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Abstract—Agents that operate in the real world have to make
decisions on how long they can deliberate before they act. If the
agent deliberates for too long, the agent may miss a deadline
or the environment may change such that the preconditions for
acting may no longer hold true. If the agent acts too quickly
without proper deliberation, it may miss opportunities or may
even perform the wrong action.

Artificial agents with a metacognitive ability to monitor and
influence its deliberation and action can potentially make intel-
ligent decisions on when to stop deliberating and start acting.
This research is motivated by the evidence that suggests the role
of emotions in the cognitive activities of humans. This paper
describes how a model of emotions can be applied to enhance the
metacognitive capabilities of an artificial agent to choose between
deliberation and action. The emotional model is illustrated within
the domain of an air traffic control simulation system.
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I. I NTRODUCTION

In the field of artificial intelligence agents are tasked with
two main job functions: deliberation and action. Deliberation
is the process by which agents plan what task to perform in
order to accomplish current goals or create new goals. Action
refers to the process by which agents actually perform each
task in the plan.

In static environments, agents need not be concerned with
how long the deliberation step takes provided they are not
operating under a deadline, because there is no worry that the
environment will change before the agent decides to act. Even
if the environment is static, if an agent is working under a tight
deadline, it needs to be cautious on how much time is spent
deliberating since the time spent on deliberation will reduce
the time available for action.

In dynamic environments, agents need to address the deci-
sion of how much time to spend thinking about acting versus
acting. An agent that deliberates for too long may find that
the presuppositions it had made no longer hold true. When it
finally finishes with plan formulation and decides to act the
world could be in a drastically different state causing the plan
to break down or even move the agent further away from its
goal. An agent that takes action too quickly may find that its
decision to abbreviate the deliberation process has caused it
to take actions that do not accomplish its goal in the most
effective manner and could possibly hinder progress towards
other goals that were not considered during plan formulation.

To address this issue of time management in the domain
of robotic soccer, [1] presents a hybrid architecture with a
reactive component, a deliberative component and an action
selection component. The reactive component suggests an
action based on the current state and some heuristics. The
deliberative component is a Golog reasoning system that
projects a number of candidate plans based on the current
world model and returns the best plan for execution. The action
selection component chooses between the reactive action and
the Golog plan action. Thus, there is always an alternative
action available if the Golog reasoning system cannot create
a plan in time. The problem with this approach as a general
solution is that it attempts to skirt the problem of having the
system choose when to act and when to deliberate by providing
a default action that is executed every time a well planned
solution is taking too long to formulate.

Anytime algorithms [2] offer available solutions and their
quality whenever the system needs them. They are iterative
in nature and each iteration improves the quality of the
solutions. The algorithm estimates the efficiency of a solution
as a factor of the amount of time the algorithm has been
running. Anytime algorithms are used in systems that need
quick solutions sometimes and other times need well thought
out solutions. However, they alone are not enough to create
the kind of stable autonomous systems required for complex
dynamic environments because, again, an anytime algorithm
fails to make a decision on how much time can be spent
on deliberation before acting. When an anytime algorithm is
asked for a solution, it stops its calculations and automatically
returns its solution. So, the decision on how long to deliberate
is passed on to the process that invokes the anytime algorithm
for a solution.

In human beings it is easy to observe evidence of a metacog-
nitive component that uses rationality, logic or pragmatism to
transit seamlessly from the deliberation phase to the action
phase. Artificial intelligent systems have since attempted to
copy this behavior using models of metacognition. These
models (for example, [3], [4], [5], [6], [7], [8], [9]) are
based on representing estimates of allowable deliberation and
action time, monitoring the deliberation and action process,
and making adjustments to the processes as deemed necessary.
However, these models often overlook a key aspect to human
reasoning:emotion.

Numerous psychological studies have shown the crucial



role emotions play in cognition. Animals that exhibit more
emotional behavior tend to be better suited for survival [10].
Emotion has been shown to alter the cognitive process in
human beings allowing for different responses to the same
problem based on different emotional states. [11] shows how
cognition and emotion are intimately entwined. Human beings
deprived of their emotional capabilities are often hampered
in their cognitive functions [12]. The old model of human
thought that places emotion at odds with cognition is being
disputed. Indeed human thought may not be possible without
the feelings associated with emotion [13]. This idea of emo-
tions actually being a key component in human reasoning is
our motivating factor to explore the plausibility of using an
emotional model to guide the behavior of smart machines.

Previous uses of emotional modeling (for example: [14],
[15] and [16]) in computer systems have largely been focused
on the system being able to express emotions or recognize
emotions in their users. Much of the research in this area is
used in robotic companions such as Pleo—the dinosaur—or
to a lesser extent its distant ancestor Furby. Pleo can build
an entire personality over its life span and then can be reset
to start the entire process over again. Pleo can even become
bi-polar if its user teases it and refuses to feed it. This type
of behavior may be pleasing in the realm of entertainment but
not directly applicable for smart machines designed to run our
infrastructure.

[17] presents an emotional robot that plays a game of tug of
war. The robot uses its cognitive ability to analyze a person’s
demeanor and it updates its emotional state based on whether
a person’s actions are pleasing or displeasing to the robot. If
a person’s actions are pleasing to the robot, then it develops a
friendly emotional state towards the person and hence moves
closer to that person.

In this paper, we illustrate how an emotional component
can alter the metacognitive processes in beneficial ways in
the context of an air traffic control simulation that is already
equipped with a metacognitive component.

II. M ODELING EMOTIONS FORIMPROVED

METACOGNITION

A model of metacognition—MCL [3], [4], [5], [6]— that
cycles through 3 different phases: (i) note anomalies, (ii)
assess possible reasons for the anomaly’s occurrence, and (iii)
suggest an appropriate action, has been shown to be effective
at handling complex, dynamic environments. MCL maintains
expectations on how and when systems should respond as
well as how and when the environment should change. These
expectations are used to note anomalies that manifest as
expectation violations. The anomalies are analyzed to guide
appropriate responses into place. If the deliberation process
is taking too long an expectation violation occurs; this in
turn triggers a response. Examples of responses include act
immediately or do more deliberation.

In the MCL model shown in Figure 1, the deviation of
the observed values from expected values causes expectation
violations. These expectation violations are indications of

Fig. 1. Model of Metacognition

anomalies. One or more indications map to one or more fail-
ures and one or more failures map to one or more responses.
The addition of an emotional component on top of this basic
MCL will introduce another level of control that can provide
a framework for decision-making as shown in Figure 2

Fig. 2. Model of Metacognition with Emotional Component

During the assessment phase, the metacognitive component
looks at all the failure nodes that are activated. The failure
nodes have associated probabilities that are programmed in.
The emotional model can assign probabilities to the failure
nodes based on the current emotional state, thus allowing the
system to weigh one failure node heavily in one circumstance
and lightly in another.

In the guide phase, the metacognitive component searches
through a set of possible responses and instantiates the highest
utility response that corresponds to the type of failure. Which
action is deemed to be the best is also a learned metric that
could be altered for different emotional states; when stressed
the best action may simply be the quickest, when relaxed the
best action may be the slowest.



A. Emotional Model

Our emotional model for improving metacognition in ar-
tificial systems is based on Russell’s circumplex model of
affects [18], given in Figure 3. The circumplex model claims
that all affective states are organised in a circular structure—a
“circumplex”—in a two-dimensional plane with axes for de-
gree of pleasure and degree of arousal. The circumplex pattern
is confirmed by several different methods for characterising
emotion words. Emotions arise from cognitive interpretations
of neural sensations that are the product of two independent
neurophysiological systems; these neurophysiological systems
correspond to the pleasure axis and arousal axis in the circum-
plex model. The circumplex model of affects is consistent with
many recent findings in cognitive neuroscience, neuroimaging,
and developmental studies of affects [19]. The circumplex
model has been used to study the development of affective
disorders as well as the genetic and cognitive underpinnings
of affective processing within the central nervous system.

Fig. 3. Russell’s Circumplex Model of Positive and Negative Affect

Fig. 4. Emotional Model adapted from Russell’s Model

The emotional model that we developed is shown in Fig-
ure 4. In this model, the x axis represents the pleasure of
the system and the y axis represents the system’s activation.

The numbers on the axes indicate the level or intensity of
pleasure or activation and they range from a minimum of0 to
a maximum of1.

The pleasure axis transitions are based on the number of
expectation violations that occur and represent the system’s
feelings about its own performance. When no expectation
violation occurs, the system is pleased with its performance
and hence moves its state to the right on the pleasure axis.
When expectation violations occur, the system is frustrated
by its inability to quell the violations and hence moves to
the left on the pleasure axis. The intensity of the expectation
violation (the difference between the observed value and the
expected value) decides how far to the left the system moves
with respect to its current emotional state.

The activation axis transitions are based on the observations
of the system and represent the system’s feeling of stress. As
the number of observables that the system has to deal with
increases, the system becomes more stressed and hence its
emotional state moves upward in the activation axis. As the
number of observables decrease, the system can relax and
hence its emotional state moves downward in the activation
axis.

III. T EST DOMAIN

The testing domain is that of an air traffic control simulator
that has two major components—(i) the ATC that monitors the
traffic within a specified radar range and directs aircraft toward
available approach paths, and (ii) the aircraft that fly towards
the ATC monitored radar area, wait for direction from ATC
for an approach path and use that approach path for landing.

Fig. 5. Trajectories of multiple aircraft flying toward the ATC.

Figure 5 shows the GUI with multiple aircraft beginning
their flights toward the ATC. The darkened center rectangle
represents the ATC’s radar range. The aircraft and their
trajectories are represented by the thick dark lines, their current
position is marked by the ID/Altitude label. The ATC is
located at the center of the radar region. Each of the lines



connected to the ATC’s location represent one of six approach
paths the aircraft must use. Although the number and location
of these approach paths can change, shown here are the six
default values.

The aircraft are spawned randomly in the region outside
the ATC’s radar range. The aircraft initiate a connection with
the ATC upon creation and are issued a unique ID. Aircraft
outside of the ATC’s radar range fly under their own guidance
until they cross into the area. Once an aircraft crosses the
radar range it circles until the ATC consults its current strategy
and communicates instructions. Communication between the
aircraft and the ATC is accomplished by TCP/IP socket
connections. All aircraft land at the ATC’s location and must
fly there through one of the available approach paths. Once
the aircraft lands, its trajectory and current position are erased
from the GUI.

The ATC has to deliberate on which approach path needs
to be communicated to each aircraft that enters the radar
range. This deliberation process needs to be of short duration
so that the ATC can direct planes quickly to appropriate
approach vectors. To facilitate this, the ATC has a repository
of predefined approach path selection strategies and it directs
planes based on the currently selected strategy.

The ATC also has a fail-safe collision avoidance mech-
anism that automatically maintains minimum safe distance
zones around each aircraft. The ATC estimates the flight path
within the radar range for all aircraft and communicates speed
manipulation instructions to one or more aircraft should their
predicted flight path intersect.

A. Metacognition in ATC

The metacognitive component of the ATC has various
expectations for a number of system variables in the form of
threshold values. It observes the ATC’s state and if the value
of an observable crosses an expectation threshold, it notes that
an anomaly has occurred.

The ATC makes its metacognitive component aware of
the following observations: (i) aircraft circle times, (ii) flight
speeds, (iii) aircraft locations, (iv) the number of times the col-
lision avoidance mechanism is used under the current strategy,
(v) the strategies that are available in its repository, and (vi)
the performance metrics of each strategy. The expectations of
the metacognitive component are as follows:

• Each flight will land withint seconds of coming into the
ATC’s radar region.

• The aircraft speed should match the speed the ATC
assigns to it.

• The collision avoidance system should be used less than
k number of times.

• The number of strategies that are available must be
greater thanx.

If an expectation violation occurs because there are
not enough strategies available for choosing terminals, the
metacognitive component will trigger the strategy creator to
generate new test data in order to create a new strategy by
applying various supervised learning algorithms. Once the

ATC learns a new strategy, that strategy becomes part of the
strategy repository.

If further expectation violation occurs, the metacognitive
component can tell the strategy creator to increase the number
of data points that it uses to generate training data in order
to create a more robust strategy that provides more accurate
results.

If an expectation violation occurs because of the circle time
being too long or the collision avoidance mechanism being
over worked, the metacognitive component will tell the ATC to
change to another strategy. The new strategy could be a newly
discovered one, one that has not been tried yet or one that has
the best performance metrics. The metacognitive component
can instruct the ATC to use a specific strategy it knows or
delete strategies that do not perform well.

Without an emotional component, the metacognitive com-
ponent blindly chooses the correct action to take based solely
on reasoning based on expectation violations. The illustration
in Figure 6 shows how the metacognitive component notices
that one of the plane has deviated from its assigned path and
triggers a corrective action to fix the situation. In this example,
an anomaly was introduced for plane UVY9R using the plane’s
user interface to alter the flight path away from the nearest
approach path to which it was assigned. The metacognitive
component notes that the aircraft path is different from what
was assigned to plane UVY9R. Upon detection, the metacog-
nitive component recommends that the ATC resend the plane’s
approach path and then continues monitoring the environment.
In this case, the new message from the ATC corrected the
problem and the plane changed its flight path to reach the
assigned approach vector.

Fig. 6. MCL identified the path violation for plane UVY9R and issued a
corrective action.

B. Emotion Processing in ATC

The emotional component of the ATC has access to the
observations received by the metacognitive component and the
expectation violations noted by the metacognitive component.



The current set of observations and expectation violations
determines how emotional state transition occur in the ATC
simulator.

Transitions in the activation axis are determined by the
normalized values of observables like total number of aircraft
with unassigned approach paths, the total number of times
the collision avoidance mechanism was used and the flight
durations of circling aircraft while there are free approach
paths. As these values increase, the system becomes more
stressed and hence moves upward on the activation axis. When
the values decrease, the system can relax and move downward
on the activation axis.

In the ATC system, the activation level can determine the
probability of creating new strategies and the size of the
training data set; a higher activation level translates to a lower
probability for creating new strategies and smaller number
of data points in the training set. The system should create
new strategies with large training sets when it has the time
to complete all the calculations required. When the system is
overwhelmed with aircraft the likelihood of spending time and
energy creating a new strategy should be lowered and if a new
strategy is created it must use a smaller number of data points
to save time. During these tense times the system must focus
its energy on quickly adopting a strategy that works to some
degree and making sure all aircraft land safely. Therefore,
the system’s location on the activation axis is determined by
the values of the system observables such as flight circling
duration, number of avoided collisions, number of planes and
plane density.

Transitions in the pleasure axis are determined by the
number of expectation violations that occur. In the ATC
system, the pleasure level can determine the probability that
the system changes its strategy for choosing approach paths.
The system should change strategies when the current strategy
is not performing well. However, every single expectation
violation should not cause a strategy switch; for then the
agent will be spending more time on deliberation than on
action. When an expectation violation occurs, the emotional
component pushes the system farther left on the pleasure axis
making it more likely to cause a strategy switch rather than
causing the switch for each violation.

C. Improved Metacognition by Processing ATC Emotions

In the beginning of the simulation, when the ATC starts no
aircraft are spawned. Therefore, the default emotional state is
high pleasure and low activation. When there are only a few
planes in the air, the system experiences little if any observable
changes or expectation violations so the ATC remains happy
and relaxed. In this scenario, the impact of the emotional
component is not apparent.

When traffic increases, circling time of aircraft and the
number of times that the collision avoidance gets used cor-
respondingly increase. With these changes, the system’s emo-
tional state in the activation axis will move upward, thereby
increasing the chance that the system will create new strate-
gies. Since the activation state is still in the lower hemisphere

of the emotional model the number of training data points is
large and the likelihood of choosing to create new strategies
is high.

Suppose the ATC observes a high rate of expectation
violations. If this is combined with low system observables,
the ATC will move to a low activation, low pleasure state.
In this state, the ATC is likely to change strategies frequently
as directed by the displeasure it feels from having its current
strategy fail to lower the tide of violations.

If the ATC is in a highly activated state when it decides
to change strategies, then it is much more likely to use a
stored strategy rather than spend time creating a new strategy
as it must focus its energy on guiding the planes and not on
mining large tables of data. The ATC will search through its
strategy repository for the highest rated strategy and implement
it until the environment changes in such a way that lowers
its activation, raises its pleasure, or both. If the ATC finds
a strategy that works very well under these circumstances it
may enter a high activation, high pleasure state that lowers the
chances of changing strategies. If instead the ATC never finds
a good strategy but the tide of aircraft ebbs, the ATC could
enter a low activation, low pleasure state where it will be very
likely to change strategies and now that it is no longer stressed
will choose to create new strategies with larger training data
sets.

In short, the emotional component suspends, overrides or
eliminates some of the standard metacognitive responses based
on the emotional state of the system. For instance, if the
emotional component is present, it would look at the system
observables and the level of expectation violations to deter-
mine if it has time to start strategy development or if that
option needs to be temporarily curtailed.

From time to time the system combs through its strategy
repository eliminating strategies that have low evaluations and
keeping strategies that perform well. Over time the emotional
component and the metacognitive component working together
will yield strategies to choose from and increase the overall
efficiency of the operation.

IV. CONCLUSIONS ANDFUTURE WORK

In conclusion, the emotional model of the system helps
the metacognitive component to decide when and how to
deliberate and act. In addition, the model itself serves as
a way to implement critical system functionality in terms
that are easily understandable to users. In other words, we
could have programmed this ability into the metacognitive
component directly in the form of expectations of expectations
but in so doing the program would have gotten much more
complex and harder to understand. Using a separate emotional
component, we were able to add the same functionality in an
intuitive way. The relationship between the two components
is straightforward and beneficial. Incorporating an emotional
component also makes it a lot easier to drastically alter the
behavior of the system merely by changing the transition
functions or the metacognitive responses associated with each
emotional state.



In the future we would like to expand our emotional model
to encompass even more dimensions and act on even more
of the system components. Emotional states do not just have
to affect deliberation and action. Emotional states could act
on input streams allowing the system to prioritize one input
over another or ignore input that is only useful in another
emotional state. Creating emotional models is a good way to
add an intuitive level of control in a system that must be able
to change its behavior as its environment changes.
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