
Foundations of Data Interoperability on the Web: A Web Science Perspective
Hamid Haidarian Shahri

Department of Computer Science, University of Maryland, College Park, MD, USA
hamid@cs.umd.edu

ABSTRACT
In this paper, when we use the term ontology, we are primarily
referring to linked data in the form of RDF(S). The problem of
ontology mapping has attracted considerable attention over the last
few years, as the deployment of ontologies is increasing with the
advent of the Web of Data. We identify two sharply distinct goals
for ontology mapping, based on real-world use cases. These goals
are: (i) ontology development, and (ii) facilitating interoperability.
We systematically analyze the goals, side-by-side, and contrast
them for the first time. Our analysis demonstrates the implications
of the goals on ontology mapping and mapping representation.
Many studies on ontology mapping have focused on ontology
merging. Ontology merging is an ontology development task (goal
i). With the increase in the number of web-based information
systems that utilize ontologies, the need for facilitating
interoperability between these systems is becoming more visible
(goal ii).

We show the consequences of focusing on interoperability
with illustrative examples and provide an in-depth comparison to
the information integration problem in databases. The consequences
include: (i) an emphasis on class matching, as a critical part of
facilitating interoperability, and (ii) an emphasis on the
representation of correspondences, since the merging of ontologies
is not suitable for interoperability. For class matching, various class
similarity metrics are formalized and an algorithm which utilizes
these metrics is designed. For representation, we present a novel
W3C-compliant representation, named skeleton. An algorithm for
creating the skeleton, for interoperability between ontologies, is also
developed. Finally, we experimentally evaluate the effectiveness of
the class similarity metrics on real-world ontologies.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Semantic networks; D.2.12 [Interoperability]: Data mapping
General Terms
Algorithms, Experimentation, Standardization
Keywords
Data Interoperability, Linked Data, Web Science

1. INTRODUCTION
The need for communication between autonomous and

distributed information systems is increasing with the wide usage of
the Web. Nowadays, data sharing across resources and enterprises
is no longer a desirable feature, but a necessity. Considerable
amount of research on data integration and schema mapping over
the last three decades have lead to improvements in this area. The
difficulty of finding correspondences between schemas originates
from the fact that the conceptual models, used for data
representation, do not capture the semantics of the data with enough

precision. For example, in databases, it is very difficult to infer
that area in one schema and location in another schema, refer to
the same real-world entity. This is due to the fact that the
semantics of attributes in the schema are not encoded explicitly,
and the problem is referred to as semantic heterogeneity.
Ontologies encode the specification of concepts more accurately,
than relational schemas. The rich set of relationships defined
between concepts in ontologies help in alleviating the semantic
heterogeneity problem. However, since different ontologies exist
and are being used by various autonomous organizations and user
communities, it is necessary to find correspondences between the
ontologies to facilitate interoperability.

As outlined in [Biz09], one of the major research challenges
of linked data is to address the issue of schema mapping and data
fusion, i.e. to retrieve data from different distributed sources of
information and present it to the user. This requires a mapping of
terms from different ontologies (vocabularies). In Section 3.2, we
illustrate this problem with a precise use case, in which there are
two independent universities. We demonstrate how users can
query different ontologies (distributed and autonomous sources
of information) and retrieve data from all of them, across
organizational boundaries.

In this paper, when we use the term ontology, we are
primarily referring to linked data in the form of RDF(S). As for
the task of “finding correspondences between ontologies,” we
clarify how the task should be performed and how the
correspondences should be represented, in different applications.
We also clarify the relationship between “ontology merging” and
“information integration.” For example: (1) Ontologies should
not be merged for facilitating interoperability. (2) Ontology
merging should be used in the context of ontology development.
And, the ontology merging process should be semi-automated
(i.e. should involve a human in the loop). (3) The
owl:equivalentClass construct, for the merging of concepts in
two ontologies, is not generally applicable for facilitating
interoperability.

This study revisits the ontology mapping problem in various
settings to furnish generality, and at the same time adheres to
real-world use cases. We systematically analyze the problem, by
putting the problem in context and identifying the quite distinct
goals of ontology mapping. The principal contributions of the
paper are as follows:
• We provide a coherent and overarching definition of ontology

mapping.
• Two goals for the ontology mapping problem are identified

and clarified with real-world motivating examples. These goals
are: (i) ontology development, and (ii) facilitating
interoperability. Then, we provide a sharp distinction between
the goals.

• We clarify the relationship between ontology merging and
interoperability, and show that they should not be used
interchangeably.

• Different implications of the goals are collectively analyzed.
The implications include: representation, inconsistency,
automation, class matching, and the relationship with the
Semantic Web. These implications are important, since they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
I-SEMANTICS 2010, September 1-3, 2010 Graz, Austria
Copyright © ACM 978-1-4503-0014-8/10/09... $10.00

determine how ontology mapping should be performed and
represented.

• Interoperability (goal ii) is highlighted as one of the major goals
of the ontology mapping problem. Then, ontology mapping is
revisited in the interoperability context, i.e. independent of the
ontology merging context.

• The tight coupling between the interoperability goal and the
Semantic Web vision is illustrated.

• Facilitating interoperability between ontologies is rigorously
compared with information integration in databases. Based on
this comparison, class matching is emphasized as a critical part of
facilitating interoperability (goal ii).

• Various class similarity metrics for finding the matching
(corresponding) classes are formalized. Then, a class matching
algorithm, which utilizes these metrics, is designed.

• We present a novel W3C-compliant representation, named
skeleton, to encode the correspondences between ontologies and
facilitate interoperability between them. An algorithm for
creating the skeleton is developed.

• We experimentally evaluate the effectiveness of the class
similarity metrics on real-world ontologies.

2. ONTOLOGY MAPPING DEFINITION
In this section, we explicitly define the ontology mapping

problem to avoid misinterpretations. The “ontology mapping”
procedure for two separate and autonomous ontologies, O1 and O2,
consists of the following steps:
• Step 1: Finding corresponding entities in ontologies O1 and O2.
• Step 2: Representing the found correspondences, and using it to

achieve some goal.
For Step 1, the main ontology entities that can be considered,

when finding correspondences between ontologies O1 and O2, are:
classes (concepts), individuals (instances), and properties
(relations). For Step 2, for using the found correspondences, the
correspondences need to be represented in a suitable form.

Note that the goals of ontology mapping determine what
candidates to consider, when we are finding the correspondences.
The goal also determines how to represent the correspondences.
This definition of ontology mapping is coherent and overarching,
such that it encompasses the different goals of the problem.

3. GOALS OF ONTOLOGY MAPPING
Currently, there are various ontologies that are being used in

different organizations. Often, they have been designed by different
communities. Hence, there is a need for a mapping between these
ontologies. Based on the definition of the ontology mapping
problem (refer to Section 2), in order to lay out the foundations of
the problem, we start with the goals of ontology mapping. We
identify two quite distinct goals for ontology mapping, based on
real-world use cases, and illustrate them with motivating examples.

3.1. Ontology Mapping for Ontology Development
Ontology is an abstraction for representing conceptual

knowledge. All concepts are covered by the domain of human
knowledge and these concepts are connected together in some
fashion. Hence, it is very hard to limit an ontology in terms of what
it should represent. This decision is usually made, based on the
business needs of an organization, i.e. the ontology designer decides
not to include some concepts, as they seem irrelevant to current
organizational demands. Ontology design (also known as ontology
development/engineering) is a complex and subjective issue, similar
to database design, and requires a human in the loop.

Assume that an organization is currently using an ontology,
C. Over time, as organizational models change, business
processes evolve and are extended. Therefore the ontology C,
which models the current business processes, also needs to be
changed and often extended. Sometimes, the new business
models (or some fragments of the changes) that are required in
the current ontology have already been captured by ontologies
that are being used in other organizations. In this case, the
required extensions to the current ontology C are present in some
other existing ontology, E. Now, the ontology designer of C
needs to:
• Step 1: Find the correspondences between ontologies C and E
• Step 2: Decide on what concepts, instances and relations of the

existing ontology E, need to be added to the current ontology
C, based on the changes in the business model and the
correspondences found in the previous step.

Note that the existing ontology E remains the same, while
current ontology C will change (and be replaced in fact). This use
case closely resembles the problem that has been analyzed in the
context of merging/integrating two ontologies in the literature
[McG00, Noy00, Stu01].

Motivating Example 1: Consider two organizations, Org1
and Org2, offering various products, and using two different
ontologies, O1 and O2, shown in Figure 1. O1 is shown with white
rectangles, while O2 is shown with grey rectangles. Some classes
(i.e. concepts), namely Sale Items and Videos, in O1 have
corresponding classes (Products and Movies) in O2. In Figure 1,
since class Videos in ontology O1 is defined in a similar context
to class Movies in ontology O2, it is conceivable to merge the two
ontologies and produce a more comprehensive ontology. In
essence, O1 is being extended with O2 and the merged ontology is
a mix of white and grey rectangles, as shown in Figure 1.

Fig. 1. Two ontologies O1 and O2, and the merged (integrated)
ontology Omerged.

Note that in our scenario, the business model in Org1, which
was using ontology O1, has changed. For example, Org1
gradually needs to develop a more comprehensive ontology for
its ecommerce operations. Therefore Org1 will now be using the
merged ontology Omerged, which is the result of extending O1 with
some existing ontology O2. This is while Org2 will keep using O2
without any changes to its business model.

Fig. 2. Ontologies O1 and O2, which belong to two different autonomous organizations, are shown in (a) and (c). Skeleton S, connecting the
ontologies, is shown in (b), in the middle. The concepts in ontology O1 (shown in the figure) are the organizational units within University1.
The instances in ontology O1 (not shown in the figure) are the courses that are offered by the organizational units within University1. Each
concept in skeleton S is connected to its corresponding concepts in the original ontologies O1 and O2, with a subclass relationship.

3.2. Ontology Mapping for Interoperability
Different enterprises use their own proprietary systems and are

usually not willing to change their business models and operations.
However, they also need to exchange information with other
enterprises. Hence, interoperability between enterprises needs to be
facilitated across organizational boundaries. That is, in many
circumstances, users need to query different ontologies (distributed
and autonomous sources of information) and retrieve data from all
of them, as if all the information is residing in a unified source.

Let us define this scenario more formally. Two different
ontologies, O1 and O2 are designed separately and are being used by
two autonomous organizations, also known as parties. Each
ontology is designed based on the business model that governs the
operations of the organization that it belongs to. Hence, the
ontology being used by each party can not be changed or extended,
as we did for the merging use case in Section 3.1. To facilitate
interoperability between the organizations in this scenario, two
steps are required:
• Step 1: Finding the correspondences between ontologies O1 and

O2
• Step 2: Representing the correspondences in a suitable structure,

which we call skeleton S.
The skeleton is described using the motivating example, next.
Motivating Example 2: Consider two universities in which

faculties, and departments within the faculties, are organized
differently. Ontologies O1 and O2 are shown in Figure 2(a) and 2(c),
respectively. Ontologies O1 and O2 represent the organizational
hierarchy of University1 and University2, and are depicted with
rectangles. There are six corresponding concepts in O1 and O2,
namely: University, Science, Maths, CS, Physics, and Chemistry,
shown with a white color. These six concepts appear in different
places in O1 and O2. The skeleton S consists of these six concepts,
as shown in Figure 2(b), and represented with ovals.

When creating a skeleton, first, we need to know the shape (i.e.
class hierarchy) of the skeleton. The shape of the skeleton governs
the relationship between the concepts in the skeleton. The shape of
the skeleton is determined by the ontology of one of the parties (i.e.
O1 or O2). In Figure 2, the shape of the skeleton is the same as
ontology O1. Each concept in skeleton S is connected to its

corresponding concepts in the original ontologies O1 and O2, with
a subclass relationship.

Note that Figure 2 shows such connections for the
University concept, only. The University concept in the skeleton
is connected to concepts University1 and University2 in ontologies
O1 and O2, with blue dotted arrows. Other such connections are
not shown in the figure for more readability. In Example 2, the
ontology of each organization (i.e. O1 and O2) remains intact,
unlike Example 1. There is no change in the business models
(structures) of the universities, at all. However, both universities
(parties) can be queried using the skeleton, which provides
interoperability between them, as described next.

3.3. Contrasting the Goals at a Glance
In Sections 3.3 and 3.4, we clarify that interoperability may

not always be facilitated by ontology merging. This clarification
is a side effect of distinguishing the goals of ontology mapping.
In principle, the two use cases in Sections 3.1 and 3.2 are very
different. In Figure 2, the concepts in ontologies O1 and O2 are
the organizational units within University1 and University2. Each
concept contains various instances. The instances are the courses
that are offered by an organizational unit (concept). For example,
the Computer Science department (concept) in O2 contains the
courses (instances) that are offered in that department.

Here, we describe interoperability explicitly. In the
interoperability use case, we would like to query for all courses
related to computer science, and retrieve the results from both
universities (i.e. across organizational boundaries). In Figure 2,
with the skeleton, we can query for CS courses in ontology O1,
and using query expansion, we move to the corresponding
concept in the skeleton (which is CS), and then also retrieve the
relevant courses from the Computer Science concept in ontology
O2. Therefore, the query would return the results, as if all data
resides in a unified source. In essence, the skeleton increases the
recall of queries by enabling users to retrieve results from
distributed sources, under a unified framework.

In Figure 2, let us assume (incorrectly) that we want to
merge the ontologies (O1 and O2) to facilitate interoperability.
Consider that course abc is offered in the CS department in O1,
while a different course, named xyz, is offered in the Computer

Science department in O2. Merging of these two departments by
stating that the two concepts (CS and Computer Science) are equal
(similar to but not exactly like Figure 1, for the ontology
development goal) would imply that instances of one concept are
also a member of the other concept. In this example, after merging
the CS and Computer Science concepts, the ontology reasoner
would infer that course abc is a member of both CS department in
University1 and Computer Science department in University2, and is
offered by both departments. Also, course xyz is offered in both
departments, which is obviously not correct.

Similarly, in the OWL language (W3C Recommendation),
using the owl:equivalentClass construct for the merging of two
concepts (CS and Computer Science), instead of creating a skeleton,
for the purpose of interoperability is not acceptable for the same
reason. In other words, stating that Class1 and Class2 are equivalent
classes using owl:equivalentClass, implies that every instance of
Class1 is also a member of Class2. This is a very strong statement,
and not generally applicable for facilitating interoperability between
two systems.

Additionally, in Figure 2, when facilitating interoperability
between parties, the parties are autonomous, and the data in the
ontologies are often separate. While the parties need a mechanism
for querying, we can not change the ontologies (business models) of
either party, as we did in Figure 1 for Organization1 by merging. In
Figure 2, ontologies O1 and O2, and skeleton S are isolated and
being administered independently in different namespaces (refer to
OWL terminology). The ontology of each party does not change at
all, and the skeleton is created separately, to connect the existing
parties.

Up to now, we have distinguished the two goals (i.e. ontology
development vs. interoperability), and also clarified that ontology
merging is for ontology development and may not always be used
for facilitating interoperability. Notice that merging was originally
proposed for ontology development (refer to our explanation of
[McG00, Noy00] in Section 8).

3.4. Implications of Context on Ontology Mapping
Traditionally, ontologies have been used for creating

intelligent/expert systems. Those systems were often deployed, by a
limited number of experts, in constrained domains. The design of
suitable ontologies in such systems required tools and expertise. As
a result, the ontology development goal (Section 3.1) was at the
focus of attention, e.g. [McG00, Noy00]. Nowadays, with the
advent of the Semantic Web, the need for interoperability (Section
3.2) between systems/ontologies is becoming more visible.

In order to explore the requirements of the interoperability
goal, we carefully probe the above use cases. This will illustrates
how ontology mapping should be performed, to achieve
interoperability. In this section, we study the ontology mapping
goals, across different dimensions. The dimensions serve as a
guideline for the ontology mapping task, and they influence the
design of tools and algorithms for this task.

A. Representation: Obviously, the goals of ontology mapping
should propel the solution forward. Based on the definition of
ontology mapping provided in Section 2, Step 1 (i.e. finding
correspondences) is similar for achieving either goal of ontology
mapping. In Step 2, for representing the found correspondences
between two ontologies, we need a suitable representation. The
question of how to represent the correspondences can be studied
more concretely, in light of the distinction that we made about the
goals of mapping. For developing and merging ontologies, the
merged ontology is in fact the representation for the found

correspondences (refer to Omerged in Figure 1). This is similar to
the work of [McG00, Noy00].

As described in Section 3.3, merging of ontologies does not
create a suitable representation for facilitating interoperability
between two systems, in the general case. For interoperability, we
present a novel W3C-compliant representation, named skeleton,
to encode the correspondences between ontologies and facilitate
interoperability between them, as shown in Figure 2. In Section
6, we provide an algorithm for creating the skeleton and also
examine why the skeleton is a suitable representation. In Figure
2, there is no merging involved, and O1, O2 and S reside in
different namespaces.

B. Inconsistency: When merging ontologies for ontology
development (Section 3.1), various inconsistencies can arise and
the task involves complex decision making, since there may be
various ways to avoid the inconsistencies. For example, in Figure
1, consider the class Videos in ontology O1 and class Movies in
ontology O2, and instances of both these classes, which are
movies, categorized using genres from the YahooMovies
website. Consider that in ontology O1, there is a cardinality
restriction for instances of Videos, such that each instance of
Videos has exactly one genre from the YahooMovies website.
However, in ontology O2, there is a cardinality restriction for
instances of Movies, such that each instance of Movies has
exactly two genres from the YahooMovies website. Now, if we
merge the classes for Videos and Movies (as we did in Figure 1
for Omerged), it is not obvious how to handle this cardinality
inconsistency. There are various options and the ontology
designer has to make these decisions at design time, when
developing the new ontology. Handling these complex issues is
an integral part of the ontology development process, as outlined
in the first goal.

For another example of inconsistency in Figure 1, assume
that in addition to the Toys class which is a subclass of Products
in O2, the Electronic Equipment class in O1 also has a Toys class
as subclass. Now, the resulting merged ontology would have two
Toys concepts, one of which is a subclass of Sale Items (shown in
Omerged in Figure 1) and the other is a subclass of Electronic
Equipment (not shown in Omerged). Even combining the two Toys
concepts may not have the desired effect, since other conflicts
could arise, similar to the cardinality problem, as mentioned
previously. Additionally, the nature of the merging problem is
such that the current ontology is not only being extended, but also
needs to evolve, to accommodate the neighboring classes of the
corresponding class in the existing ontology. For example in
Figure 1, if the class Movies did not have a parent class, a simple
extension would have sufficed, but now that it has a Products
class as its parent, we must accommodate the Products class as
well, when merging Movies into O1.

Considering our small example in Figure 1 and the various
inconsistencies that could arise from merging, it is obvious that
ontology merging is usually not a scalable process and should be
performed in the context of developing a new ontology, to meet
the new business demands of an organization. It is certainly not
suitable for creating a global system to facilitate interoperability
between parties. On the other hand, using a skeleton for
interoperability does not create such inconsistencies, since the
ontologies of the organizations are kept separately in different
namespaces, as shown in Figure 2.

C. Automation: For both goals of ontology mapping, Step 1
(i.e. finding correspondences), should have a human user in the
loop (unless the results are approximate). Notice that the issue of

representing the correspondences is dealt with separately, in Step 2,
after the correspondences are given/determined.

As for Step 2 (creating a suitable representation for the
correspondences), when merging ontologies for ontology
development, there is a potential for inconsistencies to arise.
Ontology design (similar to database design) involves subjective
decisions. Hence, the merging process can only be “semi-
automated” at best. Ontology merging algorithms should have a
human user in the loop, as in the PROMPT Suite [Noy00].
Moreover, the process should be interactive, to allow the changes to
the ontology to be verified at each step, by the human ontology
designer. The designer should be familiar with ontologies and
domain knowledge modeling.

On the other hand, when creating the skeleton representation
for facilitating interoperability, as long as the correct set of
corresponding concepts between the parties is given, as input, the
skeleton can be created using a fully automated algorithm (refer to
Section 6), since the process does not create inconsistencies.

D. Class Matching: In Step 1 of ontology mapping, when
finding the correspondences between two ontologies, various
entities in the ontology (e.g. classes, individuals, and properties)
could be considered. For ontology merging, all entities are
important for correspondences. In Section 4, we compare the
information integration problem in databases to the interoperability
goal in ontology mapping. The comparison shows that finding
corresponding classes, is a critical part of ontology mapping for
facilitating interoperability. However, this does not imply that
matching of individuals is not important. In fact, matching of
corresponding individuals provide auxiliary information for the
ultimate task of class matching. Note that the skeleton
representation (Figure 2) is actually geared towards capturing class
correspondence, as well.

E. The Relationship with the Semantic Web: By carefully
examining the design goals of the Semantic Web, we can conclude
that there is a close relationship between the ontology mapping
problem for interoperability and the Semantic Web vision. The
design goals of the Semantic Web include [Hef04]: (1) Using
shared ontologies, (2) Supporting ontology evolution, (3) Ontology
interoperability, (4) Inconsistency detection across ontologies, (5)
Balance of scalability and expressivity in creating ontologies, (6)
Ease of use, (7) Compatibility with other standards, and (8)
Supporting internationalization.

We will use the item numbers to refer to the eight goals, above.
By focusing on the ontology mapping problem with an emphasis on
interoperability (Section 3.2), as opposed to the ontology merging
emphasis (Section 3.1), we also address the core design goals of the
Semantic Web. Note that in Figure 2, allowing various autonomous
(isolated) organizations/parties to create and adopt their own
ontologies as a community, is in agreement with goal 2 (supporting
ontology evolution). Facilitating interoperability between these
isolated parties using the skeleton is in agreement with goal 3
(ontology interoperability). In Section 5, when presenting the class
similarity metrics, we demonstrate how goal 1 (using shared
ontologies) supports the class matching process for interoperability.
Altogether, this neatly ties the ontology mapping problem for
interoperability to the first three design goals of the Semantic Web.
The idea of having distributed modular ontologies (adopted by
different communities), and providing links between these
ontologies to support interoperability, is inline and tightly coupled
with the spirit of the Semantic Web.

F. Discussion: Based on Section 3, it is clear that ontology
development (as in ontology merging) and interoperability (i.e.

information integration) are two separate goals of ontology
mapping. We illustrated that ontologies should not be merged for
facilitating interoperability. The comparison of the goals is vital,
since it clarifies how ontology mapping should be performed and
represented, in different applications.

The above use cases and analysis demonstrate that
interoperability is an important goal of ontology mapping. By
interoperability, we mean that users should be able to query
distributed information sources, as if the data resides in a unified
source. In Section 4, we focus on this goal; that is, independent of
ontology merging. We treat the interoperability goal more
thoroughly, by comparing it with the information integration
problem in databases. The interoperability goal is quite similar to
what the database community is trying to achieve in the context
of information integration research and schema matching.

4. CLASS MATCHING: A CRITICAL PART
OF FACILITATING INTEROPERABILITY

Based on the definition of ontology mapping (in Section 2),
in Step 1, the correspondences between ontologies need to be
determined, and the question is what candidates to consider,
when finding correspondences between ontologies. Now that we
have clarified the goals of ontology mapping (in Section 3), we
are ready to tackle the question of what candidates to consider.
For the ontology development goal and merging of two
ontologies, all entities of an ontology (i.e. classes, individuals,
and properties) are usually considered, so that the two ontologies
can merged. In this section, we show that for the interoperability
goal, finding the corresponding classes (i.e. class matching) is
very critical.

Considering the similarity of the ontology mapping problem
for facilitating interoperability and the information integration
problem in databases, we analyze and compare them, in this
section. The comparison illustrates that class matching is critical,
when mapping between ontologies for facilitating
interoperability. Note that since OWL is based on RDF, our
discussion also applies to OWL. Additionally, we are not
mapping between ontologies and databases, i.e. there is no
transformation involved between the two models. We are only
comparing the models to illustrate what should happen, when
facilitating interoperability between ontologies. The problem of
facilitating interoperability between databases has been studied
for three decades in the context of information integration in the
database community. Hence, our comparison provides insight
and sheds light on the relatively newer problem of
interoperability between ontologies.
4.1. Information Integration in Databases

The problem of combining heterogeneous data sources
under a single query interface is commonly known as “data
integration” or “information integration” in the database
community. A thorough theoretical study of the problem is
presented in [Len02]. We base our discussion on [Doa01, Len02],
while other interpretations may exist. The main idea is to provide
a uniform query interface over a mediated schema. The query is
then transformed into specialized queries over the original
databases. This process can also be called view based query
answering, because we can consider each of the data sources to
be a view over the mediated schema. Formally, such an approach
is called Local As View (LAV), where “Local” refers to the local
sources/databases. An alternate model of integration is one where
the mediated schema is designed to be a view over the sources.

This approach is called Global As View (GAV), where “Global”
refers to the global (mediated) schema.

Figure 3 shows an example of the information integration
problem in databases. Here, the goal is to generate a mapping
between columns (Town and City) in different local schemas (S and
T), by mapping them to some global schema. The local schemas
usually reside in separate autonomous data sources (DataSource1
and DataSource2). Figure 3 illustrates one example mapping
between schema S and schema T. More details about the
information integration process in databases can be found in
[Doa01, Len02]. This is a simple and important example that will
be used later in this section to demonstrate how ontology mapping
should be performed to facilitate interoperability, and how ontology
mapping for interoperability relates to schema mapping (i.e.
information integration).

Fig. 3. Example of the information integration problem in
databases. The goal is to generate a mapping between columns
(Town and City) in different local schemas (S and T), by mapping
them to some global schema. The local schemas usually reside in
separate autonomous data sources (DataSource1 and DataSource2).

4.2. Interoperability
Following the description of information integration in

databases above, it is important to point out that, the term
“integration” might be vague to some extent, since it might
unintentionally be interpreted as some type of “merging” of
schemas. This is not what actually occurs in databases, as the
schemas in each local data source are handled autonomously and
need to be kept separately. The local data sources are often
administered by different organizations and are not merged
(integrated). In fact organizations are not willing to change their
business models and everyday operations.

The ultimate goal of information integration is to provide
interoperability between various systems, which is the exact same
goal that we identified in Section 3.2. The term “interoperability” is
clearer for describing the motivations and objectives of the process.
By analogy, there is no merging of ontologies involved in ontology
mapping, when we are trying to achieve interoperability between
organizations, which use different ontologies (refer to Section 3.2).
4.3. Expression of Simple Facts in the RDF Model

Simple facts in the RDF model indicate a relationship between
two things. Such a fact may be represented as an RDF triple in
which the predicate (i.e. property) names the relationship, and the
subject and object denote the two things. Figure 4(a) shows the
predicate hasAuthor, which is the relationship between the subject
and the object. The subject is an instance of class Book, while the
object is an instance of class Author. The classes are depicted as
ovals. For example, The Art of Computer Programming (which is a
book) hasAuthor Donald Knuth (who is an author).

In contrast with the relational database model (Section 4.4),
the use of extensible URI-based vocabularies in RDF facilitates
the expression of facts about arbitrary subjects; i.e. assertions of
named properties about specific named things. A URI can be
constructed for any thing that can be named, so RDF facts can be
about any such things. The use of Uniform Resource Identifiers
(URIs) in the RDF model provides a very powerful mechanism
for facilitating interoperability on the Semantic Web. Consider
that the success and scalability of the current WWW
infrastructure is a vivid illustration of the tremendous potential of
the idea of using links or URIs (which seems like a simple idea at
first glance).
4.4. Expression of Simple Facts in the Relational Model

A familiar representation of a fact in the relational model in
databases is a row in a table. The terms row and table are also
known as tuple and relation, respectively. A table has a number
of columns (also known as attributes). Figure 4(b) shows the
hasAuthor table. The table has two columns, namely Book and
Author. A row for example indicates that, The Art of Computer
Programming (which is a book) hasAuthor Donald Knuth (who
is an author).

Fig. 4. Correspondence between the RDF and relational models.
(a) The predicate hasAuthor, which is the relationship between
the instances of class Book and the instances of class Author, in
the RDF model. (b) The table hasAuthor, which has two
columns, namely Book and Author, in the relational model.

4.5. The Analogy between the RDF and Relational
Models

By comparing the explanations of the RDF and relational
models above, and by observing Figure 3, we can infer that the
classes Book and Author (in RDF) correspond to the columns
Book and Author (in relational). The correspondence between
classes and columns is an important one, and it will be used in
Section 4.6. The correspondence is also depicted in Figure 5. The
other substantial correspondence is between instances of a class
in RDF, with column values in relational.

Fig. 5. The correspondence between classes (in the RDF model)
and columns (in the relational model). There is also a
correspondence between instances of a class (in RDF) and
column values (in relational).

In the above discussion, the description of the relational
model was constrained, such that a table only contained two
columns. Now, we consider the general case, where a table
contains more than two columns. In Figure 6(b), the table in the

relational model has three columns, namely Book, Author and
Publisher. Then, the RDF model would also have three
corresponding classes, as shown in Figure 6(a). The correspondence
between classes and columns still holds. It is essential to realize that
the name of the table in the relational model is arbitrary. We used
TableName in Figure 6(b). Additionally, two predicates, namely
hasAuthor and hasPublisher, are now used in the RDF model
(Figure 6(a)). The name of the two predicates in RDF is arbitrary
and could be anything.

Notice that in Figure 4, we do not infer a correspondence
between the name of the table (hasAuthor in relational) and the
name of the predicate (hasAuthor in RDF), as this correspondence
has no real substance. The comparison in Figure 6 actually
eliminates the role of the table name in the relational model.
Therefore, the substantial correspondence is between classes and
instances in RDF, with columns and column values in relational,
respectively. There is no correspondence for predicate (i.e.
property) names in the relational model. This is due to the fact that
in the RDF model, relations are encoded explicitly, in contrast with
the relational model.

Fig. 6. A more general correspondence between the RDF and
relational models. (a) The three classes in RDF are Book, Author,
and Publisher. The name of the two predicates (hasAuthor,
hasPublisher) in RDF is arbitrary and could be anything. (b) A table
in the relational model, which has three columns, namely Book,
Author, and Publisher. The name of the table (TableName) is
arbitrary.

4.6. Class Matching: Why
Section 4.1 showed that in databases, the final output of the

information integration process is a mapping between columns in
different local schemas (refer to Figure 3). In Section 4.5, we
illustrated that columns in the relational model correspond to
classes in the RDF model (refer to Figure 4 and 5). Therefore, it is
clear that to facilitate interoperability between ontologies, the
classes in the ontologies need to be mapped to each other.

In RDF, the data is the instances of classes. The ultimate
objective of interoperability is to query and correctly retrieve these
data instances, across various ontologies. The data resides in the
classes in the ontologies. Notice that as long as the correct mapping
between the classes in the ontologies exists, users can query and
correctly retrieve the data instances, across various ontologies. For
example, in Figure 2, users would like to retrieve course instances
from both CS class in University1 and Computer Science class in
University2. By analogy, in the relational model, the data is the
values in the columns. A correct mapping between the columns in
the schemas enables users to correctly retrieve the data (column
values) across various schemas.

Let us return to the question (raised in the ontology mapping
definition in Section 2) that what candidates to consider, when
finding correspondences between ontologies. Our detailed

comparison in this section clarifies that a critical part of ontology
mapping for facilitating interoperability is the matching of
classes. The class matching objective directly facilitates
interoperability. This is one of the critical implications of
focusing on the context of interoperability in ontology mapping,
as mentioned in Section 3.4.D. The class matching objective does
not imply that other entities are not used for class matching.
Matching of other entities is usually helpful for the matching of
classes, as described in Section 5. Basically, the question of how
to find the matching classes is a separate issue, addressed in the
next section.

5. CLASS SIMILARITY METRICS AND
CLASS MATCHING ALGORITHM

In the previous section, we identified that class matching is a
critical part of ontology mapping for facilitating interoperability.
In this section, we provide an algorithm for class matching (i.e.
finding corresponding classes). The algorithm utilizes various
class similarity metrics. Each of the class similarity metrics is
formally defined. Additionally, the relationship between the
matching of classes and the matching of instances is clarified.

Definition 1 (Mapping for interoperability): Let C1 be the
set of classes of ontology O1 and C2 be the set of classes of
ontology O2. Map m is a total function 1 2: [0,1]m C C⊗ → ,

where 1 2C C⊗ is defined as the set of all distinct unordered
pairs of elements of sets C1 and C2, that is:

1 2 1 2{(,) | , }C C a b a C b C⊗ = ∈ ∈ .
Definition 2 (Class Matching, Threshold, Similarity

Value, Similarity Metric): Class matching is the process of
determining corresponding classes between ontologies O1 and O2,
which is specified using a threshold t. Map m assigns a similarity
value to each pair of classes. If the similarity value, defined by
map m, is greater than threshold t, then the classes match. We
compute the similarity value by summing the result of the
following four similarity metrics: lexical, extensional, extensional
closure, and global path, which are defined, later. In order to
compute the similarity value more effectively, a weighted sum of
these metrics could also be used, or the result of each metric
could be normalized.

As mentioned in Section 3.4.C, in regard to automation, the
merging of ontologies for the ontology development goal can not
be automated and needs a human user in the loop. On the other
hand, ontology mapping for the interoperability goal consists of
two steps (Section 3.2): finding the class correspondences (Step
1), and representing the class correspondences using a skeleton
(Step 2). For Step 1, human judgment may be required for setting
the threshold. For Step 2, Section 6 provides a fully automated
algorithm for creating the skeleton.

While class matching can only be semi-automated, skeleton
creation, which happens after a set of correspondences are given,
can be fully automated. Section 5 provides the class matching
algorithm, and Section 6 provides the skeleton creation
algorithm. In principle, ontologies can cover any domain of
knowledge, and the nature of data instances is extremely diverse
in different applications. Hence, it is difficult to provide general
guidelines on how to set the threshold for all
ontologies/applications. Essentially, the threshold needs to be
determined experimentally for each application and dataset.

Definition 3 (Lexical Similarity Metric): Let s∈C1 and
t∈C2 be two classes in the ontologies. The lexical similarity

metric is a function that assigns a real-valued number in the range
of [0, 1] to the pair {s, t}, based on the closeness of the strings
representing the names of s and t.

Definition 4 (Extensional Similarity Metric): Let s∈C1 and
t∈C2 be two classes in the ontologies. The set of individuals which
are direct members of s and t are represented as e(s) and e(t),
respectively. The extensional similarity metric for s and t is
computed as | () () | | () () |e s e t e s e t∩ ∪ . This is similar to
computing the Jaccard similarity coefficient of two sets.

Definition 5 (Extensional Closure Similarity Metric): Let
s∈C1 and t∈C2 be two classes in the ontologies. If class x is a
subclass of class y, it is denoted as x y . The extensional
closure of s, denoted as ec(s), is computed as

1

() { () | }c
i C

e s e i i s
∈

= ∪ . The extensional closure similarity

metric for s and t is equal to
| () () | | () () |c c c ce s e t e s e t∩ ∪ .

Instance Matching
Based on Definitions 4 and 5, instances within two classes

need to be matched, i.e. duplicate instances should be identified.
This task is necessary for both the ontology development goal and
the interoperability goal. When merging ontologies for ontology
development, duplicate instances in corresponding classes need to
be detected and eliminated, so that the classes in the merged
ontology would only contain unique instances. When performing
class matching for facilitating interoperability, the instances of
classes are not merged. Nevertheless, duplicate instances may need
to be detected, in order to compute the intersection of instances of
two classes correctly, when computing the extensional and
extensional closure similarity metrics.

There are various approaches that can be used for instance
matching. One simple approach is based on the assumption that if
two instances in different ontologies are the same, they also use the
same URI, which would help in identifying the instances uniquely.
This assumption is usually not applicable in practical settings, since
different organizations use different naming standards and URIs.
Another approach, which we also use in our experiments, is to
identify duplicate instances using approximate string matching
techniques for the name of instances, similar to the lexical similarity
metric used for the name of classes (Definition 3).

In a more complicated approach, the domain knowledge about
instances and the facts stated in a knowledge base may also be used.
As mentioned in Section 3.4.E, some of the design goals of the
Semantic Web (SW) are quite beneficial for instance matching on
the SW. Remember that design goal 1 was using shared ontologies.
An example of a shared ontology is FOAF. If T. B. Lee and Tim
Berners-Lee are two instances and both have the same foaf:mbox
property value (i.e. email address), which is an
owl:InverseFunctionalProperty, the ontology reasoner can infer that
the instances are duplicates. In other words, ontology inference
helps in identifying duplicate instances that may not be detected
using approximate string matching. Notice that in this example, the
use of shared ontologies (e.g. foaf) helps in instance matching,
which is a part of the ontology mapping process. This approach, for
instance matching on the Web, has important applications for
facilitating interoperability in the Semantic Web vision.

Definition 6 (Global Path Similarity Metric): Let s∈C1 and
t∈C2 be two classes in the ontologies. Path of s, denoted as p(s), is
the path that starts from the root of an ontology and ends at s. The

global path similarity metric for s and t is equal to the score
assigned to the similarity of p(s) and p(t). The score is based on
the lexical similarity of the classes that appear in the two paths.

Class Matching Algorithm
For Step 1 in Section 3.2, we now present our class

matching algorithm, below. The Class-Matching algorithm
exploits the class similarity metrics introduced in this section.
Line 2 relates to Definition 3. Lines 3-5 compute the extensional
similarity using the ontology reasoner, as in Definition 4. Lines
6-8 are based on the extensional closure similarity, as in
Definition 5. Lines 9-11 compute the global path similarity, as in
Definition 6. Line 12 computes the similarity value for classes
and compares it to the threshold, as in Definition 2.

Class-Matching Algorithm
Input:
O1, O2: Original ontologies
C1: Set of classes in O1
C2: Set of classes in O2
Output:
M: Set of matching class
 pairs (c1, c2), s.t. c1∈C1, c2∈C2
1. for all c1∈C1, c2∈C2
2. lexSim← lexicalSim(c1.name, c2.name)
3. c1.ex← reasoner.Extensions(c1)
4. c2.ex← reasoner.Extensions(c2)
5. extSim← extensionalSim(c1.ex, c2.ex)
6. c1.all← reasoner.AllExtensions(c1)
7. c2.all← reasoner.AllExtensions(c2)
8. extCSim← extensionalClosureSim(c1.all, c2.all)
9. c1.path← reasoner.GlobalPath(c1)
10. c2.path← reasoner.GlobalPath(c2)
11. gpSim← globalPathSim(c1.path, c2.path)
12. if (lexSim+extSim+extCSim+gpSim > threshold)
 then M ← M ∪ (c1, c2)
13.end for
14.return M

6. SKELETON REPRESENTATION
The issue of representation is an important implication of

focusing on the context of interoperability in ontology mapping,
as mentioned in Section 3.4.A. Based on the definition of
ontology mapping (in Section 2), in Step 2, the found
correspondences between the ontologies need to be represented.
Now, the question is how to represent them in a suitable format.
For the ontology development goal, when integrating ontologies,
the outcome of the process is one merged ontology. This merged
ontology actually represents the correspondences between the
ontologies. For the interoperability goal, we should not merge the
ontologies. Instead, we provide a novel W3C-compliant
representation, named skeleton, to encode the class
correspondences between the ontologies, as shown in Figure 2. In
this section, we provide an algorithm for creating the skeleton
(refer to Step 2 in Section 3.2).

Sections 3.2 and 3.3 described how the skeleton facilitates
interoperability between organizations. We also described the
query expansion mechanism in ontologies for query answering.
The skeleton represents the class correspondences between
ontologies of organizations. These correspondences are essential
for searching and query answering in the ontology reasoning
process. The skeleton is a suitable representation, as it allows
query answering over various ontologies (organizations). The
skeleton increases the recall of queries by enabling users to
retrieve results from distributed sources. Our design for the

skeleton representation is compliant with the W3C
recommendations. In other words, when using the skeleton, query
answering and query expansion can be performed, using standard
tools, without any ontology reasoner adjustments, and extra
implementation effort. That is to say, all these issues are handled by
the ontology reasoner, in a standard fashion.

To describe the Skeleton-Creation algorithm, below, we use
the motivating example, depicted in Figure 2. The Class-Matching
algorithm, introduced in Section 6, is a prerequisite for the Skeleton-
Creation algorithm. The output of the Class-Matching algorithm is
the set of matching class pairs (M) of the two ontologies. This set
(M) is the input of the Skeleton-Creation algorithm. In lines 1-5, for
each pair in set M, a class node is created in the skeleton. The name
of the class in ontology O1 is assigned to the class in the skeleton.
The class in the skeleton is connected to the classes in the pair. In
Figure 2, the classes in the skeleton are University, Science, Maths,
CS, Physics, and Chemistry, which are connected to their
corresponding classes in O1 and O2. Figure 2 shows such
connections for the University concept, only, i.e. the University
concept in the skeleton is connected to concepts University1 and
University2 in ontologies O1 and O2, with blue dotted arrows. In line
6, the ontology reasoner infers the class hierarchy of ontology O1.
In line 7, this hierarchy is used for connecting the class nodes in the
skeleton, to each other.

Skeleton-Creation Algorithm
Input:
O1, O2: Original ontologies
C1: Set of classes in O1
C2: Set of classes in O2
M: Set of matching class
 pairs (c1, c2), s.t. c1∈C1, c2∈C2
Output:
S: Skeleton
1. for each pair (c1, c2) in M
2. Create a class node s∈S
3. s.name ← c1.name
4. Connect s to c1 and c2, using
 subclass relation
5. end for
6. H1 ← reasoner.ClassHierarchy(O1)
7. Create the same class hierarchy
 as H1, between all classes s∈S
8. Return S

7. EMPIRICAL EVALUATIONS
In order to evaluate the effectiveness of the class similarity

metrics, formalized in Section 5, we implemented these similarity
metrics. In our implementation, Pellet was used for ontology
reasoning. Pellet is an open source reasoner written in Java. The
results of our experimental trials, reported here, are from two real-
world ontologies. The ontologies were developed separately by
different organizations. This dataset is selected from the datasets
that are provided for the Ontology Alignment Evaluation Initiative.

When computing the lexical similarity metric for comparing
the name of classes in two ontologies, various string similarity
measures can be used. The results show that the performance of
these measures varies considerably, as illustrated in Figure 7. The
Jaro-Winkler measure shows a more robust behavior for finding
corresponding classes in ontologies, based on class name. By
decreasing the threshold in the class matching algorithm for each
string similarity measure, the recall increases, the precision
decreases, and various precision-recall performance levels are
achieved, as shown by the plots on the curves, in Figure 7. Usually,
there is a precision-recall tradeoff, and precisions below the 60

percent level are not very useful, since many of the detected
matches would then be incorrect.

In Figure 7, by decreasing the threshold for identifying a
match, we can increase the recall rate to some extend. However,
as the diagram demonstrates, it is not possible to increase the
recall to above 80 percent, by only decreasing the threshold, since
this would cause a sharp drop in precision, i.e. introduce many
incorrect results.

Fig. 7. Performance of various string similarity measures for
finding corresponding classes in ontologies, based on name.

Fig. 8. Using extensional, extensional closure and global path
similarity metrics, in addition to lexical, increases the recall and
F1 quality measure.

The results in Figure 8 are cumulative from left to right, and
each similarity metric is added to the previous ones. The
precision and recall bars for Lexical (Jaro-Winkler) in Figure 8,
are showing the same precision and recall values, as the first
point on the Jaro-Winkler curve in Figure 7. Also, for all the
experiments in Figure 8, we use the same threshold, as the first
point on the Jaro-Winkler curve in Figure 7. Hence, in Figure 8,
the threshold does not change, and there is no precision-recall
curve (unlike Figure 7). Figure 8 shows that using the
extensional, extensional closure, and global path similarity
metrics, in addition to lexical, improves the recall. At the same
time, in Figure 8, the precision remains almost the same.

Note that the recall can also be improved by decreasing the
threshold in Figure 7 - however that considerably reduces the
precision of results (as shown in Figure 7). In Figure 8, by using
additional similarity metrics, we can improve the recall, without
decreasing the threshold and losing precision. Therefore, we
effectively overcome the precision-recall tradeoff, as evident by the
increase in the F1 quality measure. This demonstrates that using the
additional class similarity metrics helps in finding more
corresponding classes and achieving better results.
8. RELATED WORK

[McG00] tackles ontology merging for government
intelligence, where ontologies are developed by various teams. The
teams are responsible for the development, design and maintenance
of ontologies. These ontologies need to be integrated into other
large application ontologies. [McG00] creates a tool called
Chimaera for the above tasks. [Noy00] developed the PROMPT
tool for merging ontologies. The goal was to reuse existing
ontologies to help in ontology development efforts. Merging of
ontologies causes inconsistencies and the user is interactively
prompted with suggestions to remedy these inconsistencies. Both
[McG00, Noy00] provide concrete ontology merging scenarios.
Note that these works are in the context of ontology development
(refer to Section 3.1). In both papers, there is no mention of
interoperability or information integration (refer to Section 3.3).

[Stu01] uses the set of shared instances or the set of shared
documents that are annotated with the concepts of two ontologies.
Then, a lattice is generated to merge and relate the classes of the
ontologies, using formal concept analysis. Various systems have
studied finding lexical matches between ontology entities, or use
dictionaries, WordNet and other resources for the matching process.
Doan utilizes machine learning for ontology matching [Doa03]. It
exploits a Naïve Bayes (NB) classifier to detect the similarity of
classes in two ontologies. Tabulator is a nice generic data browser
and editor for the Semantic Web. It provides a way to browse RDF
data on the web, using outline and table modes [Ber06].

[van08] provides an interesting overview of the semantic
interoperability problem and reviews some of the core issues
involved. van Harmelen states that with the rapid growth of the
Internet and the Web, more principled mechanisms to facilitate
semantic interoperability (i.e. facilitate querying of data) across
organizational boundaries have become necessary. He emphasizes
that despite many years of work on the semantic interoperability
problem, this old problem is still open and has acquired a new
urgency, now that physical and syntactic interoperability barriers
have largely been removed. Note that the skeleton addresses the
semantic interoperability problem, i.e. the skeleton enables users to
query the data across organizational boundaries. [Ala08] illustrates
some of the advantages of Semantic Web technologies through
pragmatic examples. [Cor10] presents an approach for achieving
RDF data integration using SPARQL query rewriting. They use
graph rewriting rules to create a new graph pattern that is expressed
in the form of the target ontology, but maintains the intended
semantics of the source ontology.

Some ontology mapping solutions produce a merged ontology
as the final output, e.g. [McG00, Noy00, Stu01]. That line of work
is generally in the context of ontology development. In our
approach, when mapping between ontologies for interoperability,
there is no merging involved. Our approach to facilitating
interoperability is different from ontology merging solutions, since
merging inherently follows a different goal (refer to Sections 3.3
and 3.4). In our approach, for facilitating interoperability between
organizations, we find the class correspondences between the

ontologies and then create a skeleton to represent these
correspondences. To our knowledge, this is the first work that
provides the required algorithms for this approach, with attention
to the requirements of the Semantic Web, in a fashion that is
compliant with the W3C recommendations.
9. CONCLUSION

In this paper, we explicitly defined the ontology mapping
problem and systematically examined its components. We
investigated the mapping problem across various dimensions and
carefully distinguished its goals. Based on the goals, we
addressed the questions of what candidates to consider for
finding the correspondences, and how to represent the
correspondences. We also illustrated the tight coupling between
the interoperability goal and the Semantic Web vision.
Furthermore, we rigorously compared the interoperability goal
for ontology mapping with the information integration problem in
databases.
ACKNOWLEDGEMENT: We would like to thank (in
alphabetical order) Ron Alford, Philip Bernstein, Tim Finin,
Hugh Glaser, Jennifer Golbeck, Christian Halaschek-Wiener, Jim
Hendler, Vladimir Kolovski, Don Perlis and Taowei Wang, who
contributed to this work in different ways. This material is based
upon work supported in part by NSF Grant IIS0803739, AFOSR
Grant FA95500910144 and ONR Grant N000140910328.
REFERENCES
[Ala08] Alani, H., Chandler, P., Hall, W., O’Hara, K., Shadbolt,

N., Szomszor, M., “Building a Pragmatic Semantic Web,”
IEEE Intelligent Systems, 23(3), pp. 61-68, 2008.

[Ber06] Berners-Lee, T., et al., “Tabulator: Exploring and
Analyzing Linked Data on the Semantic Web,” Proc. of
Semantic Web User Interaction Workshop, ISWC, 2006.

[Biz09] Bizer, C., Heath, T., Berners-Lee, T., “Linked Data - The
Story So Far,” Int. J. Semantic Web Inf. Syst., 5(3), pp. 1-22,
2009.

[Cor10] Correndo, G., Salvadores, M., Millard, I., Glaser, H.,
Shadbolt, N., “SPARQL Query Rewriting for Implementing
Data Integration over Linked Data,” Proc. of 1st Int. Workshop
on Data Semantics (DataSem 2010), Switzerland, 2010.

[Doa01] Doan, A., Domingos, P., Halevy, A., “Reconciling
Schemas of Disparate Data Sources: A Machine Learning
Approach,” SIGMOD, 2001.

[Doa03] Doan, A., Madhavan, J., Dhamankar, R., Domingos, P.,
Halevy, A., “Learning to Match Ontologies on the Semantic
Web,” Very Large Databases Journal (VLDB Journal), Vol.
12, No. 4, 2003.

[Hef04] Heflin, J., “OWL Web Ontology Language Use Cases
and Requirements,” W3C Recommendation, February, 2004.

[Len02] Lenzerini, M., “Data Integration: A Theoretical
Perspective,” PODS, 2002.

[McG00] McGuinness, D., Fikes, R., Rice, J., Wilder, S., “An
Environment for Merging and Testing Large Ontologies,” KR,
2000.

[Noy00] Noy, N., Musen, M., “PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment,” AAAI,
2000.

[Stu01] Stumme, G., Maedche, A., “FCA-merge: Bottomup
Merging of Ontologies,” IJCAI, 2001.

[van08] van Harmelen, F., “Semantic Web Technologies as the
Foundation for the Information Infrastructure,” In van Ooster,
P. (Ed.), Creating Spatial Information Infrastructures, Wiley,
2008.

