both continuous and discrete. We can perturb
the controller through both the environment (by, for exam-
ple, blocking a route between waypoints) and the rover (by,
for example, causing a sensor to behave improperly).

Similarly, the NLP interface (a system called AL-
FRED (Anderson et al. 2004)) is undergoing revisions to
interoperate with MCL. The grammatical and dialogical
analysis of an utterance (the spelling, syntactic structure,
the context-independent and dependent meanings, reference
tracking, etc.) is coded in an active logic-based language
(ALMA, see (Anderson and Perlis 2005)) and designed
around a BDI architecture. These types of knowledge and
reasoning representations lend themselves readily to self-
monitoring and reasoning. Hence, MCL could end up play-
ing an increasingly integral part in both the grammatical and
the dialogical tasks of the NLP interface. That is, a system
designed to be a general, commonsense reasoner may play
essential roles in sentence level parsing, dialogue manage-
ment, and the learning of both.

Conclusion
We have described a generalized metacognitive layer aimed
at providing robustness to autonomous systems in the face
of unforseen perturbations. The metacognitive loop encodes
commonsense knowledge about how AI systems fail in the
form of a Bayesian network and uses that network to reason
abstractly about what to do when a system’s expectations
about its own actions are violated. Our aim is to provide
an engineering methodology for developing meta-level in-
teroperable AI systems and in so doing provide the benefit
of adding reactive anomaly handling using the MCL library.

It is important to emphasize that MCL is not a kind of
magic bullet that figures out and then performs perfect ac-
tions for every situation. Rather, the metacognitive layer
can step back and assess a difficulty – possibly deciding that
it does not have the wherewithal to resolve it, and possi-
bly availing itself of options such as asking for help, giving
up (rather than wasting time), using trial-and-error, or sug-
gesting application of any of the adaptive behaviors imple-
mented at the object layer, if it has the capacity to do so.

This kind of commonsense approach to anomalies tends
to serve humans very well; though there is some evidence to
suggest that metareasoning can be detrimental to decision-
making (Wilson and Schooler 1991), we suggest that this
may be true only in cases where the cognitive or object level
is functioning adequately. Said differently, when the expec-
tations of a cognitive process are violated, it is appropriate to
perform diagnosis and response at the meta-level precisely
because the violation is due to a failing somewhere at the ob-
ject level. When the meta-level is engagedwithout a congi-
tive end, the potential to reorganize the object level to overall
detriment exists.

We have also introduced a system architecture with a
number of interacting cognitive components at the object
level that we believe is a useful testbed for metacognitive re-
search. We believe it will provide a setting complex enough
to demonstrate both the utility and generality of our gener-
alized MCL ontologies, bringing together issues of informa-
tion fusion, security policies, human-computer dialog, and
monitor and control of autonomous systems.

References
Anderson, M. L., and Perlis, D. R. 2005. Logic, self-
awareness and self-improvement:{T}he metacognitive
loop and the problem of brittleness.Journal of Logic and
Computation15(1).

Anderson, M. L.; Josyula, D.; Perlis, D.; and Purang, K.
2004. Active logic for more effective human-computer in-
teraction and other commonsense applications. InProceed-
ings of the Workshop Empirically Successful First-Order
Reasoning, International Joint Conference on Automated
Reasoning.

Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D.
under review. Enhancing reinforcement learning with
metacognitive monitoring and control for improved pertur-
bation tolerance.

Coddington, A. 2007. Motivations as a meta-level compo-
nent for constraining goal generation.Proceedings of the
First International Workshop on Metareasoning in Agent-
Based Systems16–30.

Cox, M. T., and Raja, A. 2007. Metareasoning: A man-
ifesto. Technical Report BBN TM-2028, BBN Technolo-
gies.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving.Artificial
Intelligence Journal2:189–208.

Hooper, J. 2004. Darpa grand challenge 2004: Darpa’s
debacle in the desert.Popular Science.

Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweep-
ing: Reinforcement learning with less data and less time.
Machine Learning13:103–130.

Stroulia, E. 1994. Failure-Driven Learning as Model-
Based Self Redesign. Ph.D. Dissertation, Georgia Institute
of Technoloy.

Sutton, R. S., and Barto, A. G. 1995.Reinforcement Learn-
ing: An Introduction. MIT Press.

Tinos, R., and Terra, M. H. 2002. Fault detection and
isolation for multiple robotic manipulators.

Ulam, P.; Goel, A.; Jones, J.; and Murdoch, W. 2005. Us-
ing model-based reflection to guide reinforcement learn-
ing. In IJCAI Workshop on Reasoning, Representation and
Learning in Computer Games.

Watkins, C. J. C. H., and Dayan, P. 1992. Q-learning.
Machine Learning8:279–292.

Wesley, J.; Don, H.; Miller, W.; and Hajek, B. K. 1995.
Fault detection and isolation: A hybrid approach.

169



Williams, B. C., and Nayak, P. P. 1999. A model-based
approach to reactive self-configuring systems. In Minker,
J., ed.,Workshop on Logic-Based Artificial Intelligence,
Washington, DC, June 14–16, 1999. College Park, Mary-
land: Computer Science Department, University of Mary-
land.
Wilson, T. D., and Schooler, J. W. 1991. Thinking too
much: Introspection can reduce the quality of preferences
and decisions.Journal of Personality and Social Psychol-
ogy60(2):181–192.

170




