
Metacognition for Detecting and Resolving Conflicts in Operational Policies

Darsana P. Josyula, Bette Donahue, Matt McCaslin and Michelle Snowden
Bowie State University

Bowie, MD 20715, USA
darsana@cs.umd.edu

Michael L. Anderson
Franklin & Marshall College
Lancaster, PA 17604, USA

michael.anderson@fandm.edu

Tim Oates and Matthew D. Schmill
University of Maryland Baltimore County

Baltimore, MD 21250, USA
oates@cs.umbc.edu

Donald R. Perlis
University of Maryland

College Park, MD 20742, USA
perlis@cs.umd.edu

Abstract

Informational conflicts in operational policies cause
agents to run into situations where responding based on
the rules in one policy violates the same or another pol-
icy. Static checking of these conflicts is infeasible and
impractical in a dynamic environment. This paper dis-
cusses a practical approach to handling policy conflicts
in real-time domains within the context of a hierarchi-
cal military command and control simulated system that
consists of a central command, squad leaders and squad
members.
All the entities in the domain function according to pre-
set communication and action protocols in order to per-
form successful missions. Each entity in the domain
is equipped with an instance of a metacognitive com-
ponent to provide on-board/on-time analysis of actions
and recommendations during the operation of the sys-
tem. The metacognitive component is the Metacogni-
tive Loop (MCL) which is a general purpose anomaly
processor designed to function as a cross-domain plug-
in system. It continuously monitors expectations and
notices when they are violated, assesses the cause of the
violation and guides the host system to an appropriate
response.
MCL makes use of three ontologies—indications, fail-
ures and responses—to perform the notice, assess and
guide phases when a conflict occurs. Conflicts in the set
of rules (within a policy or between policies) manifest
as expectation violations in the real world. These ex-
pectation violations trigger nodes in the indication on-
tology which, in turn, activate associated nodes in the
failure ontology. The responding failure nodes then ac-
tivate the appropriate nodes in the response ontology.
Depending on which response node gets activated, the
actual response may vary from ignoring the conflict to
prioritizing, modifying or deleting one or more conflict-
ing rules.

1 Introduction

Effectively dealing with global threats such as terrorism re-
quires cooperation and collaboration across multiple govern-
ment agencies having different operational policies. Opera-
tional policies include the pre-set communication and action

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

protocols established for effective cooperation and collabo-
ration between agents. These policies are typically repre-
sented declaratively using deontic concepts such as permis-
sions, obligations, and prohibitions (Kagal 2004).

Informational clashes can arise within one policy or
across multiple ones; when policies from multiple sources
are combined (fused or integrated), the chances of such in-
consistencies grow rapidly. Conflicts in operational policies
can cause autonomous agents to run into situations where an
action by an agent violates one policy or the other. There-
fore, there is tremendous interest in statically checking these
policies for inconsistencies.

A standard approach for consistency checking of policies
is to use formal automated reasoning over their declarative
representations. If there is a contradiction, it will eventu-
ally be revealed. This approach, however, is problematic
for at least three reasons. First, it is computationally in-
tractable for the majority of expressive access control lan-
guages, such as the popular XACML (Kolovski 2008), and
even for some that are extremely simple (Dinollt, Benzinger,
and Yatabe 1994). Second, agencies may be unwilling to
publish their policies for automated reasoning and other
forms of scrutiny. Third, beyond detecting inconsistencies,
resolving these conflicts may require additional knowledge
that is not available in the inconsistent policies; or inferen-
tial capability that is not available in the formal logics that
check them for (in)consistency. This paper illustrates how
a metacognitive component that can detect and deal with
anomalies can provide an agent the ability to handle oper-
ational policy violations in real-time domains.

Consider this example: a request for signals intelligence
(SIGINT) data on the location of enemy troops is denied be-
cause the communication channel used to convey the data is
secure and the requestor lacks proper clearance. A human
might respond in any number of appropriate ways, such as
modifying the query to omit the components of the data de-
nied by the security policy, bringing the matter to the atten-
tion of superiors with the power to override the policy, or
consulting a different source. An automated system, on the
other hand, might simply keep trying forever, or take some
other inappropriate action unless it had been programmed
with specific instructions for this situation.

The issue then is how to design a system that can respond
effectively in situations it was not explicitly designed for

26



and regarding which it does not have explicit knowledge.
Our hypothesis is that this ability can largely be captured by
a general-purpose anomaly-processor which, when coupled
with an existing host system, improves the system’s robust-
ness.

The host system for this experiment is a hierarchical au-
tonomous mission command and control simulated system
that consists of unmanned aircrafts and ground robots that
can take the roles of squadron members or squadron leaders
and a central command. All the entities in the domain func-
tion according to pre-set communication and action policies.
An instance of the metacognitive component operates on
each entity to provide on-board/on-time analysis of anoma-
lies during the operation of the system. Anomalies that an
entity faces may be specific to that entity. The metacognitive
component we are using is the Metacognitive Loop (MCL)
designed to function as a cross-domain plug-in anomaly pro-
cessor. The following sections examine the MCL architec-
ture, the host system and how MCL helps deal with different
kinds of operational policy conflicts within the host system.

2 MCL

The underlying conceptual apparatus of MCL (Schmill et al.
2007; Anderson et al. 2008) is to notice anomalies, assess
their importance and cause, and guide a response into place.
The general MCL architecture has three sets of ontologies
corresponding to the Note-Assess-Guide loop: an indica-
tions ontology for anomaly types to note, a failure ontology
for use in assessment, and a response ontology for selecting
repair types to guide, as in Figure 1.

Figure 1: An overview of the MCL ontologies

The core nodes of each ontology are implemented as
Bayesian networks. These core nodes represent abstract and
domain-general concepts concerning anomalies and how to
respond to them. These nodes are linked within each on-
tology to express relationships between the concepts they
represent. They are also linked between ontologies, allow-
ing MCL to employ a number of Bayesian algorithms for
reasoning over ontologies.

At the bottom of the indication and response ontologies
are the “fringe” nodes. The fringe nodes below the indica-
tions core represent concrete, specific information about the

anomaly and those below the responses core represent spe-
cific correction information.

MCL is linked to the host through two interfaces as shown
in Figure 1. At the input interface, expectations are di-
rectly linked to the indications ontology through indication
fringe nodes. At the output interface, the response ontol-
ogy’s fringe nodes are linked to a set of possible corrections
that the host could employ. When an actual perturbation oc-
curs in the host, MCL will detect the expectation violation
through the input fringe nodes. It will then attempt to map it
into the MCL core so that it may reason about it abstractly.
MCL’s reasoning process then produces an output which is
articulated through the output fringe nodes in the form of an
action that the host is able to carry out.

2.1 Indications

The core indication nodes represent general, abstract classes
of sensory events and expectation types that help MCL dis-
ambiguate anomalies when they occur. Fringe nodes are the
first to receive an expectation violation. As such, they are
defined much more concretely than core nodes: they zero
in on specific properties of expectations. For example, the
fringe nodes of the indications ontology will encode infor-
mation such as what type of sensor is being monitored (in-
ternal state, time, or reward). The core nodes synthesize this
information provided by the fringe nodes and translate it into
abstract, specific instances of an indicator such as “deadline
missed”.

Expectation nodes represent concrete predictions of how
the host system’s sensors and state should behave over a pe-
riod of time and under foreseeable circumstances. Expecta-
tions are generated dynamically based on what the host sys-
tem is doing; the expectations for an aircraft autonomous ve-
hicle would be different depending on whether it was land-
ing or taking off, for example. Expectation nodes may be
specified by the system designer or learned by MCL, and are
linked dynamically into indication fringe nodes when they
are created.

Figure 2: A fragment of the MCL indication ontology

The metacognitive reasoning process is initiated when an
expectation is violated. MCL monitors all active expecta-
tions as it waits in the Note phase. Once a violation occurs,

27



the corresponding expectation node is activated. Reasoning
with the MCL ontologies can be likened to a spreading acti-
vation algorithm (Gaines et al. 2002); through this process,
activation spreads into the MCL core along abstraction links.

When a violation occurs, the expectation node that has
been directly violated is set to true, and the fringe nodes
have their values dynamically updated. Belief (in the Bayes
network sense) is then propagated along abstraction links
within the indication core. Finally, fringe-to-core links com-
bine the beliefs of individual fringe nodes into specific indi-
cated events.

Figure 2 shows an expectation violation that happens
when a squad member takes too long to reach a location.
The fringe nodes express the way in which the expectation
was violated (the time taken was longer than expected) and
the sensor type involved in the violation (temporal sensor).
Once all violated expectations have been noted, and belief
propagation is finished, the Note phase of MCL is complete.

2.2 Failures

Once the Note phase has been completed, MCL moves to the
Assess stage, in which indications are used to hypothesize
a cause of the expectation violation. The failure ontology
serves as the basis for processing at the Assess stage.

The failure ontology helps deal with the potentially am-
biguous nature of indications. In many cases, a single indi-
cation might suggest several potential failures. Similarly, a
single failure might only be suspected when a subset of in-
dications are present. The mapping between indications to
failures, then, might be one-to-many or many-to-one. This
rich connectivity is lost without all three ontologies.

Nodes in the failure ontology are initially activated based
on activation in the indication ontology, since indication
nodes are linked to failure nodes. The interontological links
between indication ontology and failure ontology express
which classes of failures are plausible given the active in-
dication events.

Figure 3: A fragment of the MCL failure ontology

Figure 3 shows a fragment of the MCL failure ontology.
Dashed arrows indicate links from the indications ontology
leading to the “sensor failure”, “effector failure” and “model
error” nodes.

A time exceeded indication can be associated with either
of these types of failure. The remaining links in Figure 3 are
intraontological and express specification. For example, an

effector may fail in two ways: it may be malfunctioning or
there could be noise causing it to fail. Either of these is a
refinement of the “effector failure” node. As such, “effector
malfunction” and “effector noise” are connected to “effec-
tor failure” with specification links in the ontology to ex-
press this relationship. As in the Note phase, reasoning fol-
lows Bayesian belief propagation along specification links
to more specific nodes.

2.3 Responses

Outgoing interontological links from active failure nodes
will allow MCL to move into the Guide phase. In this phase,
potential responses to hypothesized failures are activated,
evaluated, and implemented in order of their expected utility.
Figure 4 shows a fragment of the MCL response ontology.
Pictured are both core and fringe responses and host-level
responses. Host-level responses are concrete actions that can
be implemented by the host system. Host system designers
specify the concrete ways in which MCL can effect changes,
such as, in this case, by repeating the action.

Figure 4: A fragment of the MCL response ontology

In the portion of the response ontology pictured, links
from the failure ontology are pictured as dashed arrows.
These links cause initial activation in the “effector diagnos-
tic” node. Like the failure ontology, internal links in the re-
sponse ontology are primarily specialization links; they al-
low MCL to move from general response classes to more
specific ones, eventually arriving at concrete responses. In
our example, concrete nodes correspond to repeating actions
or testing actions.

2.4 Closing the loop

Once MCL has arrived at a concrete response in the Guide
phase, the host system can implement the response. All the
activated failures and responses are only considered candi-
dates, and hence MCL must verify that a response is working
before it considers an expectation violation addressed.

After a response has been chosen, the state of the three on-
tologies is stored while the necessary action is taken. MCL
re-enters the Note phase, waiting to receive feedback from
the effected repair. If no new expectation violations are re-
ceived, then the changes effected during the repair are left in

28



place, and the violation is considered addressed. If the vio-
lation persists, or a new one occurs, then MCL deactivates
the invalidated candidate response, and revisits its options
for recovery.

3 Test Domain - Afghan-World

Afghan-World is the virtual environment created to test the
ability of MCL to detect, analyze and respond to operational
policy violations. The physical environment is divided into
friendly and enemy territories with agents assigned to pro-
tect specific regions. Agents are governed by different op-
erational policies and may not leave their assigned region or
enter enemy territory without specific mission instructions
from central command. The agents in the Afghan-World
include a central command that creates squad leaders and
their squads that are made up of unmanned aerial vehicles
and land robots assigned for a given geographical area.

Central command will continue to monitor all actions
taken during a mission watching the performance of unit
members and looking for any anomalies in mission ob-
jectives, policy enforcement and overall effectiveness. It
can transmit further instructions or recommendations to the
squad leader when anomalies occur or further clarification
when policy conflicts require it.

The role of the squad leader is to share common mis-
sion goals and assignments with squad members, assign spe-
cific assignments to each member and then to accompany
the squad on the mission to monitor its activities. During
the mission the squad leader will communicate with central
command as needed and with other squad leaders to coordi-
nate total coverage of the area and to share information other
squad leaders may have about enemy activity that could af-
fect their area. Each squad leader has total control over its
squad for the mission, requesting data reports and coordinat-
ing the activities in the area assigned to the squad.

The unmanned vehicles and robots communicate with
their respective squad leader and other squad members to ei-
ther provide a response to a command message or a request
for information. They continuously update their squad lead-
ers with mission parameters. Mission parameters include the
current location and speed of the vehicles and robots, current
mission status (aborted, delayed, doing or done), current
operational policy enforcement and features of enemy tar-
gets (time, location and speed).

The application utilizes a client-server architecture where
the squad members are the clients and multiple instances
of squad leaders operate on different servers where com-
munication occurs over TCP/IP sockets. The squad leaders
and the command center also follow a client-server model.
The squad leaders communicate with each other following
a peer-to-peer model. Squad members also communicate
with other members of their squad following a peer-to-peer
model.

4 Operational policies in Afghan-World

The opertational policies for this domain are listed below.
These policies are translated and represented by the host sys-
tem as expectations that need to be monitored by its MCL.

4.1 Geographical Accessibility Policy

This security policy specifies the access rights of the aerial
vehicles and land robots. The specific rules of this policy are
as follows:

• The unmanned vehicles and robots cannot enter restricted
access zones to accomplish their missions because of dan-
ger to military and civilian assets.

• The unmanned vehicles and robots cannot travel outside
their assigned geographical area to accomplish a mission.

4.2 Secure Communication Policy

This security policy specifies the rules for information shar-
ing between the different entities in the domain. The specific
rules of this policy are as follows:

• Squad members can only communicate directly with their
squad leader or other members of the same squad.

• Squad members must respond to/act on all squad leader
requests for actions or information within a pre-specified
number of seconds “t”.

• The squad leaders can communicate with each other if the
central command has permitted such communication.

4.3 Assets Protection Policy

This policy specifies the action protocol for the land robots
and aerial vehicles. The goal of this policy is to minimize
the damage to different entities of the system. The rules that
come under this policy are as follows:

• The unmanned vehicles and robots must act to protect
themselves against enemy and collateral actions at all
time.

• The unmanned vehicles and robots cannot take actions to
accomplish their mission if said actions will result in civil-
ian casualties.

5 Metacognitive Monitoring and Control in

Afghan-World

Each entity in the domain —squad member, squad leader
and command center—is coupled with an MCL instance by
specifying the MCL fringe nodes associated with that en-
tity. Thus, the fringe nodes are designed with indications
and responses tailored to the host system even though the
generalized core MCL on each entity is the same. The MCL
component of each entity monitors the expectations for that
entity, notes any expectation violations, assesses the cause of
each violation and guides a response strategy into place. The
expectation violations can be the result of conflicts within a
single security policy or between two or more policies.

The following scenarios illustrate how metacognitive
monitoring and control using MCL allow expectation viola-
tions to be identified and evaluated so that a corrective action
recommendation can be returned to the entity involved.

29



5.1 Secure Communication Violation

Suppose an unmanned vehicle does not receive or fully un-
derstand a communication from its squad leader and so does
not send the required response, sends bad information or
does not comply with the squad leader’s request within t sec-
onds. This will cause an expectation violation within the Se-
cure Communications Policy of the squad leader. The MCL
component of the squad leader notes that (i) the unmanned
vehicle never responds to the request, (ii) it responds but
does so beyond the time requirement or (iii) it is observed
performing an action other than requested in the message.
The MCL component notes these anomalies as violations of
the expectations that it keeps track of. An example of an ex-
pectation is, if the squad leader tells the unmanned vehicle to
abort mission, the unmanned vehicle must then turn around
so its distance to the base becomes smaller than its distance
when it received the message.

When the squad leader’s MCL notes the anomaly, it has
the option to choose from different responses. These re-
sponses include (i) perform a systems check on its own
transceiver and recalibrate it, (ii) change the radio frequency
or communication array (from short-range to long-range) to
attempt to improve reception, (iii) ignore the problem as in-
consequential, (iv) resend the message with an incrementing
messagesent variable and a response error indicator, (v)
request an unmanned vehicle sighting report from another
member of the squad to determine if the unresponsive vehi-
cle was damaged or destroyed, (vi) request the vehicle send
a mission status report to identify corrupted data, (vii) send
a mission update message and wait for the proper reply or
action, (viii) send the unmanned vehicle or the entire squad
an abort mission message if the success of the mission is en-
dangered by faulty communications, or (ix) re-evaluate the
time requirement set for responses.

5.2 Geographical Accessibility and Secure
Communication Conflict

Suppose a squad member is given a mission by its squad
leader to move to location X even though that location is
within one of its restricted zones. In this scenario, any action
by the vehicle will violate either the Secure Communication
Policy or the Geographical Accessibility Policy. The Se-
cure Communication Policy requires unmanned vehicles to
respond/act on all squad leader requests for actions or infor-
mation within t seconds and the Geographical Accessibility
Policy prohibits vehicles from entering restricted areas. This
is an example of an inter-policy violation since the two rules
are from two different security policies.

The expectations associated with each policy ensures that
any policy violation manifests as an expectation violation
that can then be noted by MCL. When MCL notes this
anomaly, the system can respond in various ways based on
the situation. For instance, if the security policy rules have
associated weights, then the response could be to abide by
the rule with the higher weightage. Other possible responses
that the unmanned vehicle can enact include (i) request a
new version of the restricted zones list, (ii) request a re-
stricted access zone override, (iii) request a mission update

to ensure that it has not received corrupted data, (iv) perform
a mission abort if the problem is sufficiently serious, (v) ig-
nore the violation and finish the mission, or (vi) request the
squad leader for a security policy update that outlines how
to handle the situation.

5.3 Assets Protection and Geographical
Accessibility Conflict

Suppose the unmanned vehicle is under attack close to the
border of its assigned geographical territory or a restricted
zone and must take actions for self-preservation that involve
crossing into one of these areas which is prohibited. This
scenario could lead to violation of either the Geographical
Accessibility Policy or the Assets Protection Policy. Geo-
graphical Accessibility Policy requires that the vehicle stay
within a geographical area; but the Assets Protection Policy
may require the agent to move out of its assigned geographi-
cal area. The MCL component of the unmanned vehicle can
notice the expectation violations from the observations that
the vehicle receives and can guide a corrective action into
place.

The response may be to (i) ignore the violation when it
arises, (ii) prioritize costs and benefits of each action and
choose an action based on this cost-benefit analysis, or (iii)
request specific overrides from the squad leader to modify or
delete an existing policy or create a new one to handle this
situation.

5.4 Assets Protection Violation

Suppose the unmanned vehicle or robot is under attack and
is required to take an action to protect itself as per the As-
sets Protection Policy. If the vehicle or robot is also cur-
rently located in a densely populated civilian area any re-
sponse could result in endangering the civilian population
which is also prohibited by the same policy. Since both con-
flicting rules are from the same policy, this is an example of
an intra-policy conflict.

The MCL component of the unmanned vehicle can note
this anomaly and respond in different ways to deal with the
situation including (i) ignore the violation, (ii) choose to give
priority to either civilian assets or self-preservation, (iii) re-
quest a specific override (civilian assets or self-preservation)
command from the squad leader, or (iv) request a new or
updated security rule from the squad leader to handle this
situation.

5.5 Secure Communication Violation for Squad
Leaders due to Infiltration

Suppose the enemy infiltrates the network and sends a squad
leader erroneous observations using the signature of one of
its unmanned vehicles or robots. Examples of erroneous
observations include speed and location of different squad
members or targets. In this scenario, the squad leader may
be unaware of the problem and will continue to process the
data as though it came from its squad member. However, if
the data sent by the intruder conflicts with information sent
by other members of the squad, the MCL component of the
squad leader can notice the discrepancy between this data

30



and the information that it received from other sources. Al-
though finding contradictions can be a very difficult problem
to handle generally, in this case the situation is sufficiently
circumscribed to make it feasible. Given a limited number
of objects (vehicles, squads, etc.) that can be assigned a lim-
ited number of properties (speed, location, etc.) then every
observation is essentially predicating a property of an object.
It is straightforward to check that all properties assigned to
a given object at a given time are in agreement across the
various sources of the observation.

The MCL’s corrective response may be to (i) request the
unmanned vehicle to send current surveillance data, (ii) re-
quest its squad to change frequencies and/or message en-
cryption methods, (iii) distrust one or more sources, or (iv)
request a mission abort if the infiltration is deemed a danger
to the success of the mission.

5.6 Secure Communication Violation for Squad
Members due to Infiltration

Consider another scenario involving enemy infiltration when
the enemy sends a command to a squad member pretending
to be the squad leader. This violates the Secure Communi-
cation Policy requirement that unmanned vehicles only lis-
ten to directions from their squad leaders. The unmanned
vehicle is unaware that it is breaking the Secure Commu-
nication Policy by accepting requests and directions from
a prohibited source. However, the MCL component in the
squad leader can help detect this anomaly when it notices
that the unmanned vehicle has strayed from mission param-
eters 1. MCL could notice this anomaly if the observations
(like speed and location) regarding the compromised vehicle
do not match the expectations that the squad leader has for
those mission parameters. These observations could either
come from the compromised vehicle (if the communication
link to the squad leader is working properly) or from other
squad members in the area.

The MCL component could analyze the violation by re-
questing a current mission status from the unmanned vehi-
cle. If there are no discrepancies, the squad leader can handle
the error as a communications problem as outlined in Sec-
tion 5.1. If an infiltration is detected, the squad leader can (i)
change frequencies and/or the encryption method and send
a mission update to the unmanned vehicle, (ii) request that
the mission be aborted if the infiltration is deemed a danger
to the mission or (iii) ignore the violation.

The MCL component of the unmanned vehicle can also
identify this anomaly if its expectations about its observa-
tions of its squad mates are violated. In this case, the un-
manned vehicle can (i) request a mission update from the
squad leader, (ii) confirm the timestamp and order number
it received with the other squad members, (iii) request a
change in radio frequency or encryption if it identifies a net-
work infiltration, or (iv) distrust one or more sources.

1See Section 3

5.7 Assets Protection and Secure Communication
Conflict

Suppose an aerial vehicle is inside enemy territory and
comes under attack from enemy units. In accordance with
the Assets Protection Policy the unmanned vehicle takes ac-
tion to ensure its survival by initiating a stealth mode that
terminates all transmission that may give away its location
to enemy interceptors. While the vehicle is operating in this
mode its squad leader sends it a request for information. At
this point the vehicle’s two options are to violate the As-
sets Protection Policy by ending stealth mode to respond to
a squad leader’s request or violate the Secure Communica-
tions Policy by remaining in stealth mode to comply with
Assets Protection Policy requirements.

The MCL on board the aerial vehicle will immediately
note that both options constitute security policy violations
and will have to determine which violation will ensure the
greatest chance that the mission will be a success. If the
mission hinged on the vehicle’s well being, say it was tak-
ing pictures of an enemy position, the MCL would be able
to determine that the Secure Communications Policy would
need to be violated rather than the Assets Protection Pol-
icy. However, if the pictures were already transmitted, MCL
could violate the Assets Protection Policy in order to trans-
mit other mission critical data and ensure the success of the
mission.

The MCL on board the squad leader can note a viola-
tion in the Secure Communications Policy response time and
could respond by (i) resending the request immediately, (ii)
ignoring the violation and resending the request after a cer-
tain time period, or (iii) tasking another squad member to get
a visual on the violating vehicle to determine if the violation
was due to physical damage.

5.8 Illustration

Figures 5 and 6 illustrate how MCL notices an anomaly and
corrects the anomaly when one of the squad members de-
viates from its assigned mission path. Figure 5 shows one
squad member moving away from its correct path. The MCL
component of the squad leader notices the anomaly because
of a failed deadline expectation violation. The MCL compo-
nent then assesses the failure and issues a corrective action
of resending the mission goal to the squad member. As a re-
sult, the squad member returns to its assigned path. Figure 6
shows this behavior.

6 Related Work

A collaborative negotiation system is used to resolve con-
flicts in agent teams in (Jung and Tambe 2000). The sys-
tem detects conflicts by either explicitly evaluating propos-
als sent by teammates or by evaluating “role constraints”
that specify the maintenance goals for successful role per-
formance. Conflicts are resolved by adopting conflict resolu-
tion as a team goal such that team members propose various
arguments for resolving the conflict, evaluate the arguments
and accept one of the suggested proposals. The maintenance
goals that are associated with role constraints are similar in

31



Figure 5: When one squad member deviates from its pre-
scribed mission path.

Figure 6: After MCL issues the corrective action to return
the squad member to follow its goal.

essence to the expectations in our approach. While this ap-
proach uses a separate mechanism for conflict detection and
resolution, our approach uses a uniform method to detect all
anomalies including policy conflicts—by representing ex-
pectations and detecting expectation violations when they
occur.

Abductive reasoning techniques are used to detect pol-
icy conflicts and refine policies within an Event Calculus
(Kowalski and Sergot 1986) based formalism in (Bandara,
Lupu, and Russo 2003). In this work, conflicts in the policy
specifications are detected by adopting each conflict type as
a goal and explicitly querying the system specification for
event sequences that would result in that conflict type. This
approach is not practical for dynamic agents operating under
partially specified policies. Our focus is not in detecting all
possible conflicts in policy specifications but those that may
occur during the operation of a dynamic agent.

An Execution Monitoring class of security policies that
contain enforcement mechanisms capable of terminating ob-
jects that violate one of the policies being enforced is pre-

sented in (Schneider 2000). This approach is suitable when
termination of the violating object is an option, but that is not
always a cost effective or feasible way to manage resources
in our domain.

The inter-vehicle communication system in (Leinmüller
et al. 2006) recognizes nodes that are cheating about their
position using a number of independent sensors that give
an estimation of another node’s trustworthiness with respect
to position claims. The trustworthiness of nodes proven to
have given false location information is reduced so that such
nodes are isolated. Isolating a security breach may not be
a viable option for domains with hierarchical control struc-
tures.

A conflict resolution architecture for multi-agent systems
in the domain of an Air Traffic Management System that
favors noncooperative de-centralized conflict management
methods over centralized cooperative methods is presented
in (Tomlin, Pappas, and Sastry 1998). De-centralization
helps manage the computation complexity and communica-
tion limitations. This work is complementary to ours in pro-
viding host-specific response strategies to deal with anoma-
lies noted by the MCL components of the different entities -
local squad members, central command and the squad lead-
ers.

7 Conclusion

Static checking to detect policy violations is impractical and
infeasible in dynamic environments. The paper describes a
metacognitive monitoring and control technique to deal with
intra-policy and inter-policy conflicts in dynamic domains.
The technique is based on maintaining expectations, keeping
track of expectation violations, mapping expectation viola-
tions to appropriate types of failures and mapping failures
to appropriate responses to deal with the violations. The pa-
per illustrates the application of the technique in a simulated
command and control environment.

8 Acknowledgements

This research has been supported in part by grants from NSF,
AFOSR and NASA.

References

Anderson, M. L.; Fults, S.; Josyula, D. P.; Oates, T.; Perlis,
D.; Schmill, M. D.; Wilson, S.; and Wright, D. 2008. A
Self-Help Guide for Autonomous Systems. AI Magazine.
Bandara, A. K.; Lupu, E. C.; and Russo, A. 2003. Using
Event Calculus to Formalise Policy Specification and Anal-
ysis. In POLICY ’03: Proceedings of the 4th IEEE Inter-
national Workshop on Policies for Distributed Systems and
Networks, 26. Washington, DC, USA: IEEE Computer So-
ciety.
Dinollt, G. W.; Benzinger, L.; and Yatabe, M. 1994. Com-
bining components and policies. In Proceedings of the Com-
puter Security Foundations Workshop, 22–33.
Gaines, D. M.; Wilkes, D. M.; Kusumalnukool, K.;
Thongchai, S.; Kawamura, K.; and White, J. H. 2002.

32



SAN-RL: Combining spreading activation networks and re-
inforcement learning to learn configurable behaviors. Mo-
bile Robots XVI 4573(1):80–91.
Jung, H., and Tambe, M. 2000. Conflicts in agent teams.
In Catherine Tessier, L. C., and Müller, H.-J., eds., Con-
flicting Agents Conflict Management in Multi-agent Systems.
Kluwer Academic Publishers. 153–167.
Kagal, L. 2004. A Policy-Based Approach to Governing Au-
tonomous Behavior in Distributed Environments. Ph.D. Dis-
sertation, University of Maryland Baltimore County, Balti-
more MD 21250.
Kolovski, V. 2008. Logic-Based Framework for Web Access
Control Policies. Ph.D. Dissertation, University of Mary-
land, College Park.
Kowalski, R. A., and Sergot, M. J. 1986. A logic-based
calculus of events. New Generation Computing 4(1):67–95.
Leinmüller, T.; Maihöfer, C.; Schoch, E.; and Kargl, F.

2006. Improved security in geographic ad hoc routing
through autonomous position verification. In VANET ’06:
Proceedings of the 3rd international workshop on Vehicular
ad hoc networks, 57–66. New York, NY, USA: ACM.
Schmill, M.; Josyula, D.; Anderson, M. L.; Wilson, S.;
Oates, T.; Perlis, D.; and Fults, S. 2007. Ontologies for rea-
soning about failures in AI systems. In Proceedings from the
Workshop on Metareasoning in Agent Based Systems at the
Sixth International Joint Conference on Autonomous Agents
and Multiagent Sytems.
Schneider, F. B. 2000. Enforceable Security Policies. ACM
Transactions on Information and System Security 3(1):30–
50.
Tomlin, C.; Pappas, G. J.; and Sastry, S. 1998. Conflict
Resolution for Air Traffic Management: A Case Study in
Multi-Agent Hybrid Systems. IEEE Transactions on Auto-
matic Control 43(4).

33


