
Semantic Search in Linked Data: Opportunities and Challenges
Hamid Haidarian Shahri

Department of Computer Science, University of Maryland, College Park, MD, USA
hamid@cs.umd.edu

Introduction 1
In this abstract, we compare semantic search (in the RDF

model) with keyword search (in the relational model), and
illustrate how these two search paradigms are different. This
comparison addresses the following questions: (1) What can
semantic search achieve that keyword search can not (in
terms of behavior)? (2) Why is it difficult to simulate seman-
tic search, using keyword search on the relational data
model? We use the term keyword search, when the search is
performed on data stored in the relational data model, as in
traditional relational databases, and an example of keyword
search in databases is [Hri02]. We use the term semantic
search, when the search is performed on data stored in the
RDF data model. Note that when the data is modeled in RDF,
it inherently contains explicit typed relations or semantics,
and hence the use of the term “semantic search.” Let us begin
with an example, to illustrate the differences between seman-
tic search and keyword search.

Semantic Search
Consider that we want to know more about “Michael

Jordan.” This entity of type Person, could be the Professor,
who teaches Computer Science, and is affiliated with UC
Berkeley. It could also be the Basketball Player, who plays
for the Chicago Bulls, and is in the NBA league. A close
analogy from the unstructured web of documents is that a
Google search for “Michael Jordan” returns hundreds of
pages, most of which are irrelevant to the Berkeley Professor.
Most of the results and the top ranked ones refer to the Bas-
ketball Player, which may not be our intended entity for the
search. Although the use of additional terms like “Berkeley”
will help us in finding our intended entity, we may not know
which university he is affiliated with. We might actually be
performing the search to find this piece of information. Fig-
ure 1 demonstrates the two different entities and the informa-
tion related to these entities, in the RDF model. The nodes
represent the entities. The edges represent the properties,
which hold between the entities.

With semantic search, in the RDF model, users can itera-
tively refine their search; navigate through the initial results
and filter out the results (entities), which do not have the
properties that they are looking for. In fact, the explicit repre-
sentation of properties in RDF (which does not exist in the
relation model) facilitates this refinement of search results. In
Figure 1, the user could search for “Michael Jordan” and the

Copyright © 2010, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.
1 The extended version of this abstract is available at:
http://www.cs.umd.edu/~hamid/AAAI10PosterFull.pdf

instances, which match the search string, will be shown to the
user. Now, since the user knows that he is looking for a Pro-
fessor, he could select the teaches property from all the avail-
able properties, which refines the search to the entities that
have a teaches property. This way, the Professor entity,
which he is looking for, is found. If the user does not know
what Michael Jordan teaches, he can find out the answer to
this question by seeing the value for the teaches property,
which is Computer Science. On the other hand, if he knows
this fact, he can add the teaches property and the Computer
Science property value, to further refine the result of the
search, if necessary.

Intuitively, humans specify their intended entities in this
fashion. In other words, they define an entity by iteratively
specifying extra properties about an entity, until the desired
entity is uniquely identifiable, for example, “Michael Jor-
dan,” the one who teaches Computer Science, and is affili-
ated with UC Berkeley, etc. Subclasses and other properties
help in the search refinement process. Moreover, once the
desired entity is uniquely identified, we can browse its vari-
ous unknown properties, depending on what property we are
looking for. In essence, RDF data browsers enable users to
navigate through “sets of entities of the same type” and
gradually refine these sets.

Fig. 1. Two different entities with the same name “Michael Jordan,”
represented in the RDF data model. Each entity has a different set of
properties and property values.

Keyword Search
With keyword search, in the relational model, it is very

difficult to perform the semantic search process, which was
described in the Semantic Search section. This difficulty is in
part due to the fact that the semantics are not encoded explic-
itly in the relational model (refer to the extended version).
Consequently, it is difficult to incorporate metadata informa-
tion (i.e. column names) into the keyword search process, as
described below.

While recent research in the database literature has at-
tempted to retrofit keyword search onto relational databases,

1959

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

there are various scalability issues in performing keyword
search. For now, ignoring the computational cost (which will
be discussed later), in theory, a keyword search like “Michael
Jordan” and “Computer Science” is possible. However, this
keyword search can only be performed, when we assume that
the user knows the property values (i.e. Computer Science)
that would sufficiently refine the search. Clearly, this is not
always the case. In other words, the user can not browse the
available properties (like teaches) and navigate through sets
of entities, as in semantic search. Notice that in keyword
search, unlike semantic search, we are not dealing with the
teaches property, and instead need to use Computer Science,
which is a property value for the teaches property.

In addition to this limitation in navigation, performing
keyword search on top of relational databases is computa-
tionally expensive, especially when the keywords (i.e. prop-
erty values) appear in various tables, or there is a long list of
keywords, since this requires many joins. In general, the
keyword search process requires various steps, including:
finding keys in tables, finding joinable attributes, generating
foreign key join candidates, and removing semantically in-
correct candidates. Moreover, enumerating all possible can-
didate networks, which may contribute to the results, is com-
putationally expansive [Hri02]. On the other hand, in seman-
tic search, user’s knowledge of the domain can be utilized
effectively to navigate through sets of entities, and refine the
search results. In fact, this “user-driven” navigation in se-
mantic search, replaces the enumeration of candidate net-
works in keyword search (which is computationally expen-
sive). In other words, while it is unacceptable to ask the user
to provide a series of joins and SQL operations that are nec-
essary for finding the correct results in the relational model, it
is quite acceptable to ask the user to provide additional prop-
erties and property values to refine the search, as described in
the Semantic Search section.

Another issue with performing semantic search on the
relational model is related to physical implementation. The
physical implementation of most relational databases follows
their logical description, i.e. each table (relation) is stored in
its own file, or collection of files, on disk. Such an imple-
mentation is effective for queries that filter, or aggregate,
large portions of a single table. It provides reasonable per-
formance for queries that join many tuples from one table, to
another table [Mar08]. However, this implementation is
much less effective for semantic search, which requires join
queries that follow paths from a small number of tuples of
one table, to another table. Note that semantic search queries
try to accumulate facts about a small set of entities (e.g. all
the cities in a country). Answering such queries requires one,
or more, random I/Os for each table that is used in the path.
Therefore, semantic search queries perform poorly on the
traditional physical implementation in the relational model.

Aside from the explicit encoding of semantics, another
advantage of the RDF model is the global referencing of enti-
ties on the entire web, which does not exist in the relational
model. For example, the “Michael Jordan” entity, who is a
basketball player, is specified by a link (or URI) and can be
uniquely referenced by different organizations, across the

web. Now assume that different kinds of information about
the health information and the financial information of “Mi-
chael Jordan” are stored in different organizations. With se-
mantic search in RDF, a user can access all this information
from various organizations. Note that we are not designing or
planning for any specific queries in advance, when the health
and financial organizations are being constructed. In other
words, the aggregation of information is achieved in an ad
hoc manner. The global referencing of entities in RDF is vital
to facilitating interoperability and aggregation/reuse of
knowledge across organizational boundaries. Consider that in
the relational model, facilitating interoperability across dis-
tributed, and heterogeneous databases is quite difficult, which
is partly due to the lack of such a referencing mechanism.

Research Challenges
Storage and retrieval of data in the relational database

model has become highly optimized, over the last three dec-
ades. Similar performance levels are necessary for RDF to
enable large-scale semantic search. Considering that the rep-
resentation of data in the RDF and relational models are dif-
ferent (refer to the extended version), there are fundamental
database research issues that need to be studied in this area.
The semantic search example described in the Semantic
Search section, clarifies some of these issues, which include:
native storage mechanisms for RDF or efficient storage of
RDF in the relational model, indexing and retrieval of RDF
data, optimization of queries specified in SPARQL, and rank-
ing of entities in search results.

From a human-computer interaction standpoint, there are
several issues that need to be studied to enable semantic
search, including: effective presentation of sets of entities,
user interactions to support the selection of some of the enti-
ties from the result of a query, presentation of relationships -
at both class and instance level, and intuitive interfaces for
specifying SPARQL queries (perhaps similar to query-by-
example models). Each of these issues becomes clearer,
when considered in the “context” of the precise examples,
provided in this abstract, which describe the desired semantic
search behavior.

The comparison in this abstract clarified the advantages
of using RDF, instead of the traditional relational data model.
We demonstrated that it is difficult to retrofit a robust search
and find answers to questions about an entity (as available in
RDF), on the relational data model. Note that the explicit
encoding of semantics (via typed relations), and the global
referencing of entities in RDF (via links or URIs) are the two
critical enabling features that make RDF suitable for robust
search and information integration across different enter-
prises. The comparison also revealed some of the crucial re-
search challenges that need to be addressed for scalable se-
mantic search.

References
[Hri02] Hristidis, V., Papakonstantinou, Y., “DISCOVER: Keyword Search
in Relational Databases,” Proc. of VLDB’02, Hong Kong, China, August 20-
23, 2002.
[Mar08] Marcus, A., “BlendDB: Blending Table Layouts to Support Effi-
cient Browsing of Relational Databases,” MSc Thesis, MIT, 2008.

1960

