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Abstract: What commonsense knowledge do intelligent 
systems need, in order to recover from failures or deal with 
unexpected situations? It is impractical to represent 
predetermined solutions to deal with every unanticipated 
situation or provide predetermined fixes for all the different 
ways in which systems may fail. We contend that intelligent 
systems require only a finite set of anomaly-handling strategies 
to muddle through anomalous situations. We describe a 
generalized metacognition module that implements such a set 
of anomaly-handling strategies and that in principle can be 
attached to any host system to improve the robustness of that 
system.  Several implemented studies are reported, that support 
our contention. 

1. Introduction 
“When we are confronted with unexpected situations, we 

deal with them by falling back on our general knowledge or 
making analogies to other things we know. When software 
applications fail, on the other hand, they often do so in brittle 
and unfriendly ways. The sheer amount of commonsense 
knowledge one would need to represent makes it challenging 
to acquire, to represent, to reason efficiently with, and to 
harness in applications. This is, ultimately, the bottleneck to 
strong AI.” Or at any rate, so says the text accompanying the 
workshop call. 

Our view of the brittleness problem is as follows: it is not 
an abundance of special knowledge about the world that is 
needed. For no matter how abundant that may be, and no 
matter how efficient a system is in processing it, the world will 
nevertheless provide plenty of anomalies that fall outside the 
applicability of any given abundance of such knowledge. 
Rather, we contend, what is needed is a set of general-purpose 
anomaly-handling strategies. We contend that this is what 
humans have, that this is what lets us “muddle through” a vast 
variety of unanticipated situations. 

While it is true that we (humans) do have lots of special 
methods for dealing with special problems, those methods tend 
to be picked up along the way as we encounter anomalies of a 
given kind. We do not – and we cannot – come equipped with 
such methods for all conceivable (or inconceivable) anomalies. 
In fact, our impressive repertoire of such methods is a work in 
progress, getting better and better as we go through life. 

The question then should be: what underlying mechanisms 
make this possible for humans? How is it that when faced with 
an unanticipated and unfamiliar situation, rather than crashing 
and burning, or cluelessly blundering ahead, we typically deal 
with it quite effectively even in the absence of any prior 

methods for that specific type of situation? Furthermore, in the 
process, we add to our anomaly-handling repertoire so that we 
handle situations of that sort more quickly in the future. 

To be more specific, humans have a specialized “reasoned 
anomaly-handling” capability, that is largely domain-
independent, that involves only modest background knowledge 
and computation, and that thus is implementable in automated 
systems. We call it generalized metacognition. It consists of 
three steps: (i) monitor expectations in order to note any 
anomaly that might arise, (ii) assess it in terms of available 
response options, and (iii) guide any chosen response into 
place (and monitor the progress of that response for further 
anomalies). This requires, of course, expectations as to how 
things “ought” to be, responses that apply across the board to 
almost any type of anomaly, and the ability to re-configure 
expectations in light of how things go. 

This may seem like a tall order; indeed it may seem that 
all this does is push the problem into another form 
(“expectations and responses that apply across the board” 
sounds like “falling back on our general knowledge or making 
analogies to other things we know” in the quoted piece, at the 
beginning of this section). But here is the main point: there are 
a few powerful general-purpose anomaly-handling strategies 
that apply pretty much across the board. Examples include: 
give up on the task, ask for help, try it again, ignore, make 
small random changes, confirm data, check equipment, shut 
down, and initiate training. Our claim is that: (i) humans do 
this, do it well, do it all the time, and would be utter failures 
without this; and (ii) this smallish set of general strategies is 
not at all mysterious, and in fact can be characterized 
algorithmically and built into systems, endowing them with the 
robustness and flexibility to adjust to new situations in real 
time. We call an algorithmic version of note-assess-guide the 
Metacognitive Loop (MCL). 

We have been engaged in testing this idea over the past 
several years. In what follows, we first outline ways in which 
such generalized metacognition lends itself to various issues in 
commonsense reasoning. We then describe a particular MCL 
architecture and associate engineering methodology for 
deploying generalized metacognition toward the 
implementation of more robust AI systems. Our experience to 
date and several pilot studies show that an AI system that is 
built based on the MCL architecture and has a generalized 
metacognition module, i.e. a special-purpose anomaly-
processor, can perform in a more robust fashion. In addition, 
by following the MCL architecture, existing AI systems can be 



 

 

coupled with a generalized metacognition module to improve 
their robustness. 

2. Commonsense, Active Logic and 
Metacognition 

Much work in commonsense reasoning aims to “get it 
right” – to set down once and for all a correct (enough) and 
complete (enough) description of the dynamic everyday world 
to afford correct (enough) conclusions about that world, of the 
sort that would be useful to an intelligent agent negotiating 
within that world. However, work to date, despite very 
impressive gains, continues to face serious difficulties. Among 
these difficulties are the following: 
- Most of this work involves formalisms that specify 

conclusions for an agent, but not how an agent can make 
appropriate inferences to that end; that is to say these 
formalisms are about agents, but not for use by the agents 

- The same formalisms do not come to terms with evolving 
time; what is true one moment might not be so at the next, 
and so what an agent should conclude at one moment 
might not be appropriate at the next 

- These formalisms are useless unless all available beliefs are 
consistent – or at least all but one new incoming belief 

- These formalisms are designed with a fixed language and a 
fixed intended semantics 

- Finally, the everyday world is far too complex to capture 
with a reasonably sized set of axioms; there are too many 
exceptions, indeed too many unpredictable exceptions. 
We advocate a very different approach to commonsense 

reasoning – an agent logic suited to the MCL jobs of note-
assess-guide, that (not coincidentally) addresses the above 
difficulties. To that end we employ the active-logic engine 
(Elgot-Drapkin 1988, Elgot-Drapkin and Perlis 1990, Elgot-
Drapkin et al. 1993, Purang 2001), which tracks inference over 
evolving (real) time.  

In active logic, at a given time only those inferences that 
have actually been carried out so far can affect the present state 
of the agent’s knowledge. As a result, even if directly 
contradictory formulae P and ~P are present in the 
knowledgebase at time t, they do not necessarily have to be 
used to derive anything else in that step. By adding a rule to 
the logic to recognize these conflicts, contradictions can be 
recognized when they are about to be used for reasoning in the 
current step, and handled appropriately. (Handling the 
contradiction can be done in multiple ways, such as ignoring 
the contradicting formulae, or actively trying to repair it. This 
can be seen as a metacognitive function of the reasoning agent, 
since it enables the agent to reason about its own reasoning 
process.) Active logic systems have been developed which can 
reason in the presence of, and in some cases automatically 
resolve, contradictory information (Elgot-Drapkin and Perlis 
1990, Elgot-Drapkin et al. 1993, Purang 2001), and have also 
been applied to such related areas as deadline-coupled 
planning (Miller and Perlis 1993).  

We should emphasize that the use of active logic to 
implement MCL is not aimed at solving puzzles (three wise 
men, mutilated checkerboard, missionaries and cannibals, etc.). 

In our view, these problems have sidetracked the essential 
aspects of commonsense reasoning. Indeed, humans find these 
challenging, yet difficulties with such puzzles does not hinder 
human negotiations with the everyday world. 
3. Examples of Robust Commonsense Reasoning 

We will indicate how MCL can address various issues in 
commonsense reasoning; this will mostly be very sketchy, but 
in the next section, we will discuss a few empirical results. 

Nonmonotonic reasoning in general tends to involve 
determining that there are no known conditions to preclude 
drawing an expected conclusion, and then actually so 
concluding. The tough part is knowing one does not know 
(precluding conditions). And in general this is undecidable, 
although in special cases this can be done. But a real agent 
must make decisions in real time, without the luxury of waiting 
until all the results of extended deliberation are in. The MCL 
approach simply uses whatever conditions are already known 
(not consequences of what is known) and if later a precluding 
consequence surfaces, the agent can always retract any 
conclusion based on the absence of such. Thus MCL straddles 
both nonmonotonicity and belief revision, by combining them 
into one ongoing process of drawing conclusions and then 
revising them as needed. 

The same sanguinity with regard to not-yet-known 
consequences allows MCL to proceed in the presence of 
contradictory beliefs – until such time as the contradiction is 
discovered; and then a repair process can initiate. The “best” 
repair for a contradiction is hard to characterize in general, and 
surely is very context dependent. But at the very least, noticing 
a contradiction should make the agent wary of using the 
contradictands until a resolution is available. Notice that the 
use of evolving time is key to this approach: the agent can 
change its mind in light of further information. 

A telling example is that of going to lunch. The agent has 
made a lunch appointment for noon at a nearby restaurant. It 
must then reason – say at 11:30am – that at 11:40 it will be 
time to start walking; and at 11:40 it must then realize that this 
is “now” that very time and initiate the needed action (walk). 
While this seems rather trivial, it is not easy to capture in the 
form of a reasoning process, for that process must be 
responsive to changing time during its reasoning. We have 
mentioned three key elements of MCL: note, assess, guide. But 
in fact two more are essential as well: in order to note an 
exception to an expectation, an agent needs expectations in the 
first place; and since the world is far too complex to have a full 
and accurate set of expectations, then these must in general be 
learned or modified on the fly (we give an example of this 
below – the Bolo domain). Once there are expectations, noting 
a violation can be as simple as detecting a contradiction 
between an expectation E and an observation ~E. Then one or 
more available anomaly-handling strategies is selected 
(possibly well-chosen, or not – this too is refined by learning); 
and finally any such chosen strategy is initiated and monitored. 

DARPA and NASA have unintentionally provided 
excellent examples of the potential power of MCL, in the 
following “rover” and “satellite” situations: (i) a DARPA 



 

 

Grand Challenge robot bumped into a chain-link fence that it 
could not see and then simply stayed there, spinning its wheels 
futilely; and (ii) a NASA satellite turned itself to look in a 
certain direction as instructed, but then was unable to receive 
further instructions (even the instruction to turn back), since its 
antenna was no longer in a direct line of sight. In each of these 
cases, a modest amount of self-modeling (I should be moving 
forward, or I should be receiving more instructions) and self-
observation (I am not moving forward, or I am no longer 
receiving instructions) would have alerted the systems that 
something was amiss; and even a modest amount of self-repair 
(try small random motions) would have been better than 
staying stuck. 

Thus in our view, much of what is loosely referred to as 
commonsense is captured in the aphorism: “fool me once, 
shame on you; fool me twice, shame on me.” The world will 
take us unawares, perhaps badly so. But then we notice, and 
most of the time we are not so quickly surprised in that same 
way again. That is, we have expectations (beliefs about various 
patterns in how things behave), and when such an expectation 
is violated, we are able to use the information to our 
advantage. Put differently, we learn from mistakes; yet this 
considerably oversimplifies the picture.  

4. Pilot Studies 
Reasoning about changes in belief over time plays an 

important role in building a sophisticated reasoning system. 
(Miller 1993) demonstrates how active logic can be used to 
reason about such changes; an example is the Two Johns 
problem, where we imagine that an agent is talking to a user 
about a third person, whom the agent initially comes to 
identify as his unmarried friend John, by virtue of matching 
John to the user’s description of the person (note that the user 
has not revealed the name of the person). Then, the agent is led 
to believe that this person’s leg is broken and that his wife has 
to do everything for him. This confuses the agent, since John is 
not married. Subsequently, the user starts employing the name 
‘John’ to refer to this person. To resolve this confusion, the 
agent needs to relax its usage so that the word ‘John’ is not 
firmly tied to the person identified at the beginning by the 
agent. Thus, the agent must realize that the word ‘John’ is now 
ambiguous and that there are two entities with the same label. 
While a certain amount of specialized knowledge 
representation is needed to carry this out, the methods are quite 
general and broadly applicable in dialog and indeed any 
circumstance in which it is important to consider errors or 
misunderstandings of symbolic information. 

In fact, our major application area of the MCL architecture 
to date has been natural language human-computer 
interaction. We used an existing implementation of a natural-
language train-control simulation (Allen et al. 1995), as a host. 
Assume that a user says “Send the Boston train to New York” 
and then, after the system chooses a train and moves it, the 
user says “No, send the Boston train to New York.” Such an 
exchange might occur if there is more than one train at the 
Boston station, and the system chose a train other than the one 
the user intended. In the original implementation, the dialog 

system responds to this apparently contradictory sequence of 
commands by sending the very same train. However, in our 
MCL-enhanced version (Traum et al. 1999), the system notes a 
contradiction, since the user says “Do X. No, do X.” Then, the 
system assesses the problem, which could possibly be a 
mistake in its choice of referent for “the Boston train.” Finally, 
the system attempts to repair the problem by executing the 
command with a different choice of referent. Thus, the 
enhanced system chooses a different train the second time 
around, and if there are no other trains in Boston, it will ask the 
user to specify the train by name.  

In more recent years, we have extended our dialog system 
to assess and resolve a broader class of dialog issues. The new 
system deals with anomalies by setting and monitoring time-, 
feedback-, and content-related expectations (Josyula 2005). 
For instance, if the user does not respond to a system query 
within an expected time limit, then the system recognizes that 
there is a problem and repeats the query. However, continuous 
repetition of the query and the user not responding indicates a 
continuing problem (recall that the generalized metacognition 
module monitors the progress of corrective actions), and 
causes a re-evaluation of the other response options. In this 
case, the system would ask the user whether everything is OK. 
If there is still no response from the user, the system may drop 
its expectation about getting a response from the user in the 
near future. 

In another scenario, if the user says “Send the Metro to 
Boston” and the system doesn’t know the word “Metro,” the 
expectation that it should find the word in its dictionary is 
violated. This triggers the generalized metacognition module 
to guide the system into asking the user for specific help. 
Asking for help is a very reasonable way of solving a problem, 
and one that humans use quite often when confronted with an 
anomaly. The system would say “I don’t know the word 
‘Metro.’ What does ‘Metro’ mean?” Once the user tells the 
system that ‘Metro’ is another word for ‘Metroliner’ (a train in 
the application domain, which the system does know), the 
system is able to correctly implement the user’s request. 

In a very different pilot study (Anderson et al. 2006), we 
built standard reinforcement learners using Q-learning, 
SARSA and Prioritized Sweeping. These were placed in an 
8x8 world with two rewards – one in square (1, 1) and the 
other in square (8, 8). The learner was allowed to take 10000 
actions in this initial world, which was enough in all cases to 
establish a very good albeit non-optimal policy. In turn 10001, 
the values of the rewards were abruptly changed. 
Unsurprisingly, we found that the perturbation tolerance (i.e., 
the post-perturbation performance) of standard reinforcement 
learners was negatively correlated to the degree of the 
perturbation.  

Our experiments showed that even a very simple 
generalized metacognition module that did no more than 
generate and monitor expectations for performance and re-
learn its entire policy (whenever its expectations were violated 
a fixed number of times), significantly outperformed standard 
reinforcement learning, in the case of high-degree 



 

 

perturbations. Also, a somewhat smarter module that in light of 
its assessment of the anomalies, chose between doing nothing, 
making an on-line adjustment to learning parameters, or re-
learning its policy, out-performed standard reinforcement 
learners overall, despite some under-performance in response 
to mid-range perturbations. 

 Our last pilot study involves Bolo, a multiplayer tank 
game that can be played by either humans or other Bolo-
playing programs. Many programs that play Bolo perform 
quite poorly and are easily fooled when unexpected 
complications arise. The game takes place in a world that 
contains various terrain types (roads, swamps, walls, etc.), 
refueling bases, and pillboxes. There are neutral pillboxes that 
fire on all tanks, friendly pillboxes that fire only on other 
players’ tanks, and dead pillboxes that pose no threat which 
can be captured to make them friendly. An important strategy 
in Bolo is to capture pillboxes, make them friendly, and then 
use them either offensively or defensively. 

We used a Bolo player controlled by a hierarchical task 
network (HTN) planner with primitive actions that ground out 
in controllers. The main expectation maintained by the 
generalized metacognition module is that the tank it controls 
will not be destroyed. A suite of actions were maintained, 
including means-ends analysis and operator refinement (Gil 
1994, Wang 1995). The initial HTN did not have a plan to deal 
with hostile pillboxes, which fire on the tank, and so it was 
destroyed in its first such encounter. However, our MCL-
enhanced Bolo player (Anderson et al. 2008) was able to 
discover that firing on pillboxes offered a solution to the 
problem, even though it had no previous knowledge of the 
effect of that particular action.  

In analyzing its past experience, the generalized 
metacognition module located the salient differences in the 
conditions under which it succeeded in taking pillboxes, and 
those in which it failed. Since only pillboxes with intact armor 
destroyed the tank, the next step was to see if it had any 
actions that could reduce the armor of a pillbox. If it had 
known about an action that would do that, it would have tried 
the action immediately. In the case we tested, it had no such 
knowledge. Thus, it used a heuristic to rank all its actions 
according to how likely they were to have the desired effect, 
and then tested them until it found one that worked. This is an 
example of how the MCL architecture turns failure into 
opportunity: in each case the system learned more about what 
effects its actions did and did not have, and in a way organized 
to support its ongoing mission. 

5. A Metacognitive Loop Architecture 
An intelligent system based on the Metacognitive Loop 

(MCL) architecture, consists of two components: (i) a host, 
and (ii) a generalized metacognition module. The generalized 
metacognition module is attached to a given host, to monitor 
and control the performance of the host. It endows the host 
with metacognitive skills, providing the system (as a whole) 
with the ability to reason about itself, i.e., its knowledge, its 
observations and its actions. The generalized metacognition 
module acts as a commonsense reasoning engine, whose 

purpose is to: (i) note when host behavior diverges from host 
expectations, (ii) assess the anomaly and the options the host 
has for dealing with the difficulty, and (iii) guide the host 
toward putting one or more options into action.  

A schematic overview of such an intelligent system, 
designed based on the MCL architecture, is shown in Figure 1. 
The figure depicts the host (shaded in yellow), and the 
generalized metacognition module (MCL, shaded in blue). 
MCL interfaces with the host through a set of inputs, 
consisting of environmental and operational expectations 
(monitoring information); and a set of outputs, consisting of 
corrections (corrective actions) that the host can perform. The 
expectations are initially provided by the host’s designer. 
During operation, the system can also adjust (or learn new) 
expectations based on its ongoing experience. 

 
Fig. 1: The overview of an intelligent system, designed based 
on the MCL architecture. The host is shaded in yellow, and the 
generalized metacognition module is shaded in blue. 

What makes an MCL-based intelligent system more robust 
and powerful is the emphasis on self-knowledge (expectations, 
correction, etc.), as opposed to world-knowledge. We have 
found that although specific anomalies differ in terms of 
number and detailed characteristics between domains, they fall 
into a relatively small number of general types. We capture 
these types and similarities using ontologies. The generalized 
metacognition module implements three special sets of 
ontologies: an indications ontology for anomaly types, a 
failures ontology for assessment, and a responses ontology for 
repairs, as shown in Figure 1. In essence, the role of the 
generalized metacognition module is to notice anomalies 
(using indications), assess their importance and cause (using 
failures), and guide a repair into place (using responses).  

The core of each ontology is currently implemented as a 
Bayesian network. The core nodes of each ontology are 
concepts; which represent abstract and domain-independent 
anomalies, and the responses to those anomalies. These nodes 
are linked within each ontology, to express the relationships 
between the concepts. The nodes are also linked between 
ontologies, allowing the generalized metacognition module to 
employ a number of Bayesian algorithms for reasoning over 
ontologies.  

The generalized metacognition module is linked to the 
host through two interfaces, as shown in Figure 1. At the input 
interface, expectations are directly linked to the indications 



 

 

ontology through its fringe nodes. Fringe nodes are the nodes 
at the bottom of the indications and response ontologies. They 
represent concrete, domain-specific information about the 
anomaly or correction. At the output interface, the set of 
possible corrections that the host can employ are linked to the 
response ontology through its fringe nodes.  

When an expectation is violated, the generalized 
metacognition module uses the features of the violation and the 
current host sensor and effector states, to produce an “initial 
activation” in the indication fringe nodes. Those indications 
that are observed directly during the violation are taken as 
evidence, and the Bayesian update algorithm is used to 
propagate that evidence through the ontology so that inference 
can occur at a more abstract level. The fringe nodes of the 
indications ontology can encode information such as what type 
of sensor is being monitored (internal state, time, or reward). 
The core nodes synthesize the information that is provided by 
the fringe nodes and translate it into abstract, specific 
indications such as “reward-not-received.” 

Once the note phase is complete, the generalized 
metacognition module moves to the assess stage, in which 
indications are used to hypothesize the cause of an expectation 
violation. Probabilities of nodes in the failures ontology are 
updated based on values propagated through the indication 
ontology, through a particular kind of link called a diagnostic 
link. These links express which classes of failures are 
plausible, given the active indication events.  

Links emanating from likely failure nodes allow the 
generalized metacognition module to move into the guide 
phase. In the guide phase, the Bayesian update occurs over 
prescriptive links between suspected failures that are 
potentially useful responses in the response ontology. 
Responses can be evaluated according to their cost and 
inferred probability of correcting the failure. Here, the system 
designer can specify concrete ways in which abstract responses 
can be mapped to domain-specific ones.  

Once the generalized metacognition module has arrived at 
a specific suggestion in the guide phase, the host can 
implement that response. After an appropriate response has 
been chosen, the state of the three ontologies is stored, while 
the corrective action is performed. The generalized 
metacognition module then waits to receive feedback on the 
corrective action. If no new expectation violations are 
received, then the change that was chosen during the repair is 
made permanent, and the expectation violation is considered to 
be resolved. If the violation persists, or a new one occurs, then 
the generalized metacognition module adds evidence that the 
response does not work to the Bayesian networks, re-executes 
the update algorithm, and revisits its options for recovery. 

It is worth explaining why the generalized metacognition 
module does not directly map from indications to responses. 
The failure ontology enables the module to handle the 
ambiguous nature of indications. In many cases, a single 
indication might suggest several potential failures. Similarly, a 
single failure might only be suspected when several indications 
are present at the same time. The mapping between indications 

to failures, then, might be one-to-many or many-to-one. This 
subtlety is lost without all three ontologies. 

Note that nowadays, intelligent systems in different 
domains are built based on various existing architectures, e.g. 
BDI (Rao et al. 1995). One advantage of the modular nature of 
the MCL architecture is its compatibility with existing agent 
architectures. In other words, the MCL architecture enables 
system designers to use this architecture, regardless of the 
architecture of the host. The MCL architecture can be used in 
the following two scenarios. (1) If an implementation of the 
host does not exist, and is being built from scratch, the 
designer can keep in mind the MCL architecture and the 
appropriate expectations and violation responses, while 
designing the host (based on any architecture). Then, the host 
will more easily connect to a generalized metacognition 
(MCL) module, using the expectations and corrections as an 
interface. (2) If an implementation of the host already exists, 
the designer need only extract the necessary expectations and 
corrections from the host (this generally does not require any 
extensive modification of the host’s implementation). Then 
again, the host is easily connected to the generalized 
metacognition module, using the extracted expectations and 
corrections.  

Preliminary results from our pilot studies demonstrate 
that:  
1)  The MCL architecture provides a general software model, 

which can be used for building robust intelligent systems 
in various domains (domain generality).  

2)  The generalized metacognition module of the MCL 
architecture provides a powerful mechanism for 
representing and handling various types of anomalies that 
a system may encounter (anomaly generality).  

These two issues are somewhat related, but designate different 
benefits, so we list them separately.  

The domain generality of the MCL architecture entails 
that by following the MCL architecture, a system designer is 
able to easily and “out-of-the-box” couple a generalized 
metacognition module with any of a wide variety of AI hosts. 
In other words, the host can be from any domain, e.g. planner, 
mobile robot, dialog agent, etc. The connection between the 
host and the MCL module is basically “plug-and-play.” The 
system designer would only need to know the expectations 
(monitoring information) and the corrections (corrective 
actions), for the host. 

The anomaly generality of the generalized metacognition 
module entails that the module contains a sufficiently high-
level typology of anomalies that virtually all specific 
anomalies would fall into one or another type. This in turn 
empowers the system to deal flexibly with whatever comes its 
way. The high-level typology of anomalies is represented 
using the ontologies, within the module.  

Crucial to our approach is that the generalized 
metacognition module does not monitor and respond to 
specific expectation failures based on intricate knowledge of 
how the world works; that would require building pre-
determined fixes for anticipated failures, which is exactly what 



 

 

we want to enable designers to avoid. Instead, we have 
observed that, at some useful level of abstraction, the various 
ways in which systems might fail form a finite core of modest 
size. Therefore, we can develop abstract ontologies of possible 
failures, their causes and solutions. These ontologies are 
general enough to accommodate nearly every anomaly that a 
system might face. 

6. Related Work and Discussion 
Fault Detection, Isolation, and Recovery (FDIR) is an 

approach that on the outset is similar to the MCL architecture 
in its phases of detection, isolation, and recovery (Stroulia and 
Goel 1997). However unlike MCL, FDIR takes a model-based 
or expert-systems approach, which significantly limits the 
applicability of the technique to different problems and 
domains. The fixes employed in the FDIR approach tend to be 
quite specific, unlike the very general approach of MCL. The 
reason why the MCL architecture does not suffer from the 
same setback is the possibility of novel discoveries in the MCL 
approach; this in turn is a result of our view that to increase 
autonomy we need to provide greater freedom in action to the 
system and allow it to make its own discoveries using the tools 
we’ve provided.  

Certain reinforcement learning based techniques have 
been used for acting in uncertain situations (Sutton and Barto 
1995, Bertsekas and Tsitsiklis 1996). While it may seem at 
first glance that the goal of such systems is similar to that of 
the MCL architecture, these techniques are aimed solely at 
action selection, rather than monitoring one’s own 
performance and reasoning about it. These techniques require 
continuous exploration (i.e. behavior that is different from 
what is presently known to be optimal), as opposed to an 
MCL-based system, which can continue its usual performance 
until something goes awry.  

7. Conclusion 
We have presented an approach for building robust 

intelligent systems, along with several examples and 
implemented pilot studies. Our MCL approach is not based on 
representing vast amounts of intricate knowledge about various 
anomalies and methods to fix them. Instead, our approach is 
based on representing a finite set of general causes of, types of 
and responses for system failures at a high level of abstraction, 
using three special ontologies, namely indications, failures and 
responses. These ontologies create the generalized 
metacognition module, which can be coupled to any host 
system by specifying the set of observables and actions of the 
host system. 

It is important to emphasize that the generalized 
metacognition module is not a kind of magic-bullet 
intelligence that figures out and then performs perfect actions 
for every situation. Rather, the MCL architecture enables 
designers to build systems that can step back and assess a 
difficulty, when it arises. The system could quite possibly 
decide that it does not have the wherewithal to resolve the 
difficulty, and so avail itself of options such as asking for help, 
giving up, using trial-and-error, web-searching for relevant 
information, or deciding that it needs to initiate training for 

that difficulty (if learning capacity exists). This kind of 
commonsense approach to handling anomalies serves humans 
very well, and should do the same for automated systems. For 
example, a stuck robot, instead of literally spinning its wheels, 
should at least stop needless waste of effort, and at best should 
have capabilities to successfully negotiate a problem. 
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