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ABSTRACT 
In this paper, when we use the term ontology, we are primarily 
referring to linked data in the form of RDF(S). The problem of 
ontology mapping has attracted considerable attention over the last 
few years, as the deployment of ontologies is increasing with the 
advent of the Web of Data. We identify two sharply distinct goals 
for ontology mapping, based on real-world use cases. These goals 
are: (i) ontology development, and (ii) facilitating interoperability. 
We systematically analyze the goals, side-by-side, and contrast 
them for the first time. Our analysis demonstrates the implications 
of the goals on ontology mapping and mapping representation. 
Many studies on ontology mapping have focused on ontology 
merging. Ontology merging is an ontology development task (goal 
i). With the increase in the number of web-based information 
systems that utilize ontologies, the need for facilitating 
interoperability between these systems is becoming more visible 
(goal ii). 

We show the consequences of focusing on interoperability 
with illustrative examples and provide an in-depth comparison to 
the information integration problem in databases. The consequences 
include: (i) an emphasis on class matching, as a critical part of 
facilitating interoperability, and (ii) an emphasis on the 
representation of correspondences, since the merging of ontologies 
is not suitable for interoperability. For class matching, various class 
similarity metrics are formalized and an algorithm which utilizes 
these metrics is designed. For representation, we present a novel 
W3C-compliant representation, named skeleton. An algorithm for 
creating the skeleton, for interoperability between ontologies, is also 
developed. Finally, we experimentally evaluate the effectiveness of 
the class similarity metrics on real-world ontologies. 

Categories and Subject Descriptors 
I.2.4 [Knowledge Representation Formalisms and Methods]: 
Semantic networks; D.2.12 [Interoperability]: Data mapping 
General Terms 
Algorithms, Experimentation, Standardization 
Keywords 
Data Interoperability, Linked Data, Web Science 

1. INTRODUCTION 
The need for communication between autonomous and 

distributed information systems is increasing with the wide usage of 
the Web. Nowadays, data sharing across resources and enterprises 
is no longer a desirable feature, but a necessity. Considerable 
amount of research on data integration and schema mapping over 
the last three decades have lead to improvements in this area. The 
difficulty of finding correspondences between schemas originates 
from the fact that the conceptual models, used for data 
representation, do not capture the semantics of the data with enough 

precision. For example, in databases, it is very difficult to infer 
that area in one schema and location in another schema, refer to 
the same real-world entity. This is due to the fact that the 
semantics of attributes in the schema are not encoded explicitly, 
and the problem is referred to as semantic heterogeneity. 
Ontologies encode the specification of concepts more accurately, 
than relational schemas. The rich set of relationships defined 
between concepts in ontologies help in alleviating the semantic 
heterogeneity problem. However, since different ontologies exist 
and are being used by various autonomous organizations and user 
communities, it is necessary to find correspondences between the 
ontologies to facilitate interoperability.  

As outlined in [Biz09], one of the major research challenges 
of linked data is to address the issue of schema mapping and data 
fusion, i.e. to retrieve data from different distributed sources of 
information and present it to the user. This requires a mapping of 
terms from different ontologies (vocabularies). In Section 3.2, we 
illustrate this problem with a precise use case, in which there are 
two independent universities. We demonstrate how users can 
query different ontologies (distributed and autonomous sources 
of information) and retrieve data from all of them, across 
organizational boundaries.  

In this paper, when we use the term ontology, we are 
primarily referring to linked data in the form of RDF(S). As for 
the task of “finding correspondences between ontologies,” we 
clarify how the task should be performed and how the 
correspondences should be represented, in different applications. 
We also clarify the relationship between “ontology merging” and 
“information integration.” For example: (1) Ontologies should 
not be merged for facilitating interoperability. (2) Ontology 
merging should be used in the context of ontology development. 
And, the ontology merging process should be semi-automated 
(i.e. should involve a human in the loop). (3) The 
owl:equivalentClass construct, for the merging of concepts in 
two ontologies, is not generally applicable for facilitating 
interoperability. 

This study revisits the ontology mapping problem in various 
settings to furnish generality, and at the same time adheres to 
real-world use cases. We systematically analyze the problem, by 
putting the problem in context and identifying the quite distinct 
goals of ontology mapping.  The principal contributions of the 
paper are as follows:  
• We provide a coherent and overarching definition of ontology 

mapping. 
• Two goals for the ontology mapping problem are identified 

and clarified with real-world motivating examples. These goals 
are: (i) ontology development, and (ii) facilitating 
interoperability. Then, we provide a sharp distinction between 
the goals. 

• We clarify the relationship between ontology merging and 
interoperability, and show that they should not be used 
interchangeably.  

• Different implications of the goals are collectively analyzed. 
The implications include: representation, inconsistency, 
automation, class matching, and the relationship with the 
Semantic Web. These implications are important, since they 
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determine how ontology mapping should be performed and 
represented. 

• Interoperability (goal ii) is highlighted as one of the major goals 
of the ontology mapping problem. Then, ontology mapping is 
revisited in the interoperability context, i.e. independent of the 
ontology merging context. 

• The tight coupling between the interoperability goal and the 
Semantic Web vision is illustrated. 

• Facilitating interoperability between ontologies is rigorously 
compared with information integration in databases. Based on 
this comparison, class matching is emphasized as a critical part of 
facilitating interoperability (goal ii). 

• Various class similarity metrics for finding the matching 
(corresponding) classes are formalized. Then, a class matching 
algorithm, which utilizes these metrics, is designed. 

• We present a novel W3C-compliant representation, named 
skeleton, to encode the correspondences between ontologies and 
facilitate interoperability between them. An algorithm for 
creating the skeleton is developed.  

• We experimentally evaluate the effectiveness of the class 
similarity metrics on real-world ontologies. 

2. ONTOLOGY MAPPING DEFINITION 
In this section, we explicitly define the ontology mapping 

problem to avoid misinterpretations. The “ontology mapping” 
procedure for two separate and autonomous ontologies, O1 and O2, 
consists of the following steps: 
• Step 1: Finding corresponding entities in ontologies O1 and O2. 
• Step 2: Representing the found correspondences, and using it to 

achieve some goal. 
For Step 1, the main ontology entities that can be considered, 

when finding correspondences between ontologies O1 and O2, are: 
classes (concepts), individuals (instances), and properties 
(relations). For Step 2, for using the found correspondences, the 
correspondences need to be represented in a suitable form.  

Note that the goals of ontology mapping determine what 
candidates to consider, when we are finding the correspondences. 
The goal also determines how to represent the correspondences. 
This definition of ontology mapping is coherent and overarching, 
such that it encompasses the different goals of the problem. 

3. GOALS OF ONTOLOGY MAPPING 
Currently, there are various ontologies that are being used in 

different organizations. Often, they have been designed by different 
communities. Hence, there is a need for a mapping between these 
ontologies. Based on the definition of the ontology mapping 
problem (refer to Section 2), in order to lay out the foundations of 
the problem, we start with the goals of ontology mapping. We 
identify two quite distinct goals for ontology mapping, based on 
real-world use cases, and illustrate them with motivating examples. 

3.1. Ontology Mapping for Ontology Development 
Ontology is an abstraction for representing conceptual 

knowledge. All concepts are covered by the domain of human 
knowledge and these concepts are connected together in some 
fashion. Hence, it is very hard to limit an ontology in terms of what 
it should represent. This decision is usually made, based on the 
business needs of an organization, i.e. the ontology designer decides 
not to include some concepts, as they seem irrelevant to current 
organizational demands. Ontology design (also known as ontology 
development/engineering) is a complex and subjective issue, similar 
to database design, and requires a human in the loop. 

Assume that an organization is currently using an ontology, 
C. Over time, as organizational models change, business 
processes evolve and are extended. Therefore the ontology C, 
which models the current business processes, also needs to be 
changed and often extended. Sometimes, the new business 
models (or some fragments of the changes) that are required in 
the current ontology have already been captured by ontologies 
that are being used in other organizations. In this case, the 
required extensions to the current ontology C are present in some 
other existing ontology, E. Now, the ontology designer of C 
needs to:  
• Step 1: Find the correspondences between ontologies C and E 
• Step 2: Decide on what concepts, instances and relations of the 

existing ontology E, need to be added to the current ontology 
C, based on the changes in the business model and the 
correspondences found in the previous step.  

Note that the existing ontology E remains the same, while 
current ontology C will change (and be replaced in fact). This use 
case closely resembles the problem that has been analyzed in the 
context of merging/integrating two ontologies in the literature 
[McG00, Noy00, Stu01]. 

Motivating Example 1: Consider two organizations, Org1 
and Org2, offering various products, and using two different 
ontologies, O1 and O2, shown in Figure 1. O1 is shown with white 
rectangles, while O2 is shown with grey rectangles. Some classes 
(i.e. concepts), namely Sale Items and Videos, in O1 have 
corresponding classes (Products and Movies) in O2. In Figure 1, 
since class Videos in ontology O1 is defined in a similar context 
to class Movies in ontology O2, it is conceivable to merge the two 
ontologies and produce a more comprehensive ontology. In 
essence, O1 is being extended with O2 and the merged ontology is 
a mix of white and grey rectangles, as shown in Figure 1.  

 
Fig. 1. Two ontologies O1 and O2, and the merged (integrated) 
ontology Omerged. 

Note that in our scenario, the business model in Org1, which 
was using ontology O1, has changed. For example, Org1 
gradually needs to develop a more comprehensive ontology for 
its ecommerce operations. Therefore Org1 will now be using the 
merged ontology Omerged, which is the result of extending O1 with 
some existing ontology O2. This is while Org2 will keep using O2 
without any changes to its business model. 

 



 

 
Fig. 2. Ontologies O1 and O2, which belong to two different autonomous organizations, are shown in (a) and (c). Skeleton S, connecting the 
ontologies, is shown in (b), in the middle. The concepts in ontology O1 (shown in the figure) are the organizational units within University1. 
The instances in ontology O1 (not shown in the figure) are the courses that are offered by the organizational units within University1. Each 
concept in skeleton S is connected to its corresponding concepts in the original ontologies O1 and O2, with a subclass relationship. 

3.2. Ontology Mapping for Interoperability 
Different enterprises use their own proprietary systems and are 

usually not willing to change their business models and operations. 
However, they also need to exchange information with other 
enterprises. Hence, interoperability between enterprises needs to be 
facilitated across organizational boundaries. That is, in many 
circumstances, users need to query different ontologies (distributed 
and autonomous sources of information) and retrieve data from all 
of them, as if all the information is residing in a unified source. 

Let us define this scenario more formally. Two different 
ontologies, O1 and O2 are designed separately and are being used by 
two autonomous organizations, also known as parties. Each 
ontology is designed based on the business model that governs the 
operations of the organization that it belongs to. Hence, the 
ontology being used by each party can not be changed or extended, 
as we did for the merging use case in Section 3.1. To facilitate 
interoperability between the organizations in this scenario, two 
steps are required: 
• Step 1: Finding the correspondences between ontologies O1 and 

O2 
• Step 2: Representing the correspondences in a suitable structure, 

which we call skeleton S. 
The skeleton is described using the motivating example, next. 
Motivating Example 2: Consider two universities in which 

faculties, and departments within the faculties, are organized 
differently. Ontologies O1 and O2 are shown in Figure 2(a) and 2(c), 
respectively. Ontologies O1 and O2 represent the organizational 
hierarchy of University1 and University2, and are depicted with 
rectangles. There are six corresponding concepts in O1 and O2, 
namely: University, Science, Maths, CS, Physics, and Chemistry, 
shown with a white color. These six concepts appear in different 
places in O1 and O2. The skeleton S consists of these six concepts, 
as shown in Figure 2(b), and represented with ovals.  

When creating a skeleton, first, we need to know the shape (i.e. 
class hierarchy) of the skeleton. The shape of the skeleton governs 
the relationship between the concepts in the skeleton. The shape of 
the skeleton is determined by the ontology of one of the parties (i.e. 
O1 or O2). In Figure 2, the shape of the skeleton is the same as 
ontology O1. Each concept in skeleton S is connected to its 

corresponding concepts in the original ontologies O1 and O2, with 
a subclass relationship.  

Note that Figure 2 shows such connections for the 
University concept, only. The University concept in the skeleton 
is connected to concepts University1 and University2 in ontologies 
O1 and O2, with blue dotted arrows. Other such connections are 
not shown in the figure for more readability. In Example 2, the 
ontology of each organization (i.e. O1 and O2) remains intact, 
unlike Example 1. There is no change in the business models 
(structures) of the universities, at all. However, both universities 
(parties) can be queried using the skeleton, which provides 
interoperability between them, as described next. 

3.3. Contrasting the Goals at a Glance 
In Sections 3.3 and 3.4, we clarify that interoperability may 

not always be facilitated by ontology merging. This clarification 
is a side effect of distinguishing the goals of ontology mapping. 
In principle, the two use cases in Sections 3.1 and 3.2 are very 
different. In Figure 2, the concepts in ontologies O1 and O2 are 
the organizational units within University1 and University2. Each 
concept contains various instances. The instances are the courses 
that are offered by an organizational unit (concept). For example, 
the Computer Science department (concept) in O2 contains the 
courses (instances) that are offered in that department. 

Here, we describe interoperability explicitly. In the 
interoperability use case, we would like to query for all courses 
related to computer science, and retrieve the results from both 
universities (i.e. across organizational boundaries). In Figure 2, 
with the skeleton, we can query for CS courses in ontology O1, 
and using query expansion, we move to the corresponding 
concept in the skeleton (which is CS), and then also retrieve the 
relevant courses from the Computer Science concept in ontology 
O2. Therefore, the query would return the results, as if all data 
resides in a unified source. In essence, the skeleton increases the 
recall of queries by enabling users to retrieve results from 
distributed sources, under a unified framework. 

In Figure 2, let us assume (incorrectly) that we want to 
merge the ontologies (O1 and O2) to facilitate interoperability. 
Consider that course abc is offered in the CS department in O1, 
while a different course, named xyz, is offered in the Computer 



 

Science department in O2. Merging of these two departments by 
stating that the two concepts (CS and Computer Science) are equal 
(similar to but not exactly like Figure 1, for the ontology 
development goal) would imply that instances of one concept are 
also a member of the other concept. In this example, after merging 
the CS and Computer Science concepts, the ontology reasoner 
would infer that course abc is a member of both CS department in 
University1 and Computer Science department in University2, and is 
offered by both departments. Also, course xyz is offered in both 
departments, which is obviously not correct. 

Similarly, in the OWL language (W3C Recommendation), 
using the owl:equivalentClass construct for the merging of two 
concepts (CS and Computer Science), instead of creating a skeleton, 
for the purpose of interoperability is not acceptable for the same 
reason. In other words, stating that Class1 and Class2 are equivalent 
classes using owl:equivalentClass, implies that every instance of 
Class1 is also a member of Class2. This is a very strong statement, 
and not generally applicable for facilitating interoperability between 
two systems.  

Additionally, in Figure 2, when facilitating interoperability 
between parties, the parties are autonomous, and the data in the 
ontologies are often separate. While the parties need a mechanism 
for querying, we can not change the ontologies (business models) of 
either party, as we did in Figure 1 for Organization1 by merging. In 
Figure 2, ontologies O1 and O2, and skeleton S are isolated and 
being administered independently in different namespaces (refer to 
OWL terminology). The ontology of each party does not change at 
all, and the skeleton is created separately, to connect the existing 
parties.  

Up to now, we have distinguished the two goals (i.e. ontology 
development vs. interoperability), and also clarified that ontology 
merging is for ontology development and may not always be used 
for facilitating interoperability. Notice that merging was originally 
proposed for ontology development (refer to our explanation of 
[McG00, Noy00] in Section 8). 

3.4. Implications of Context on Ontology Mapping 
Traditionally, ontologies have been used for creating 

intelligent/expert systems. Those systems were often deployed, by a 
limited number of experts, in constrained domains. The design of 
suitable ontologies in such systems required tools and expertise. As 
a result, the ontology development goal (Section 3.1) was at the 
focus of attention, e.g. [McG00, Noy00]. Nowadays, with the 
advent of the Semantic Web, the need for interoperability (Section 
3.2) between systems/ontologies is becoming more visible.  

In order to explore the requirements of the interoperability 
goal, we carefully probe the above use cases. This will illustrates 
how ontology mapping should be performed, to achieve 
interoperability. In this section, we study the ontology mapping 
goals, across different dimensions. The dimensions serve as a 
guideline for the ontology mapping task, and they influence the 
design of tools and algorithms for this task. 

A. Representation: Obviously, the goals of ontology mapping 
should propel the solution forward. Based on the definition of 
ontology mapping provided in Section 2, Step 1 (i.e. finding 
correspondences) is similar for achieving either goal of ontology 
mapping. In Step 2, for representing the found correspondences 
between two ontologies, we need a suitable representation. The 
question of how to represent the correspondences can be studied 
more concretely, in light of the distinction that we made about the 
goals of mapping. For developing and merging ontologies, the 
merged ontology is in fact the representation for the found 

correspondences (refer to Omerged in Figure 1). This is similar to 
the work of [McG00, Noy00]. 

As described in Section 3.3, merging of ontologies does not 
create a suitable representation for facilitating interoperability 
between two systems, in the general case. For interoperability, we 
present a novel W3C-compliant representation, named skeleton, 
to encode the correspondences between ontologies and facilitate 
interoperability between them, as shown in Figure 2. In Section 
6, we provide an algorithm for creating the skeleton and also 
examine why the skeleton is a suitable representation. In Figure 
2, there is no merging involved, and O1, O2 and S reside in 
different namespaces.  

B. Inconsistency: When merging ontologies for ontology 
development (Section 3.1), various inconsistencies can arise and 
the task involves complex decision making, since there may be 
various ways to avoid the inconsistencies. For example, in Figure 
1, consider the class Videos in ontology O1 and class Movies in 
ontology O2, and instances of both these classes, which are 
movies, categorized using genres from the YahooMovies 
website. Consider that in ontology O1, there is a cardinality 
restriction for instances of Videos, such that each instance of 
Videos has exactly one genre from the YahooMovies website. 
However, in ontology O2, there is a cardinality restriction for 
instances of Movies, such that each instance of Movies has 
exactly two genres from the YahooMovies website. Now, if we 
merge the classes for Videos and Movies (as we did in Figure 1 
for Omerged), it is not obvious how to handle this cardinality 
inconsistency. There are various options and the ontology 
designer has to make these decisions at design time, when 
developing the new ontology. Handling these complex issues is 
an integral part of the ontology development process, as outlined 
in the first goal. 

For another example of inconsistency in Figure 1, assume 
that in addition to the Toys class which is a subclass of Products 
in O2, the Electronic Equipment class in O1 also has a Toys class 
as subclass. Now, the resulting merged ontology would have two 
Toys concepts, one of which is a subclass of Sale Items (shown in 
Omerged in Figure 1) and the other is a subclass of Electronic 
Equipment (not shown in Omerged). Even combining the two Toys 
concepts may not have the desired effect, since other conflicts 
could arise, similar to the cardinality problem, as mentioned 
previously. Additionally, the nature of the merging problem is 
such that the current ontology is not only being extended, but also 
needs to evolve, to accommodate the neighboring classes of the 
corresponding class in the existing ontology. For example in 
Figure 1, if the class Movies did not have a parent class, a simple 
extension would have sufficed, but now that it has a Products 
class as its parent, we must accommodate the Products class as 
well, when merging Movies into O1. 

Considering our small example in Figure 1 and the various 
inconsistencies that could arise from merging, it is obvious that 
ontology merging is usually not a scalable process and should be 
performed in the context of developing a new ontology, to meet 
the new business demands of an organization. It is certainly not 
suitable for creating a global system to facilitate interoperability 
between parties. On the other hand, using a skeleton for 
interoperability does not create such inconsistencies, since the 
ontologies of the organizations are kept separately in different 
namespaces, as shown in Figure 2. 

C. Automation: For both goals of ontology mapping, Step 1 
(i.e. finding correspondences), should have a human user in the 
loop (unless the results are approximate). Notice that the issue of 



 

representing the correspondences is dealt with separately, in Step 2, 
after the correspondences are given/determined.  

As for Step 2 (creating a suitable representation for the 
correspondences), when merging ontologies for ontology 
development, there is a potential for inconsistencies to arise. 
Ontology design (similar to database design) involves subjective 
decisions. Hence, the merging process can only be “semi-
automated” at best. Ontology merging algorithms should have a 
human user in the loop, as in the PROMPT Suite [Noy00]. 
Moreover, the process should be interactive, to allow the changes to 
the ontology to be verified at each step, by the human ontology 
designer. The designer should be familiar with ontologies and 
domain knowledge modeling.  

On the other hand, when creating the skeleton representation 
for facilitating interoperability, as long as the correct set of 
corresponding concepts between the parties is given, as input, the 
skeleton can be created using a fully automated algorithm (refer to 
Section 6), since the process does not create inconsistencies. 

D. Class Matching: In Step 1 of ontology mapping, when 
finding the correspondences between two ontologies, various 
entities in the ontology (e.g. classes, individuals, and properties) 
could be considered. For ontology merging, all entities are 
important for correspondences. In Section 4, we compare the 
information integration problem in databases to the interoperability 
goal in ontology mapping. The comparison shows that finding 
corresponding classes, is a critical part of ontology mapping for 
facilitating interoperability. However, this does not imply that 
matching of individuals is not important. In fact, matching of 
corresponding individuals provide auxiliary information for the 
ultimate task of class matching. Note that the skeleton 
representation (Figure 2) is actually geared towards capturing class 
correspondence, as well. 

E. The Relationship with the Semantic Web: By carefully 
examining the design goals of the Semantic Web, we can conclude 
that there is a close relationship between the ontology mapping 
problem for interoperability and the Semantic Web vision. The 
design goals of the Semantic Web include [Hef04]: (1) Using 
shared ontologies, (2) Supporting ontology evolution, (3) Ontology 
interoperability, (4) Inconsistency detection across ontologies, (5) 
Balance of scalability and expressivity in creating ontologies, (6) 
Ease of use, (7) Compatibility with other standards, and (8) 
Supporting internationalization. 

We will use the item numbers to refer to the eight goals, above. 
By focusing on the ontology mapping problem with an emphasis on 
interoperability (Section 3.2), as opposed to the ontology merging 
emphasis (Section 3.1), we also address the core design goals of the 
Semantic Web. Note that in Figure 2, allowing various autonomous 
(isolated) organizations/parties to create and adopt their own 
ontologies as a community, is in agreement with goal 2 (supporting 
ontology evolution). Facilitating interoperability between these 
isolated parties using the skeleton is in agreement with goal 3 
(ontology interoperability). In Section 5, when presenting the class 
similarity metrics, we demonstrate how goal 1 (using shared 
ontologies) supports the class matching process for interoperability. 
Altogether, this neatly ties the ontology mapping problem for 
interoperability to the first three design goals of the Semantic Web. 
The idea of having distributed modular ontologies (adopted by 
different communities), and providing links between these 
ontologies to support interoperability, is inline and tightly coupled 
with the spirit of the Semantic Web. 

F. Discussion: Based on Section 3, it is clear that ontology 
development (as in ontology merging) and interoperability (i.e. 

information integration) are two separate goals of ontology 
mapping. We illustrated that ontologies should not be merged for 
facilitating interoperability. The comparison of the goals is vital, 
since it clarifies how ontology mapping should be performed and 
represented, in different applications. 

The above use cases and analysis demonstrate that 
interoperability is an important goal of ontology mapping. By 
interoperability, we mean that users should be able to query 
distributed information sources, as if the data resides in a unified 
source. In Section 4, we focus on this goal; that is, independent of 
ontology merging. We treat the interoperability goal more 
thoroughly, by comparing it with the information integration 
problem in databases. The interoperability goal is quite similar to 
what the database community is trying to achieve in the context 
of information integration research and schema matching. 

4. CLASS MATCHING: A CRITICAL PART 
OF FACILITATING INTEROPERABILITY 

Based on the definition of ontology mapping (in Section 2), 
in Step 1, the correspondences between ontologies need to be 
determined, and the question is what candidates to consider, 
when finding correspondences between ontologies. Now that we 
have clarified the goals of ontology mapping (in Section 3), we 
are ready to tackle the question of what candidates to consider. 
For the ontology development goal and merging of two 
ontologies, all entities of an ontology (i.e. classes, individuals, 
and properties) are usually considered, so that the two ontologies 
can merged. In this section, we show that for the interoperability 
goal, finding the corresponding classes (i.e. class matching) is 
very critical. 

Considering the similarity of the ontology mapping problem 
for facilitating interoperability and the information integration 
problem in databases, we analyze and compare them, in this 
section. The comparison illustrates that class matching is critical, 
when mapping between ontologies for facilitating 
interoperability. Note that since OWL is based on RDF, our 
discussion also applies to OWL. Additionally, we are not 
mapping between ontologies and databases, i.e. there is no 
transformation involved between the two models. We are only 
comparing the models to illustrate what should happen, when 
facilitating interoperability between ontologies. The problem of 
facilitating interoperability between databases has been studied 
for three decades in the context of information integration in the 
database community. Hence, our comparison provides insight 
and sheds light on the relatively newer problem of 
interoperability between ontologies. 
4.1. Information Integration in Databases 

The problem of combining heterogeneous data sources 
under a single query interface is commonly known as “data 
integration” or “information integration” in the database 
community. A thorough theoretical study of the problem is 
presented in [Len02]. We base our discussion on [Doa01, Len02], 
while other interpretations may exist. The main idea is to provide 
a uniform query interface over a mediated schema. The query is 
then transformed into specialized queries over the original 
databases. This process can also be called view based query 
answering, because we can consider each of the data sources to 
be a view over the mediated schema. Formally, such an approach 
is called Local As View (LAV), where “Local” refers to the local 
sources/databases. An alternate model of integration is one where 
the mediated schema is designed to be a view over the sources. 



 

This approach is called Global As View (GAV), where “Global” 
refers to the global (mediated) schema. 

Figure 3 shows an example of the information integration 
problem in databases. Here, the goal is to generate a mapping 
between columns (Town and City) in different local schemas (S and 
T), by mapping them to some global schema. The local schemas 
usually reside in separate autonomous data sources (DataSource1 
and DataSource2). Figure 3 illustrates one example mapping 
between schema S and schema T. More details about the 
information integration process in databases can be found in 
[Doa01, Len02]. This is a simple and important example that will 
be used later in this section to demonstrate how ontology mapping 
should be performed to facilitate interoperability, and how ontology 
mapping for interoperability relates to schema mapping (i.e. 
information integration). 

 
Fig. 3. Example of the information integration problem in 
databases. The goal is to generate a mapping between columns 
(Town and City) in different local schemas (S and T), by mapping 
them to some global schema. The local schemas usually reside in 
separate autonomous data sources (DataSource1 and DataSource2). 

4.2. Interoperability 
Following the description of information integration in 

databases above, it is important to point out that, the term 
“integration” might be vague to some extent, since it might 
unintentionally be interpreted as some type of “merging” of 
schemas. This is not what actually occurs in databases, as the 
schemas in each local data source are handled autonomously and 
need to be kept separately. The local data sources are often 
administered by different organizations and are not merged 
(integrated). In fact organizations are not willing to change their 
business models and everyday operations. 

The ultimate goal of information integration is to provide 
interoperability between various systems, which is the exact same 
goal that we identified in Section 3.2. The term “interoperability” is 
clearer for describing the motivations and objectives of the process. 
By analogy, there is no merging of ontologies involved in ontology 
mapping, when we are trying to achieve interoperability between 
organizations, which use different ontologies (refer to Section 3.2). 
4.3. Expression of Simple Facts in the RDF Model 

Simple facts in the RDF model indicate a relationship between 
two things. Such a fact may be represented as an RDF triple in 
which the predicate (i.e. property) names the relationship, and the 
subject and object denote the two things.  Figure 4(a) shows the 
predicate hasAuthor, which is the relationship between the subject 
and the object. The subject is an instance of class Book, while the 
object is an instance of class Author. The classes are depicted as 
ovals. For example, The Art of Computer Programming (which is a 
book) hasAuthor Donald Knuth (who is an author). 

In contrast with the relational database model (Section 4.4), 
the use of extensible URI-based vocabularies in RDF facilitates 
the expression of facts about arbitrary subjects; i.e. assertions of 
named properties about specific named things. A URI can be 
constructed for any thing that can be named, so RDF facts can be 
about any such things. The use of Uniform Resource Identifiers 
(URIs) in the RDF model provides a very powerful mechanism 
for facilitating interoperability on the Semantic Web. Consider 
that the success and scalability of the current WWW 
infrastructure is a vivid illustration of the tremendous potential of 
the idea of using links or URIs (which seems like a simple idea at 
first glance). 
4.4. Expression of Simple Facts in the Relational Model 

A familiar representation of a fact in the relational model in 
databases is a row in a table. The terms row and table are also 
known as tuple and relation, respectively. A table has a number 
of columns (also known as attributes). Figure 4(b) shows the 
hasAuthor table. The table has two columns, namely Book and 
Author. A row for example indicates that, The Art of Computer 
Programming (which is a book) hasAuthor Donald Knuth (who 
is an author). 

 
Fig. 4. Correspondence between the RDF and relational models. 
(a) The predicate hasAuthor, which is the relationship between 
the instances of class Book and the instances of class Author, in 
the RDF model. (b) The table hasAuthor, which has two 
columns, namely Book and Author, in the relational model. 

4.5. The Analogy between the RDF and Relational 
Models 

By comparing the explanations of the RDF and relational 
models above, and by observing Figure 3, we can infer that the 
classes Book and Author (in RDF) correspond to the columns 
Book and Author (in relational). The correspondence between 
classes and columns is an important one, and it will be used in 
Section 4.6. The correspondence is also depicted in Figure 5. The 
other substantial correspondence is between instances of a class 
in RDF, with column values in relational. 

 
Fig. 5. The correspondence between classes (in the RDF model) 
and columns (in the relational model). There is also a 
correspondence between instances of a class (in RDF) and 
column values (in relational). 

In the above discussion, the description of the relational 
model was constrained, such that a table only contained two 
columns. Now, we consider the general case, where a table 
contains more than two columns. In Figure 6(b), the table in the 



 

relational model has three columns, namely Book, Author and 
Publisher. Then, the RDF model would also have three 
corresponding classes, as shown in Figure 6(a). The correspondence 
between classes and columns still holds. It is essential to realize that 
the name of the table in the relational model is arbitrary. We used 
TableName in Figure 6(b). Additionally, two predicates, namely 
hasAuthor and hasPublisher, are now used in the RDF model 
(Figure 6(a)). The name of the two predicates in RDF is arbitrary 
and could be anything. 

Notice that in Figure 4, we do not infer a correspondence 
between the name of the table (hasAuthor in relational) and the 
name of the predicate (hasAuthor in RDF), as this correspondence 
has no real substance. The comparison in Figure 6 actually 
eliminates the role of the table name in the relational model. 
Therefore, the substantial correspondence is between classes and 
instances in RDF, with columns and column values in relational, 
respectively. There is no correspondence for predicate (i.e. 
property) names in the relational model. This is due to the fact that 
in the RDF model, relations are encoded explicitly, in contrast with 
the relational model. 

 
Fig. 6. A more general correspondence between the RDF and 
relational models. (a) The three classes in RDF are Book, Author, 
and Publisher. The name of the two predicates (hasAuthor, 
hasPublisher) in RDF is arbitrary and could be anything. (b) A table 
in the relational model, which has three columns, namely Book, 
Author, and Publisher. The name of the table (TableName) is 
arbitrary. 

4.6. Class Matching: Why 
Section 4.1 showed that in databases, the final output of the 

information integration process is a mapping between columns in 
different local schemas (refer to Figure 3). In Section 4.5, we 
illustrated that columns in the relational model correspond to 
classes in the RDF model (refer to Figure 4 and 5). Therefore, it is 
clear that to facilitate interoperability between ontologies, the 
classes in the ontologies need to be mapped to each other.  

In RDF, the data is the instances of classes. The ultimate 
objective of interoperability is to query and correctly retrieve these 
data instances, across various ontologies. The data resides in the 
classes in the ontologies. Notice that as long as the correct mapping 
between the classes in the ontologies exists, users can query and 
correctly retrieve the data instances, across various ontologies. For 
example, in Figure 2, users would like to retrieve course instances 
from both CS class in University1 and Computer Science class in 
University2. By analogy, in the relational model, the data is the 
values in the columns. A correct mapping between the columns in 
the schemas enables users to correctly retrieve the data (column 
values) across various schemas. 

Let us return to the question (raised in the ontology mapping 
definition in Section 2) that what candidates to consider, when 
finding correspondences between ontologies. Our detailed 

comparison in this section clarifies that a critical part of ontology 
mapping for facilitating interoperability is the matching of 
classes. The class matching objective directly facilitates 
interoperability. This is one of the critical implications of 
focusing on the context of interoperability in ontology mapping, 
as mentioned in Section 3.4.D. The class matching objective does 
not imply that other entities are not used for class matching. 
Matching of other entities is usually helpful for the matching of 
classes, as described in Section 5. Basically, the question of how 
to find the matching classes is a separate issue, addressed in the 
next section. 

5. CLASS SIMILARITY METRICS AND 
CLASS MATCHING ALGORITHM 

In the previous section, we identified that class matching is a 
critical part of ontology mapping for facilitating interoperability. 
In this section, we provide an algorithm for class matching (i.e. 
finding corresponding classes). The algorithm utilizes various 
class similarity metrics. Each of the class similarity metrics is 
formally defined. Additionally, the relationship between the 
matching of classes and the matching of instances is clarified. 

Definition 1 (Mapping for interoperability): Let C1 be the 
set of classes of ontology O1 and C2 be the set of classes of 
ontology O2. Map m is a total function 1 2: [0,1]m C C⊗ → , 

where 1 2C C⊗  is defined as the set of all distinct unordered 
pairs of elements of sets C1 and C2, that is: 

1 2 1 2{( , ) | , }C C a b a C b C⊗ = ∈ ∈ . 
Definition 2 (Class Matching, Threshold, Similarity 

Value, Similarity Metric): Class matching is the process of 
determining corresponding classes between ontologies O1 and O2, 
which is specified using a threshold t. Map m assigns a similarity 
value to each pair of classes. If the similarity value, defined by 
map m, is greater than threshold t, then the classes match. We 
compute the similarity value by summing the result of the 
following four similarity metrics: lexical, extensional, extensional 
closure, and global path, which are defined, later. In order to 
compute the similarity value more effectively, a weighted sum of 
these metrics could also be used, or the result of each metric 
could be normalized.  

As mentioned in Section 3.4.C, in regard to automation, the 
merging of ontologies for the ontology development goal can not 
be automated and needs a human user in the loop. On the other 
hand, ontology mapping for the interoperability goal consists of 
two steps (Section 3.2): finding the class correspondences (Step 
1), and representing the class correspondences using a skeleton 
(Step 2). For Step 1, human judgment may be required for setting 
the threshold. For Step 2, Section 6 provides a fully automated 
algorithm for creating the skeleton. 

While class matching can only be semi-automated, skeleton 
creation, which happens after a set of correspondences are given, 
can be fully automated. Section 5 provides the class matching 
algorithm, and Section 6 provides the skeleton creation 
algorithm. In principle, ontologies can cover any domain of 
knowledge, and the nature of data instances is extremely diverse 
in different applications. Hence, it is difficult to provide general 
guidelines on how to set the threshold for all 
ontologies/applications. Essentially, the threshold needs to be 
determined experimentally for each application and dataset. 

Definition 3 (Lexical Similarity Metric): Let s∈C1 and 
t∈C2 be two classes in the ontologies. The lexical similarity 



 

metric is a function that assigns a real-valued number in the range 
of [0, 1] to the pair {s, t}, based on the closeness of the strings 
representing the names of s and t. 

Definition 4 (Extensional Similarity Metric): Let s∈C1 and 
t∈C2 be two classes in the ontologies. The set of individuals which 
are direct members of s and t are represented as e(s) and e(t), 
respectively. The extensional similarity metric for s and t is 
computed as | ( ) ( ) | | ( ) ( ) |e s e t e s e t∩ ∪ . This is similar to 
computing the Jaccard similarity coefficient of two sets. 

Definition 5 (Extensional Closure Similarity Metric): Let 
s∈C1 and t∈C2 be two classes in the ontologies. If class x is a 
subclass of class y, it is denoted as x y . The extensional 
closure of s, denoted as ec(s), is computed as 

1

( ) { ( ) | }c
i C

e s e i i s
∈

= ∪ . The extensional closure similarity 

metric for s and t is equal to 
| ( ) ( ) | | ( ) ( ) |c c c ce s e t e s e t∩ ∪ . 

Instance Matching 
Based on Definitions 4 and 5, instances within two classes 

need to be matched, i.e. duplicate instances should be identified. 
This task is necessary for both the ontology development goal and 
the interoperability goal. When merging ontologies for ontology 
development, duplicate instances in corresponding classes need to 
be detected and eliminated, so that the classes in the merged 
ontology would only contain unique instances. When performing 
class matching for facilitating interoperability, the instances of 
classes are not merged. Nevertheless, duplicate instances may need 
to be detected, in order to compute the intersection of instances of 
two classes correctly, when computing the extensional and 
extensional closure similarity metrics. 

There are various approaches that can be used for instance 
matching. One simple approach is based on the assumption that if 
two instances in different ontologies are the same, they also use the 
same URI, which would help in identifying the instances uniquely. 
This assumption is usually not applicable in practical settings, since 
different organizations use different naming standards and URIs. 
Another approach, which we also use in our experiments, is to 
identify duplicate instances using approximate string matching 
techniques for the name of instances, similar to the lexical similarity 
metric used for the name of classes (Definition 3).  

In a more complicated approach, the domain knowledge about 
instances and the facts stated in a knowledge base may also be used. 
As mentioned in Section 3.4.E, some of the design goals of the 
Semantic Web (SW) are quite beneficial for instance matching on 
the SW. Remember that design goal 1 was using shared ontologies. 
An example of a shared ontology is FOAF. If T. B. Lee and Tim 
Berners-Lee are two instances and both have the same foaf:mbox 
property value (i.e. email address), which is an 
owl:InverseFunctionalProperty, the ontology reasoner can infer that 
the instances are duplicates. In other words, ontology inference 
helps in identifying duplicate instances that may not be detected 
using approximate string matching. Notice that in this example, the 
use of shared ontologies (e.g. foaf) helps in instance matching, 
which is a part of the ontology mapping process. This approach, for 
instance matching on the Web, has important applications for 
facilitating interoperability in the Semantic Web vision. 

Definition 6 (Global Path Similarity Metric): Let s∈C1 and 
t∈C2 be two classes in the ontologies. Path of s, denoted as p(s), is 
the path that starts from the root of an ontology and ends at s. The 

global path similarity metric for s and t is equal to the score 
assigned to the similarity of p(s) and p(t). The score is based on 
the lexical similarity of the classes that appear in the two paths. 

Class Matching Algorithm 
For Step 1 in Section 3.2, we now present our class 

matching algorithm, below. The Class-Matching algorithm 
exploits the class similarity metrics introduced in this section. 
Line 2 relates to Definition 3. Lines 3-5 compute the extensional 
similarity using the ontology reasoner, as in Definition 4. Lines 
6-8 are based on the extensional closure similarity, as in 
Definition 5. Lines 9-11 compute the global path similarity, as in 
Definition 6. Line 12 computes the similarity value for classes 
and compares it to the threshold, as in Definition 2. 

Class-Matching Algorithm 
Input:   
O1, O2: Original ontologies 
C1: Set of classes in O1 
C2: Set of classes in O2 
Output:  
M: Set of matching class  
     pairs (c1, c2), s.t. c1∈C1, c2∈C2 
1. for all c1∈C1, c2∈C2 
2.   lexSim← lexicalSim(c1.name, c2.name) 
3.   c1.ex← reasoner.Extensions(c1) 
4.   c2.ex← reasoner.Extensions(c2) 
5.   extSim← extensionalSim(c1.ex, c2.ex) 
6.   c1.all← reasoner.AllExtensions(c1) 
7.   c2.all← reasoner.AllExtensions(c2) 
8.   extCSim← extensionalClosureSim(c1.all, c2.all) 
9.   c1.path← reasoner.GlobalPath(c1) 
10.  c2.path← reasoner.GlobalPath(c2) 
11.  gpSim← globalPathSim(c1.path, c2.path) 
12.  if ( lexSim+extSim+extCSim+gpSim > threshold) 
       then M ← M ∪  (c1, c2) 
13.end for 
14.return M 

6. SKELETON REPRESENTATION 
The issue of representation is an important implication of 

focusing on the context of interoperability in ontology mapping, 
as mentioned in Section 3.4.A. Based on the definition of 
ontology mapping (in Section 2), in Step 2, the found 
correspondences between the ontologies need to be represented. 
Now, the question is how to represent them in a suitable format. 
For the ontology development goal, when integrating ontologies, 
the outcome of the process is one merged ontology. This merged 
ontology actually represents the correspondences between the 
ontologies. For the interoperability goal, we should not merge the 
ontologies. Instead, we provide a novel W3C-compliant 
representation, named skeleton, to encode the class 
correspondences between the ontologies, as shown in Figure 2. In 
this section, we provide an algorithm for creating the skeleton 
(refer to Step 2 in Section 3.2). 

Sections 3.2 and 3.3 described how the skeleton facilitates 
interoperability between organizations. We also described the 
query expansion mechanism in ontologies for query answering. 
The skeleton represents the class correspondences between 
ontologies of organizations. These correspondences are essential 
for searching and query answering in the ontology reasoning 
process. The skeleton is a suitable representation, as it allows 
query answering over various ontologies (organizations). The 
skeleton increases the recall of queries by enabling users to 
retrieve results from distributed sources. Our design for the 



 

skeleton representation is compliant with the W3C 
recommendations. In other words, when using the skeleton, query 
answering and query expansion can be performed, using standard 
tools, without any ontology reasoner adjustments, and extra 
implementation effort. That is to say, all these issues are handled by 
the ontology reasoner, in a standard fashion. 

To describe the Skeleton-Creation algorithm, below, we use 
the motivating example, depicted in Figure 2. The Class-Matching 
algorithm, introduced in Section 6, is a prerequisite for the Skeleton-
Creation algorithm. The output of the Class-Matching algorithm is 
the set of matching class pairs (M) of the two ontologies. This set 
(M) is the input of the Skeleton-Creation algorithm. In lines 1-5, for 
each pair in set M, a class node is created in the skeleton. The name 
of the class in ontology O1 is assigned to the class in the skeleton. 
The class in the skeleton is connected to the classes in the pair. In 
Figure 2, the classes in the skeleton are University, Science, Maths, 
CS, Physics, and Chemistry, which are connected to their 
corresponding classes in O1 and O2. Figure 2 shows such 
connections for the University concept, only, i.e. the University 
concept in the skeleton is connected to concepts University1 and 
University2 in ontologies O1 and O2, with blue dotted arrows. In line 
6, the ontology reasoner infers the class hierarchy of ontology O1. 
In line 7, this hierarchy is used for connecting the class nodes in the 
skeleton, to each other. 

Skeleton-Creation Algorithm 
Input:   
O1, O2: Original ontologies 
C1: Set of classes in O1 
C2: Set of classes in O2 
M: Set of matching class  
     pairs (c1, c2), s.t. c1∈C1, c2∈C2 
Output:  
S: Skeleton 
1.  for each pair (c1, c2) in M 
2.    Create a class node s∈S 
3.    s.name ← c1.name 
4.    Connect s to c1 and c2, using  
        subclass relation 
5.  end for 
6.  H1 ← reasoner.ClassHierarchy(O1) 
7.  Create the same class hierarchy  
      as H1, between all classes s∈S 
8.  Return S 

7. EMPIRICAL EVALUATIONS 
In order to evaluate the effectiveness of the class similarity 

metrics, formalized in Section 5, we implemented these similarity 
metrics. In our implementation, Pellet was used for ontology 
reasoning. Pellet is an open source reasoner written in Java. The 
results of our experimental trials, reported here, are from two real-
world ontologies. The ontologies were developed separately by 
different organizations. This dataset is selected from the datasets 
that are provided for the Ontology Alignment Evaluation Initiative. 

When computing the lexical similarity metric for comparing 
the name of classes in two ontologies, various string similarity 
measures can be used. The results show that the performance of 
these measures varies considerably, as illustrated in Figure 7. The 
Jaro-Winkler measure shows a more robust behavior for finding 
corresponding classes in ontologies, based on class name. By 
decreasing the threshold in the class matching algorithm for each 
string similarity measure, the recall increases, the precision 
decreases, and various precision-recall performance levels are 
achieved, as shown by the plots on the curves, in Figure 7. Usually, 
there is a precision-recall tradeoff, and precisions below the 60 

percent level are not very useful, since many of the detected 
matches would then be incorrect.  

In Figure 7, by decreasing the threshold for identifying a 
match, we can increase the recall rate to some extend. However, 
as the diagram demonstrates, it is not possible to increase the 
recall to above 80 percent, by only decreasing the threshold, since 
this would cause a sharp drop in precision, i.e. introduce many 
incorrect results. 

 
Fig. 7. Performance of various string similarity measures for 
finding corresponding classes in ontologies, based on name. 

 
Fig. 8. Using extensional, extensional closure and global path 
similarity metrics, in addition to lexical, increases the recall and 
F1 quality measure. 

The results in Figure 8 are cumulative from left to right, and 
each similarity metric is added to the previous ones. The 
precision and recall bars for Lexical (Jaro-Winkler) in Figure 8, 
are showing the same precision and recall values, as the first 
point on the Jaro-Winkler curve in Figure 7. Also, for all the 
experiments in Figure 8, we use the same threshold, as the first 
point on the Jaro-Winkler curve in Figure 7. Hence, in Figure 8, 
the threshold does not change, and there is no precision-recall 
curve (unlike Figure 7). Figure 8 shows that using the 
extensional, extensional closure, and global path similarity 
metrics, in addition to lexical, improves the recall. At the same 
time, in Figure 8, the precision remains almost the same.  



 

Note that the recall can also be improved by decreasing the 
threshold in Figure 7 - however that considerably reduces the 
precision of results (as shown in Figure 7). In Figure 8, by using 
additional similarity metrics, we can improve the recall, without 
decreasing the threshold and losing precision. Therefore, we 
effectively overcome the precision-recall tradeoff, as evident by the 
increase in the F1 quality measure. This demonstrates that using the 
additional class similarity metrics helps in finding more 
corresponding classes and achieving better results. 
8. RELATED WORK 

[McG00] tackles ontology merging for government 
intelligence, where ontologies are developed by various teams. The 
teams are responsible for the development, design and maintenance 
of ontologies. These ontologies need to be integrated into other 
large application ontologies. [McG00] creates a tool called 
Chimaera for the above tasks. [Noy00] developed the PROMPT 
tool for merging ontologies. The goal was to reuse existing 
ontologies to help in ontology development efforts. Merging of 
ontologies causes inconsistencies and the user is interactively 
prompted with suggestions to remedy these inconsistencies. Both 
[McG00, Noy00] provide concrete ontology merging scenarios. 
Note that these works are in the context of ontology development 
(refer to Section 3.1). In both papers, there is no mention of 
interoperability or information integration (refer to Section 3.3). 

[Stu01] uses the set of shared instances or the set of shared 
documents that are annotated with the concepts of two ontologies. 
Then, a lattice is generated to merge and relate the classes of the 
ontologies, using formal concept analysis. Various systems have 
studied finding lexical matches between ontology entities, or use 
dictionaries, WordNet and other resources for the matching process. 
Doan utilizes machine learning for ontology matching [Doa03]. It 
exploits a Naïve Bayes (NB) classifier to detect the similarity of 
classes in two ontologies. Tabulator is a nice generic data browser 
and editor for the Semantic Web. It provides a way to browse RDF 
data on the web, using outline and table modes [Ber06]. 

[van08] provides an interesting overview of the semantic 
interoperability problem and reviews some of the core issues 
involved. van Harmelen states that with the rapid growth of the 
Internet and the Web, more principled mechanisms to facilitate 
semantic interoperability (i.e. facilitate querying of data) across 
organizational boundaries have become necessary. He emphasizes 
that despite many years of work on the semantic interoperability 
problem, this old problem is still open and has acquired a new 
urgency, now that physical and syntactic interoperability barriers 
have largely been removed. Note that the skeleton addresses the 
semantic interoperability problem, i.e. the skeleton enables users to 
query the data across organizational boundaries. [Ala08] illustrates 
some of the advantages of Semantic Web technologies through 
pragmatic examples. [Cor10] presents an approach for achieving 
RDF data integration using SPARQL query rewriting. They use 
graph rewriting rules to create a new graph pattern that is expressed 
in the form of the target ontology, but maintains the intended 
semantics of the source ontology. 

Some ontology mapping solutions produce a merged ontology 
as the final output, e.g. [McG00, Noy00, Stu01]. That line of work 
is generally in the context of ontology development. In our 
approach, when mapping between ontologies for interoperability, 
there is no merging involved. Our approach to facilitating 
interoperability is different from ontology merging solutions, since 
merging inherently follows a different goal (refer to Sections 3.3 
and 3.4). In our approach, for facilitating interoperability between 
organizations, we find the class correspondences between the 

ontologies and then create a skeleton to represent these 
correspondences. To our knowledge, this is the first work that 
provides the required algorithms for this approach, with attention 
to the requirements of the Semantic Web, in a fashion that is 
compliant with the W3C recommendations. 
9. CONCLUSION 

In this paper, we explicitly defined the ontology mapping 
problem and systematically examined its components. We 
investigated the mapping problem across various dimensions and 
carefully distinguished its goals. Based on the goals, we 
addressed the questions of what candidates to consider for 
finding the correspondences, and how to represent the 
correspondences. We also illustrated the tight coupling between 
the interoperability goal and the Semantic Web vision. 
Furthermore, we rigorously compared the interoperability goal 
for ontology mapping with the information integration problem in 
databases. 
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