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Abstract—Evidence suggests that metacognition—the ability to
monitor the cognitive processes and regulate them—exists not
only in humans but also in some animals. In nature, humans and
animals use metacognition to self-regulate their learning process.
This paper gathers evidence of metacognition in nature from
research in various disciplines. It also shows how metacognition
can be modeled in artificial systems and how the model is applied
in an Air Traffic Control Simulator system.
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I. I NTRODUCTION

Metacognition is not as mysterious as it sounds. In fact,
we see evidence of it in everyday thought processes such as
deciding to make a grocery list so that you can remember
the items easier, planning to type your lecture notes to help
study better or knowing that the answer is on the “tip of your
tongue”. All are examples of how people think about their
cognitive processes, develop strategies to improve their cog-
nitive skills and generally evaluate the information contained
in their memory.

The term metacognition has slightly different definitions
depending on the author and the discipline. J. H. Flavell
[1] defines it as one’s knowledge concerning one’s own
cognitive processes or anything related to them. Ridley [2]
gives a more precise definition of metacognitive skills as “
taking conscious control of learning, planning and selecting
strategies, monitoring the progress of learning, correcting
errors, analyzing the effectiveness of learning strategies, and
changing learning behaviors and strategies when necessary.”
Independent of the definition used, the actions involved in
improving the cognitive processes —monitoring, assessing and
guiding—remain uniform.

The study of metacognition has provided educators and
psychologists with insights into the processes involved in
learning, the benefits of self-regulated learning and the skills
that distinguish expert learners from their less successful peers.
Recent work [3], [4], [5] on human learning has suggested
that the best learners are the ones who practice self-regulated
learning. Simply put, metacognition empowers learners. Self-
awareness allows the learner to decidewhat to learn, when
to learn and how to learn. Metacognition provides a means
to accurately assess one’s current knowledge and skill levels,
identify when new knowledge is needed as well as provide
strategies to acquire new knowledge.

II. EVIDENCE OF METACOGNITIVE LEARNING

Evidence suggests that both humans and animals use
metacognition to help the learning process. Research has
shown how humans use many metacognitive techniques to
learn a new second language or train on a new task. Research
has also shown that animals use metacognition in evaluating
their knowledge level in prospective and retrospective confi-
dence judgment experiments. Experimental results show that
animals choose to opt out of tests that they believe that they
cannot pass. This section presents some of the evidence on the
existence of metacognitive monitoring and control in humans
and animals.

A. Human Studies

1) Academic Performance:Isaacson and Fujita’s study
[5] used eighty-four undergraduate students enrolled in an
introductory educational psychology class to investigate the
role of metacognitive knowledge monitoring in self-regulated
learning and academic performance. Metacognitive knowl-
edge monitoring (MKM) is the ability of learners to recognize
whether or not they have mastered an academic task. Self-
regulated learning requires students to be active, goal-directed
learners with self-control over their behavior, motivation, and
cognition.

In this study, the students were given ten weekly tests that
were designed to reveal and substantiate student metacognitive
awareness during testing. Each test included40 true-false
and multiple choice questions of varying difficulties: (i)18
questions emphasized knowledge and comprehension and were
worth 1 point each, (ii)18 were moderately difficult questions
that emphasized application of knowledge and were worth
2 points each and (iii)4 were difficult test questions that
emphasized analysis and synthesis and were worth3 points
each.

On each test, students were only allowed to answer30 of the
40 test questions. Their test grades were dependent on both the
accuracy of their answers and the type of questions they chose
and answered correctly. The program was constructed such
that only those students who chose more difficult test questions
(worth 2 or 3 points) and got them correct could obtain anA
in the course. If students attempted the harder questions but
got a higher percentage wrong or attempted only the easier
(worth1 or 2 points) questions and did get a higher percentage
correct, they would still receive a lower overall grade than an



A. According to Isaacson and Fujita, the key to success in
the course was not only correctly answering test questions, but
also choosing the test questions you could answer correctly.

To help identify the students’ ability to evaluate their own
learning expectations and MKM, they were also required to
complete a questionnaire partially before the exam and the
remainder after they finished the exam, but before the test was
graded. The questions they answered prior to the test included
(i) the number of hours they studied, (ii) how many points
they needed to score to be satisfied with their performance
(satisfaction goal), (iii) how many points they needed to score
to be proud of their performance (pride goal), (iv) and how
confident they were about achieving their satisfaction goal
also known as their pre-test self-efficacy. After completing
the test, but before it was graded, each student was also
asked to identify (i) how many points they believed they had
scored on the test and (ii) how confident they were now about
achieving their satisfaction goal also known as their post-
test self-efficacy. Then, tests were graded and returned to the
students for review before class ended each time.

According to Isaacson and Fujita, high achieving students
were (i) more accurate at predicting their test results, (ii) more
realistic in their goals, (iii) more likely to adjust their confi-
dence in-line with their test results; and (iv) more effective in
choosing test questions to which they knew the answers.

2) Second Language Education:O’Malley’s [6] study in-
volves analyzing the use of metacognitive, cognitive, and
socio-affective learning strategies used in English as a Second
Language (ESL) classes.70 Hispanic subjects in beginning-
and intermediate-level ESL classes were observed and inter-
viewed about the specific learning techniques they used for
their classes. A total of638 instances of learning strategies
were described by the subjects during their small group dis-
cussions while only an average of3.7 strategies were identified
during the53 observation periods conducted. This difference
in numbers was explained by O’Malley as most likely the re-
sult of some learning strategies lacking an observable behavior
component.

The results of the interviews were grouped into20 distinct
strategy types which included7 metacognitive,11 cognitive,
and2 socio-affective methods. Based on strategy usage,30%
of total usage was metacognitive,53% was cognitive and
17% was socio-affective strategies. Among the metacogni-
tive strategies, a difference was seen between beginning-
and intermediate-level students. For example,self-management
techniqueswere used by the beginning- and intermediate level
subjects19.6% and22.5% of the time, respectively.Advanced
preparationwas used21.4% of the time by beginners versus
25.0% of the time by intermediate subjects.Selective attention
was used22.3% of the time by beginners and16.3% of the
time by intermediate level subjects.

The study also observed that the direct combination of
cognitive strategies with metacognitive strategies were rarely
(7%) reported, even though overall strategy combinations were
reported as21% of all strategies.

3) Task Performance:In 2005, van Gog’s group conducted
a study [7] on the ability of concurrent, retrospective and cued
reporting to elicit information about the problem-solving pro-
cess carried out for performing a task. Verbalizations about the
actions taken, why or how something happened or metacog-
nitive reflections used in solving the task were analyzed using
each reporting method. The study involved 26 participants
who completed computer-simulated troubleshooting tasks on
malfunctioning electrical circuits using Crocodile Physics 1.5
software program set at the fourth-year high school or pre-
university level.

In concurrent reporting, subjects were asked to think aloud
or verbalize their thoughts while performing the task. Retro-
spective reporting required the subjects to wait until immedi-
ately after completing a task to report their thoughts and cued
retrospective reporting used the original computer-based task
with a superimposed record of the subject’s eye fixations and
mousekeyboard operations as a cue for retrospection.

The study showed that concurrent reporting resulted in more
action information as well as information on why or how
something happened than retrospective reporting. Metacogni-
tive reflection information remained roughly the same using
all three methods.

4) Online or E-Learning:E-Learning is typified as learner-
centered environments created using network technologies
to provide anywhere-anytime access for its users. Some e-
learning software allow users to create their own learning
strategies using existing metacognitive skills; others improve
the metacognitive skills of the learners to help learn the
material.

Kafai’s [8] Game Design Project allows users to create their
own learning strategies using existing metacognitive skills. In
this project, third graders created their own fraction video
game. The users ability to control their environment resulted
in heightened motivation and longer periods of engagement in
constructive, educational activities that teach math skills at a
concrete level as well as the scientific process of discovery at
an abstract level.

An example of an E-learning program that helps improve
the metacognitive skills of the learners is Malcolm’s Kinetic-
City.com [9]. Set in an action-adventure story-based program,
KineticCity.com combines hands-on science applications and
active computer-guided learning for the fourth- and fifth-grade
age level. The user is designated as the hero of the story
and works through an outlined science curriculumwithout
realizing it (a key component in any stealth education project
which combines entertainment and educational components).

B. Animal Studies

Studying metacognition in nonhumans is difficult since such
studies have to rely on non-verbal forms of communication.
Two studies are presented below:

1) Rats: In Foote’s [10] work with rats the subject is
presented with a stimulus and then allowed to decline taking
a test presumably based on its awareness of whether or not it
knows the correct answer. If the subject takes the test and gives



the correct response it will receive a large reward. Declining
the test will result in a minimal reward and a wrong answer
receives no reward.

This study utilized a duration-discrimination test to train the
subjects on distinguishing between sounds of short and long
durations. Intermediate sounds were later added to the test and
the rats were asked to classify these sounds as either long or
short. During some of the trials the rats were given an option
to decline taking the test after the sound was played.

The results from the experiment suggest that rats know when
they do not know the answer to a duration-discrimination test.
Since duration discrimination involved classifying sounds as
short or long, sounds with durations near the middle of the
range are more difficult to classify. The rats were more likely
to decline these difficult tests. This suggests that the rats knew
that they did not know the correct duration-discrimination
response. Moreover, the rats were more accurate in their
responses when they had chosen to take the duration test
compared to trials in which they were forced to take the test.

2) Monkeys: Several studies involving metacognition in
monkeys (rhesus macaques) have been done over the last
several years. One such study [11] involved evaluating the abil-
ity of monkeys to transfer their ability to make retrospective
confidence judgments on their performance on a perceptual
task to a new perceptual task and to a working memory task.

During the training phase, a monkey is required to identify
the stimulus with the longest line or the greatest number of
geographical objects. After each trial, the subject is asked to
select either a high or low confidence icon which affects the
size of reward it receives with a correct answer. Feedback is
given using a token economy, in which the monkey could earn
or lose tokens from a hopper on the screen. A high confidence
selection along with a correct answer will result in the highest
reward; a low confidence selection with a correct answer will
result in a minimal reward while an incorrect answer reduces
the total tokens earned so far. Tokens are stored in a closed
container and only dispensed when a total of eight tokens
are acquired, this allows tokens to be removed for wrong
answers before a reward is issued. The tokens are exchanged
for rewards upon dispersal.

To test whether the monkeys could transfer the metacogni-
tive ability obtained in the training phase to a new perceptual
task, the monkeys were trained on new tasks like selecting
the largest circle or the smallest circle. The metacognitive
paradigm using the token system was then introduced to test
the ability of the monkeys to make retrospective confidence
judgements on their performance on the new tasks.

To test whether the monkeys could trasfer their metacog-
nitive ability to a serial working memory task, the subjects
were trained on a working memory task. The monkeys were
shown six sequential sample pictures and then presented with
a page containing six pictures that includes one of the sample
pictures. The task was to select the picture that was seen
before, from among the pool of distracters and then to make
a confidence judgment on the knowledge.

“The positive results from this study confirm that

monkeys are able to transfer the ability to make
metacognitive judgments from perceptual tasks to
serial working memory tasks, and thus make con-
fidence judgments about their own memories, not
just psychophysical discriminations.”

[12] presents a study that includes two separate phases
to test the retrospective and prospective judgments of con-
fidence of a monkey. The retrospective experiment involved
the monkey performing a recall task followed by a confi-
dence assessment. The prospective experiment required that
the subject make its confidence assessment before taking
the recall test based solely on how much it learned from
previous experiments and the study phase of this experiment.
An analysis of the results indicates that the monkey can
transfer the ability to make metacognitive judgments from
the serial working memory tasks in previous experiments to
retrospective and prospective recall tasks.

III. MCL

The underlying conceptual apparatus of our metacognitive
model MCL [13], [14], [15] is to notice anomalies, assess
their importance and cause, and guide a response into place.
The general MCL architecture has three sets of ontologies
corresponding to the Note-Assess-Guide loop: anindications
ontology for anomaly types to note, afailure ontology for use
in assessment, and aresponseontology for selecting repair
types to guide, as in Figure 1.

Fig. 1. An overview of the MCL ontologies

The core nodes of each ontology is implemented as
Bayesian networks. These core nodes represent abstract and
domain-general concepts concerning anomalies and how to
respond to them. These nodes are linked within each ontology
to express relationships between the concepts they represent.
They are also linked between ontologies, allowing MCL to
employ a number of Bayesian algorithms for reasoning over
ontologies.

At the bottom of the indication and response ontologies are
the “fringe” nodes. The fringe nodes below the indications core
represent concrete, specific information about the anomaly and



those below the responses core represent specific correction
information.

MCL is linked to the host through two interfaces as shown
in Figure 1. At the input interface, expectations are directly
linked to the indications ontology through indication fringe
nodes. At the output interface, the response ontology through
its fringe nodes is linked to a set of possible corrections that
the host could employ. When an actual perturbation occurs in
the host, MCL will detect the expectation violation through the
input fringe nodes. It will then attempt to map it into the MCL
core so that it may reason about it abstractly. MCL’s reasoning
process then produces an output which is articulated through
the output fringe nodes in the form of an action that the host
is able to carry out.

IV. A IR TRAFFIC SIMULATOR

In this section, we discuss the power of metacognition in an
Air Traffic Control (ATC) Simulator system. The ATC controls
the air traffic within a radar range and ensures that planes
land safely by assigning an approach landing vector. The ATC
acts as a server that communicates with planes over TCP/IP
using implemented communication protocols. This simulation
represents a10000 by 10000 area. The ATC is situated at
the center of the region and planes must move to the center
to complete the simulation. The Metacognitive Loop (MCL)
monitors both the planes and the ATC to find anomalies and
expectation violations to guide the ATC to act effectively.

The planes can spawn at any point in the environment
outside the ATC’s radar range which is a5000 by 5000 square
at the center of the geographical area. Initially, when the
plane connects to the ATC server, it gets a message from
the ATC containing its plane ID. All the planes continually
report their current location to the ATC and accordingly the
ATC checks whether it is under its radar region or not. The
plane is required to circle when it first hits the radar region
until it gets a message from the ATC containing its assigned
approach path. The ATC uses one of four strategies, as selected
by the MCL, to assign an approach path. The MCL monitors
overall environmental variables like number of planes circling,
the number of free approach paths, and the performance of
known strategies to guide the ATC to choose the appropriate
strategy. The goal of this simulation is to effectively choose
the strategies thereby minimizing the time spent circling and
avoiding collisions between the planes.

A. Approach Landing Strategies

The ATC is equipped with the following strategies in order
to choose the approach landing path for the planes.

• Nearest Terminal Strategy: Using this strategy, the plane
is assigned an approach path by calculating the distance
from the current location of the plane to all approach
paths and choosing the closest one. If another plane is
already assigned to this approach path, the new plane
must circle and wait for the approach to be free. An
approach vector becomes free once a plane has reached
the ATC location (5000, 5000) at which time the ATC

sends a message to the next plane waiting to enter the
approach vector. This process is continued until all planes
reach their final destination.

• Free Terminal Strategy: This strategy uses the principle
of the Nearest Terminal strategy with some modifications
to accommodate the planes that would be left circling
unnecessarily if another vector was free. In this case, if
the nearest approach path is busy, it allows the system to
determine if other approach paths are free in an expanding
search pattern. If it finds that any path is free, that
approach path is assigned to the plane that would be
required to circle under the Nearest Terminal strategy.
The flags on the paths are cleared once the planes reach
the destination and other planes are then free to use the
paths.

• Queued Terminal Strategy: Under this strategy, the ATC
is able to assign up to5 planes at a time to each approach
vector based on their current distance to an approach path
start point. When the first plane in the queue reaches the
approach path starting point, then another plane is put into
the queue. Allowing more planes to take a particular path
may cause collisions at the terminal. So, this strategy uses
a separate collision avoidance system to ensure planes
land safely.

B. Collision Avoidance System

Collision avoidance is required in the Queued Terminal
landing strategy which controls the actions of one to five
planes at a time in a fairly small geographical area. A safe
distance between aircraft must be maintained at all times
which requires the ATC to reduce each vehicle’s speed as
necessary. For example, if planesA andB are assigned to an
approach path, they are added to the queue in the order of
increasing distance to the path start point. The speed of the
planes may be varied according to the distance and the time
needed to reach the approach path start point. If planeA is
at the start point and planeB is close toA, the time to the
assigned approach path is calculated for each of the planes
and the difference is compared with the safest allowed time
difference. If the difference is greater than the minimum safe
distance, the speeds remains unchanged. If it is less than the
safe distance, a new speed is calculated and assigned to the
plane which is farther from the approach vector. This operation
is performed on all the planes in the queue to ensure they land
safely.

C. Learning Strategies

The ATC has the ability to create new landing strategies
during the simulation. These strategies are used to assign the
approach path to the planes by running a data mining algorithm
on training data. In order to create the training data, a virtual
ATC with virtual planes at random points are spawned off;
the designated approach path and speed using the Queued
Terminal strategy are used as the desired output values for the
training data. Once the training set is ready, the data mining
algorithm uses it and discovers a strategy that works for the



training data. This new strategy can be used by the system
on the actual input data that is being run over the simulation
to provide approach vectors. Thus the ATC can dynamically
learn new strategies and use them on the actual data set in a
dynamic environment.

V. MCL IN ATC

The MCL component plays an important role in the domain
by identifying any expectation violations that might occur
while the simulation is running. After a problem is identified,
MCL will assess the error and its causes and then guide
the ATC to make changes in its landing strategies. Possi-
ble responses to expectation violations include (i) switching
strategies, (ii) refining current strategies that have learning
capabilities or (iii) creating new strategies better suited to fit
the situations. The expectations for the domain are stored in
the knowledge base of the MCL component and include (i)
circling time of the plane should not exceed80 seconds, (ii)
planes are expected to reach assigned goal locations within a
defined time, (iii) the collision avoidance system should not
be engaged more than10 times per simulation and (iv) the
plane must maintain the speed assigned to it by the ATC.

The default landing strategy for the ATC is the Nearest
Terminal strategy which is utilized until the MCL notes
an expectation violation and guides the ATC to the most
effective strategy for the current air traffic situation. Once
an expectation violation is noted, the MCL will evaluate the
current situation variables in the domain to determine which,
if any, of the strategies best suit the current situation. These
variables include (i) if any other approach vectors are free and
(ii) the density of the air traffic in any given approach vector
region. The Queued Terminal strategy will be recommended
if a circling time expectation violation is noted and either all
of the terminals are currently active or the air traffic density
for any approach vector exceeds the maximum planes allowed
in circle mode.

A. Expectation Violation Scenarios

The following scenarios represent expectation violations
identified by the MCL and the responses the metacognitive
component sends to the ATC.

1) Case 1:In Figure 2, 7 planes (OXIVZ, SYUTN, P6YE2,
MEGTE, BWPEE, OF0J2 and 302FL) are spawned at random
points outside the radar region to simulate aircraft competing
for the approach vectors. The planes BWPEE and MEGTE
each reach the radar region before the other planes and are
assigned to their nearest approach vectors as illustrated in
Figure 2. The other planes have to circle at the edge of the
radar region until they receive an approach vector message
from the ATC.

In this case, the MCL will note that the maximum circling
time is exceeded by one or more of the five planes waiting
for the same approach vector, which causes an expectation
violation. The MCL will then evaluate the current situation
variables to determine if any other approach vectors are free
or if the air traffic density is exceeded for any approach. Since

the current situation holds some free approach vectors and
density of the air traffic is low, the MCL’s response will be
to instruct the ATC to switch to the Free Terminal strategy
as illustrated in Figure 2. Under the Free Terminal strategy,
the ATC will send out new approach vector assignments to
the waiting planes that will then travel to their new approach
paths.

Fig. 2. MCL triggers strategy switch to Free Terminal Strategy.

2) Case 2:In Figure 3, 6 planes (VMU1F, IP5G2, 8CY0L,
V4MNF, 1OKBO and ZRT5V) are spawned in the same
region to simulate higher density traffic competing for a single
approach vector. The plane VMU1F reaches the radar region
first and is assigned to the nearest approach vector as shown
in Figure 3. All the other planes start circling when they hit
the radar region and wait for approach vector assignment from
the ATC.

As in the previous case, MCL notes the circling time
violation and then evaluates the current situation variables.
There are other approach vectors free but the air traffic density
limit is exceeded for this approach vector which triggers the
MCL recommendation to use the Queued Terminal strategy.

The ATC creates a new queue and assigns the nearest five
planes to the queue allowing any additional planes to circle
until the queue is available. In this example, a maximum of
five planes (VMU1F, IP5G2, 8CY0L, V4MNF and ZRT5V)
are queued according to their closeness to the approach vector.
The remaining plane (1OKVO) continues to circle until the
first plane reaches the center and is removed from the queue.
As the number of planes increase inside the radar region,
the danger of an air collision increases. Under the Queued
Terminal strategy, the collision detection system is enabled
which ensures the aircraft maintain a safe distance from each
other. If the danger of a possible collision is detected, the
collision detection system calculates a new speed for each
plane and the ATC orders each to modify its speed according
to the detection systems requirements.

3) Case 3: Certain situations like sabotage or a commu-
nication error can result in an aircraft changing its course.



Fig. 3. MCL triggers strategy switch to Queued Terminal Strategy.

The illustration in Figure 4 shows how the MCL notes an
exceeded time to goal violation for plane UVY9R on the right
which alters its flight path away from the nearest approach
path to which it was assigned1. Upon detection, the MCL
recommends that the ATC send a goal update message to the
plane and then continues monitoring the environment. In this
case the goal update message corrected the problem and the
plane changed its flight path to reach the assigned approach
vector.

Fig. 4. MCL identified the goal violation for plane UVY9R and resent the
actual goal message.

VI. CONCLUSION

Metacognition occurs in nature in various forms and it
helps humans and animals deal with anomalies and regulate
their learning. Modeling metacognition in artificial systems
can improve their performance in the presence of anomalies,

1This action was simulated by giving the plane a new goal using the plane’s
user interface.

help them muddle through unanticipated situations and provide
a mechanism for regulating their learning. The success of the
MCL model of metacognition is illustrated in the air traffic
control simulator program.
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