
The Metacognitive Loop: An Architecture for Building Robust Intelligent Systems
H. Haidarian, W. Dinalankara, S. Fults, S. Wilson, Don Perlis

University of Maryland, College Park, MD
M. Schmill, T. Oates

University of Maryland Baltimore County, Baltimore, MD
D. P. Josyula

Bowie State University, Bowie, MD
M. L. Anderson

Franklin and Marshall College, Lancaster, PA
Abstract: What commonsense knowledge do intelligent
systems need, in order to recover from failures or deal with
unexpected situations? It is impractical to represent
predetermined solutions to deal with every unanticipated
situation or provide predetermined fixes for all the different
ways in which systems may fail. We contend that intelligent
systems require only a finite set of anomaly-handling strategies
to muddle through anomalous situations. We describe a
generalized metacognition module that implements such a set
of anomaly-handling strategies and that in principle can be
attached to any host system to improve the robustness of that
system. Several implemented studies are reported, that support
our contention.

1. Introduction
“When we are confronted with unexpected situations, we

deal with them by falling back on our general knowledge or
making analogies to other things we know. When software
applications fail, on the other hand, they often do so in brittle
and unfriendly ways. The sheer amount of commonsense
knowledge one would need to represent makes it challenging
to acquire, to represent, to reason efficiently with, and to
harness in applications. This is, ultimately, the bottleneck to
strong AI.” Or at any rate, so says the text accompanying the
workshop call.

Our view of the brittleness problem is as follows: it is not
an abundance of special knowledge about the world that is
needed. For no matter how abundant that may be, and no
matter how efficient a system is in processing it, the world will
nevertheless provide plenty of anomalies that fall outside the
applicability of any given abundance of such knowledge.
Rather, we contend, what is needed is a set of general-purpose
anomaly-handling strategies. We contend that this is what
humans have, that this is what lets us “muddle through” a vast
variety of unanticipated situations.

While it is true that we (humans) do have lots of special
methods for dealing with special problems, those methods tend
to be picked up along the way as we encounter anomalies of a
given kind. We do not – and we cannot – come equipped with
such methods for all conceivable (or inconceivable) anomalies.
In fact, our impressive repertoire of such methods is a work in
progress, getting better and better as we go through life.

The question then should be: what underlying mechanisms
make this possible for humans? How is it that when faced with
an unanticipated and unfamiliar situation, rather than crashing
and burning, or cluelessly blundering ahead, we typically deal
with it quite effectively even in the absence of any prior

methods for that specific type of situation? Furthermore, in the
process, we add to our anomaly-handling repertoire so that we
handle situations of that sort more quickly in the future.

To be more specific, humans have a specialized “reasoned
anomaly-handling” capability, that is largely domain-
independent, that involves only modest background knowledge
and computation, and that thus is implementable in automated
systems. We call it generalized metacognition. It consists of
three steps: (i) monitor expectations in order to note any
anomaly that might arise, (ii) assess it in terms of available
response options, and (iii) guide any chosen response into
place (and monitor the progress of that response for further
anomalies). This requires, of course, expectations as to how
things “ought” to be, responses that apply across the board to
almost any type of anomaly, and the ability to re-configure
expectations in light of how things go.

This may seem like a tall order; indeed it may seem that
all this does is push the problem into another form
(“expectations and responses that apply across the board”
sounds like “falling back on our general knowledge or making
analogies to other things we know” in the quoted piece, at the
beginning of this section). But here is the main point: there are
a few powerful general-purpose anomaly-handling strategies
that apply pretty much across the board. Examples include:
give up on the task, ask for help, try it again, ignore, make
small random changes, confirm data, check equipment, shut
down, and initiate training. Our claim is that: (i) humans do
this, do it well, do it all the time, and would be utter failures
without this; and (ii) this smallish set of general strategies is
not at all mysterious, and in fact can be characterized
algorithmically and built into systems, endowing them with the
robustness and flexibility to adjust to new situations in real
time. We call an algorithmic version of note-assess-guide the
Metacognitive Loop (MCL).

We have been engaged in testing this idea over the past
several years. In what follows, we first outline ways in which
such generalized metacognition lends itself to various issues in
commonsense reasoning. We then describe a particular MCL
architecture and associate engineering methodology for
deploying generalized metacognition toward the
implementation of more robust AI systems. Our experience to
date and several pilot studies show that an AI system that is
built based on the MCL architecture and has a generalized
metacognition module, i.e. a special-purpose anomaly-
processor, can perform in a more robust fashion. In addition,
by following the MCL architecture, existing AI systems can be

coupled with a generalized metacognition module to improve
their robustness.

2. Commonsense, Active Logic and
Metacognition

Much work in commonsense reasoning aims to “get it
right” – to set down once and for all a correct (enough) and
complete (enough) description of the dynamic everyday world
to afford correct (enough) conclusions about that world, of the
sort that would be useful to an intelligent agent negotiating
within that world. However, work to date, despite very
impressive gains, continues to face serious difficulties. Among
these difficulties are the following:
- Most of this work involves formalisms that specify

conclusions for an agent, but not how an agent can make
appropriate inferences to that end; that is to say these
formalisms are about agents, but not for use by the agents

- The same formalisms do not come to terms with evolving
time; what is true one moment might not be so at the next,
and so what an agent should conclude at one moment
might not be appropriate at the next

- These formalisms are useless unless all available beliefs are
consistent – or at least all but one new incoming belief

- These formalisms are designed with a fixed language and a
fixed intended semantics

- Finally, the everyday world is far too complex to capture
with a reasonably sized set of axioms; there are too many
exceptions, indeed too many unpredictable exceptions.
We advocate a very different approach to commonsense

reasoning – an agent logic suited to the MCL jobs of note-
assess-guide, that (not coincidentally) addresses the above
difficulties. To that end we employ the active-logic engine
(Elgot-Drapkin 1988, Elgot-Drapkin and Perlis 1990, Elgot-
Drapkin et al. 1993, Purang 2001), which tracks inference over
evolving (real) time.

In active logic, at a given time only those inferences that
have actually been carried out so far can affect the present state
of the agent’s knowledge. As a result, even if directly
contradictory formulae P and ~P are present in the
knowledgebase at time t, they do not necessarily have to be
used to derive anything else in that step. By adding a rule to
the logic to recognize these conflicts, contradictions can be
recognized when they are about to be used for reasoning in the
current step, and handled appropriately. (Handling the
contradiction can be done in multiple ways, such as ignoring
the contradicting formulae, or actively trying to repair it. This
can be seen as a metacognitive function of the reasoning agent,
since it enables the agent to reason about its own reasoning
process.) Active logic systems have been developed which can
reason in the presence of, and in some cases automatically
resolve, contradictory information (Elgot-Drapkin and Perlis
1990, Elgot-Drapkin et al. 1993, Purang 2001), and have also
been applied to such related areas as deadline-coupled
planning (Miller and Perlis 1993).

We should emphasize that the use of active logic to
implement MCL is not aimed at solving puzzles (three wise
men, mutilated checkerboard, missionaries and cannibals, etc.).

In our view, these problems have sidetracked the essential
aspects of commonsense reasoning. Indeed, humans find these
challenging, yet difficulties with such puzzles does not hinder
human negotiations with the everyday world.
3. Examples of Robust Commonsense Reasoning

We will indicate how MCL can address various issues in
commonsense reasoning; this will mostly be very sketchy, but
in the next section, we will discuss a few empirical results.

Nonmonotonic reasoning in general tends to involve
determining that there are no known conditions to preclude
drawing an expected conclusion, and then actually so
concluding. The tough part is knowing one does not know
(precluding conditions). And in general this is undecidable,
although in special cases this can be done. But a real agent
must make decisions in real time, without the luxury of waiting
until all the results of extended deliberation are in. The MCL
approach simply uses whatever conditions are already known
(not consequences of what is known) and if later a precluding
consequence surfaces, the agent can always retract any
conclusion based on the absence of such. Thus MCL straddles
both nonmonotonicity and belief revision, by combining them
into one ongoing process of drawing conclusions and then
revising them as needed.

The same sanguinity with regard to not-yet-known
consequences allows MCL to proceed in the presence of
contradictory beliefs – until such time as the contradiction is
discovered; and then a repair process can initiate. The “best”
repair for a contradiction is hard to characterize in general, and
surely is very context dependent. But at the very least, noticing
a contradiction should make the agent wary of using the
contradictands until a resolution is available. Notice that the
use of evolving time is key to this approach: the agent can
change its mind in light of further information.

A telling example is that of going to lunch. The agent has
made a lunch appointment for noon at a nearby restaurant. It
must then reason – say at 11:30am – that at 11:40 it will be
time to start walking; and at 11:40 it must then realize that this
is “now” that very time and initiate the needed action (walk).
While this seems rather trivial, it is not easy to capture in the
form of a reasoning process, for that process must be
responsive to changing time during its reasoning. We have
mentioned three key elements of MCL: note, assess, guide. But
in fact two more are essential as well: in order to note an
exception to an expectation, an agent needs expectations in the
first place; and since the world is far too complex to have a full
and accurate set of expectations, then these must in general be
learned or modified on the fly (we give an example of this
below – the Bolo domain). Once there are expectations, noting
a violation can be as simple as detecting a contradiction
between an expectation E and an observation ~E. Then one or
more available anomaly-handling strategies is selected
(possibly well-chosen, or not – this too is refined by learning);
and finally any such chosen strategy is initiated and monitored.

DARPA and NASA have unintentionally provided
excellent examples of the potential power of MCL, in the
following “rover” and “satellite” situations: (i) a DARPA

Grand Challenge robot bumped into a chain-link fence that it
could not see and then simply stayed there, spinning its wheels
futilely; and (ii) a NASA satellite turned itself to look in a
certain direction as instructed, but then was unable to receive
further instructions (even the instruction to turn back), since its
antenna was no longer in a direct line of sight. In each of these
cases, a modest amount of self-modeling (I should be moving
forward, or I should be receiving more instructions) and self-
observation (I am not moving forward, or I am no longer
receiving instructions) would have alerted the systems that
something was amiss; and even a modest amount of self-repair
(try small random motions) would have been better than
staying stuck.

Thus in our view, much of what is loosely referred to as
commonsense is captured in the aphorism: “fool me once,
shame on you; fool me twice, shame on me.” The world will
take us unawares, perhaps badly so. But then we notice, and
most of the time we are not so quickly surprised in that same
way again. That is, we have expectations (beliefs about various
patterns in how things behave), and when such an expectation
is violated, we are able to use the information to our
advantage. Put differently, we learn from mistakes; yet this
considerably oversimplifies the picture.

4. Pilot Studies
Reasoning about changes in belief over time plays an

important role in building a sophisticated reasoning system.
(Miller 1993) demonstrates how active logic can be used to
reason about such changes; an example is the Two Johns
problem, where we imagine that an agent is talking to a user
about a third person, whom the agent initially comes to
identify as his unmarried friend John, by virtue of matching
John to the user’s description of the person (note that the user
has not revealed the name of the person). Then, the agent is led
to believe that this person’s leg is broken and that his wife has
to do everything for him. This confuses the agent, since John is
not married. Subsequently, the user starts employing the name
‘John’ to refer to this person. To resolve this confusion, the
agent needs to relax its usage so that the word ‘John’ is not
firmly tied to the person identified at the beginning by the
agent. Thus, the agent must realize that the word ‘John’ is now
ambiguous and that there are two entities with the same label.
While a certain amount of specialized knowledge
representation is needed to carry this out, the methods are quite
general and broadly applicable in dialog and indeed any
circumstance in which it is important to consider errors or
misunderstandings of symbolic information.

In fact, our major application area of the MCL architecture
to date has been natural language human-computer
interaction. We used an existing implementation of a natural-
language train-control simulation (Allen et al. 1995), as a host.
Assume that a user says “Send the Boston train to New York”
and then, after the system chooses a train and moves it, the
user says “No, send the Boston train to New York.” Such an
exchange might occur if there is more than one train at the
Boston station, and the system chose a train other than the one
the user intended. In the original implementation, the dialog

system responds to this apparently contradictory sequence of
commands by sending the very same train. However, in our
MCL-enhanced version (Traum et al. 1999), the system notes a
contradiction, since the user says “Do X. No, do X.” Then, the
system assesses the problem, which could possibly be a
mistake in its choice of referent for “the Boston train.” Finally,
the system attempts to repair the problem by executing the
command with a different choice of referent. Thus, the
enhanced system chooses a different train the second time
around, and if there are no other trains in Boston, it will ask the
user to specify the train by name.

In more recent years, we have extended our dialog system
to assess and resolve a broader class of dialog issues. The new
system deals with anomalies by setting and monitoring time-,
feedback-, and content-related expectations (Josyula 2005).
For instance, if the user does not respond to a system query
within an expected time limit, then the system recognizes that
there is a problem and repeats the query. However, continuous
repetition of the query and the user not responding indicates a
continuing problem (recall that the generalized metacognition
module monitors the progress of corrective actions), and
causes a re-evaluation of the other response options. In this
case, the system would ask the user whether everything is OK.
If there is still no response from the user, the system may drop
its expectation about getting a response from the user in the
near future.

In another scenario, if the user says “Send the Metro to
Boston” and the system doesn’t know the word “Metro,” the
expectation that it should find the word in its dictionary is
violated. This triggers the generalized metacognition module
to guide the system into asking the user for specific help.
Asking for help is a very reasonable way of solving a problem,
and one that humans use quite often when confronted with an
anomaly. The system would say “I don’t know the word
‘Metro.’ What does ‘Metro’ mean?” Once the user tells the
system that ‘Metro’ is another word for ‘Metroliner’ (a train in
the application domain, which the system does know), the
system is able to correctly implement the user’s request.

In a very different pilot study (Anderson et al. 2006), we
built standard reinforcement learners using Q-learning,
SARSA and Prioritized Sweeping. These were placed in an
8x8 world with two rewards – one in square (1, 1) and the
other in square (8, 8). The learner was allowed to take 10000
actions in this initial world, which was enough in all cases to
establish a very good albeit non-optimal policy. In turn 10001,
the values of the rewards were abruptly changed.
Unsurprisingly, we found that the perturbation tolerance (i.e.,
the post-perturbation performance) of standard reinforcement
learners was negatively correlated to the degree of the
perturbation.

Our experiments showed that even a very simple
generalized metacognition module that did no more than
generate and monitor expectations for performance and re-
learn its entire policy (whenever its expectations were violated
a fixed number of times), significantly outperformed standard
reinforcement learning, in the case of high-degree

perturbations. Also, a somewhat smarter module that in light of
its assessment of the anomalies, chose between doing nothing,
making an on-line adjustment to learning parameters, or re-
learning its policy, out-performed standard reinforcement
learners overall, despite some under-performance in response
to mid-range perturbations.

 Our last pilot study involves Bolo, a multiplayer tank
game that can be played by either humans or other Bolo-
playing programs. Many programs that play Bolo perform
quite poorly and are easily fooled when unexpected
complications arise. The game takes place in a world that
contains various terrain types (roads, swamps, walls, etc.),
refueling bases, and pillboxes. There are neutral pillboxes that
fire on all tanks, friendly pillboxes that fire only on other
players’ tanks, and dead pillboxes that pose no threat which
can be captured to make them friendly. An important strategy
in Bolo is to capture pillboxes, make them friendly, and then
use them either offensively or defensively.

We used a Bolo player controlled by a hierarchical task
network (HTN) planner with primitive actions that ground out
in controllers. The main expectation maintained by the
generalized metacognition module is that the tank it controls
will not be destroyed. A suite of actions were maintained,
including means-ends analysis and operator refinement (Gil
1994, Wang 1995). The initial HTN did not have a plan to deal
with hostile pillboxes, which fire on the tank, and so it was
destroyed in its first such encounter. However, our MCL-
enhanced Bolo player (Anderson et al. 2008) was able to
discover that firing on pillboxes offered a solution to the
problem, even though it had no previous knowledge of the
effect of that particular action.

In analyzing its past experience, the generalized
metacognition module located the salient differences in the
conditions under which it succeeded in taking pillboxes, and
those in which it failed. Since only pillboxes with intact armor
destroyed the tank, the next step was to see if it had any
actions that could reduce the armor of a pillbox. If it had
known about an action that would do that, it would have tried
the action immediately. In the case we tested, it had no such
knowledge. Thus, it used a heuristic to rank all its actions
according to how likely they were to have the desired effect,
and then tested them until it found one that worked. This is an
example of how the MCL architecture turns failure into
opportunity: in each case the system learned more about what
effects its actions did and did not have, and in a way organized
to support its ongoing mission.

5. A Metacognitive Loop Architecture
An intelligent system based on the Metacognitive Loop

(MCL) architecture, consists of two components: (i) a host,
and (ii) a generalized metacognition module. The generalized
metacognition module is attached to a given host, to monitor
and control the performance of the host. It endows the host
with metacognitive skills, providing the system (as a whole)
with the ability to reason about itself, i.e., its knowledge, its
observations and its actions. The generalized metacognition
module acts as a commonsense reasoning engine, whose

purpose is to: (i) note when host behavior diverges from host
expectations, (ii) assess the anomaly and the options the host
has for dealing with the difficulty, and (iii) guide the host
toward putting one or more options into action.

A schematic overview of such an intelligent system,
designed based on the MCL architecture, is shown in Figure 1.
The figure depicts the host (shaded in yellow), and the
generalized metacognition module (MCL, shaded in blue).
MCL interfaces with the host through a set of inputs,
consisting of environmental and operational expectations
(monitoring information); and a set of outputs, consisting of
corrections (corrective actions) that the host can perform. The
expectations are initially provided by the host’s designer.
During operation, the system can also adjust (or learn new)
expectations based on its ongoing experience.

Fig. 1: The overview of an intelligent system, designed based
on the MCL architecture. The host is shaded in yellow, and the
generalized metacognition module is shaded in blue.

What makes an MCL-based intelligent system more robust
and powerful is the emphasis on self-knowledge (expectations,
correction, etc.), as opposed to world-knowledge. We have
found that although specific anomalies differ in terms of
number and detailed characteristics between domains, they fall
into a relatively small number of general types. We capture
these types and similarities using ontologies. The generalized
metacognition module implements three special sets of
ontologies: an indications ontology for anomaly types, a
failures ontology for assessment, and a responses ontology for
repairs, as shown in Figure 1. In essence, the role of the
generalized metacognition module is to notice anomalies
(using indications), assess their importance and cause (using
failures), and guide a repair into place (using responses).

The core of each ontology is currently implemented as a
Bayesian network. The core nodes of each ontology are
concepts; which represent abstract and domain-independent
anomalies, and the responses to those anomalies. These nodes
are linked within each ontology, to express the relationships
between the concepts. The nodes are also linked between
ontologies, allowing the generalized metacognition module to
employ a number of Bayesian algorithms for reasoning over
ontologies.

The generalized metacognition module is linked to the
host through two interfaces, as shown in Figure 1. At the input
interface, expectations are directly linked to the indications

ontology through its fringe nodes. Fringe nodes are the nodes
at the bottom of the indications and response ontologies. They
represent concrete, domain-specific information about the
anomaly or correction. At the output interface, the set of
possible corrections that the host can employ are linked to the
response ontology through its fringe nodes.

When an expectation is violated, the generalized
metacognition module uses the features of the violation and the
current host sensor and effector states, to produce an “initial
activation” in the indication fringe nodes. Those indications
that are observed directly during the violation are taken as
evidence, and the Bayesian update algorithm is used to
propagate that evidence through the ontology so that inference
can occur at a more abstract level. The fringe nodes of the
indications ontology can encode information such as what type
of sensor is being monitored (internal state, time, or reward).
The core nodes synthesize the information that is provided by
the fringe nodes and translate it into abstract, specific
indications such as “reward-not-received.”

Once the note phase is complete, the generalized
metacognition module moves to the assess stage, in which
indications are used to hypothesize the cause of an expectation
violation. Probabilities of nodes in the failures ontology are
updated based on values propagated through the indication
ontology, through a particular kind of link called a diagnostic
link. These links express which classes of failures are
plausible, given the active indication events.

Links emanating from likely failure nodes allow the
generalized metacognition module to move into the guide
phase. In the guide phase, the Bayesian update occurs over
prescriptive links between suspected failures that are
potentially useful responses in the response ontology.
Responses can be evaluated according to their cost and
inferred probability of correcting the failure. Here, the system
designer can specify concrete ways in which abstract responses
can be mapped to domain-specific ones.

Once the generalized metacognition module has arrived at
a specific suggestion in the guide phase, the host can
implement that response. After an appropriate response has
been chosen, the state of the three ontologies is stored, while
the corrective action is performed. The generalized
metacognition module then waits to receive feedback on the
corrective action. If no new expectation violations are
received, then the change that was chosen during the repair is
made permanent, and the expectation violation is considered to
be resolved. If the violation persists, or a new one occurs, then
the generalized metacognition module adds evidence that the
response does not work to the Bayesian networks, re-executes
the update algorithm, and revisits its options for recovery.

It is worth explaining why the generalized metacognition
module does not directly map from indications to responses.
The failure ontology enables the module to handle the
ambiguous nature of indications. In many cases, a single
indication might suggest several potential failures. Similarly, a
single failure might only be suspected when several indications
are present at the same time. The mapping between indications

to failures, then, might be one-to-many or many-to-one. This
subtlety is lost without all three ontologies.

Note that nowadays, intelligent systems in different
domains are built based on various existing architectures, e.g.
BDI (Rao et al. 1995). One advantage of the modular nature of
the MCL architecture is its compatibility with existing agent
architectures. In other words, the MCL architecture enables
system designers to use this architecture, regardless of the
architecture of the host. The MCL architecture can be used in
the following two scenarios. (1) If an implementation of the
host does not exist, and is being built from scratch, the
designer can keep in mind the MCL architecture and the
appropriate expectations and violation responses, while
designing the host (based on any architecture). Then, the host
will more easily connect to a generalized metacognition
(MCL) module, using the expectations and corrections as an
interface. (2) If an implementation of the host already exists,
the designer need only extract the necessary expectations and
corrections from the host (this generally does not require any
extensive modification of the host’s implementation). Then
again, the host is easily connected to the generalized
metacognition module, using the extracted expectations and
corrections.

Preliminary results from our pilot studies demonstrate
that:
1) The MCL architecture provides a general software model,

which can be used for building robust intelligent systems
in various domains (domain generality).

2) The generalized metacognition module of the MCL
architecture provides a powerful mechanism for
representing and handling various types of anomalies that
a system may encounter (anomaly generality).

These two issues are somewhat related, but designate different
benefits, so we list them separately.

The domain generality of the MCL architecture entails
that by following the MCL architecture, a system designer is
able to easily and “out-of-the-box” couple a generalized
metacognition module with any of a wide variety of AI hosts.
In other words, the host can be from any domain, e.g. planner,
mobile robot, dialog agent, etc. The connection between the
host and the MCL module is basically “plug-and-play.” The
system designer would only need to know the expectations
(monitoring information) and the corrections (corrective
actions), for the host.

The anomaly generality of the generalized metacognition
module entails that the module contains a sufficiently high-
level typology of anomalies that virtually all specific
anomalies would fall into one or another type. This in turn
empowers the system to deal flexibly with whatever comes its
way. The high-level typology of anomalies is represented
using the ontologies, within the module.

Crucial to our approach is that the generalized
metacognition module does not monitor and respond to
specific expectation failures based on intricate knowledge of
how the world works; that would require building pre-
determined fixes for anticipated failures, which is exactly what

we want to enable designers to avoid. Instead, we have
observed that, at some useful level of abstraction, the various
ways in which systems might fail form a finite core of modest
size. Therefore, we can develop abstract ontologies of possible
failures, their causes and solutions. These ontologies are
general enough to accommodate nearly every anomaly that a
system might face.

6. Related Work and Discussion
Fault Detection, Isolation, and Recovery (FDIR) is an

approach that on the outset is similar to the MCL architecture
in its phases of detection, isolation, and recovery (Stroulia and
Goel 1997). However unlike MCL, FDIR takes a model-based
or expert-systems approach, which significantly limits the
applicability of the technique to different problems and
domains. The fixes employed in the FDIR approach tend to be
quite specific, unlike the very general approach of MCL. The
reason why the MCL architecture does not suffer from the
same setback is the possibility of novel discoveries in the MCL
approach; this in turn is a result of our view that to increase
autonomy we need to provide greater freedom in action to the
system and allow it to make its own discoveries using the tools
we’ve provided.

Certain reinforcement learning based techniques have
been used for acting in uncertain situations (Sutton and Barto
1995, Bertsekas and Tsitsiklis 1996). While it may seem at
first glance that the goal of such systems is similar to that of
the MCL architecture, these techniques are aimed solely at
action selection, rather than monitoring one’s own
performance and reasoning about it. These techniques require
continuous exploration (i.e. behavior that is different from
what is presently known to be optimal), as opposed to an
MCL-based system, which can continue its usual performance
until something goes awry.

7. Conclusion
We have presented an approach for building robust

intelligent systems, along with several examples and
implemented pilot studies. Our MCL approach is not based on
representing vast amounts of intricate knowledge about various
anomalies and methods to fix them. Instead, our approach is
based on representing a finite set of general causes of, types of
and responses for system failures at a high level of abstraction,
using three special ontologies, namely indications, failures and
responses. These ontologies create the generalized
metacognition module, which can be coupled to any host
system by specifying the set of observables and actions of the
host system.

It is important to emphasize that the generalized
metacognition module is not a kind of magic-bullet
intelligence that figures out and then performs perfect actions
for every situation. Rather, the MCL architecture enables
designers to build systems that can step back and assess a
difficulty, when it arises. The system could quite possibly
decide that it does not have the wherewithal to resolve the
difficulty, and so avail itself of options such as asking for help,
giving up, using trial-and-error, web-searching for relevant
information, or deciding that it needs to initiate training for

that difficulty (if learning capacity exists). This kind of
commonsense approach to handling anomalies serves humans
very well, and should do the same for automated systems. For
example, a stuck robot, instead of literally spinning its wheels,
should at least stop needless waste of effort, and at best should
have capabilities to successfully negotiate a problem.

References
Allen, J.F., et al., The TRAINS project: a case study in building a

conversational planning agent. Journal of Experimental and
Theoretical AI, 1995.

Anderson, M., Oates, T., Chong, W., Perlis, D., The Metacognitive
Loop I: Enhancing Reinforcement Learning with Metacognitive
Monitoring and Control for Improved Perturbation Tolerance.
Journal of Experimental and Theoretical Artificial Intelligence,
18(3), pp. 387-411, 2006.

Anderson, M., Fults, S., Josyula, D., Oates, T., Perlis, D., Schmill,
M., Wilson, S., and Wright, D. A Self-Help Guide for
Autonomous Systems. AI Magazine, Volume 29 (2), 2008

Bertsekas, D.P., Tsitsiklis, J.N., Neuro-Dynamic Programming,
Nashua, NH: Athena Scientific, 1996.

Elgot-Drapkin, J., Kraus, S., Miller, M., Nirkhe, M., Perlis, D., Active
logics: A unified formal approach to episodic reasoning, Technical
Report CS-TR 4072, University of Maryland, College Park, 1993.

Elgot-Drapkin, J., Perlis, D., Reasoning situated in time I: Basic
concepts, J. Exp. Theor. Artif. Int., 2, pp. 75–98, 1990.

Elgot-Drapkin, J., Step-logic: Reasoning Situated in Time. PhD
thesis, Department of Computer Science, University of Maryland,
College Park, 1988.

Gil, Y., Learning by Experimentation: Incremental Refinement of
Incomplete Planning Domains. In Proceedings of the Eleventh
International Conference on Machine Learning, 87–95, 1994. San
Francisco: Morgan Kaufmann Publishers.

Josyula, D., A Unified Theory of Acting and Agency for a Universal
Interfacing Agent. PhD thesis, Department of Computer Science,
University of Maryland, College Park, 2005.

Miller, M., Perlis, D., Presentations and this and that: Logic in action,
in Proceedings of the 15th Annual Conference of the Cognitive
Science Society, 1993.

Miller, M.J., A View of One's Past and Other Aspects of Reasoned
Change in Belief. Doctoral Thesis, University of Maryland at
College Park. 1993.

Perlis, D., Purang, K., Andersen, C., Conversational adequacy:
mistakes are the essence, Int. Jour. Human-Computer Studies, 48,
1998.

Purang, K., Systems that detect and repair their own mistakes, PhD
thesis, Department of Computer Science, University of Maryland,
College Park, 2001.

Rao, A.S., Georgeff, M.P., BDI-agents: From Theory to Practice, In
Proceedings of the First International Conference on Multiagent
Systems (ICMAS'95), San Francisco, 1995.

Stroulia, E., Goel, A.K., Redesigning a Problem-Solver’s Operations
to Improve Solution Quality. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence, 1997.

Sutton, R.S., Barto, A.G., Reinforcement Learning: An Introduction,
MIT Press, 1995.

Traum, D., Andersen, C., Chong, W., Josyula, D., Okamoto, Y.,
Purang, K., Anderson, M., Perlis., D., Representations of Dialogue
State for Domain and Task Independent Meta-dialogue. In
Electronic Transactions on Artificial Intelligence, 3:125-152, 1999.

Wang, X., Learning by Observation and Practice: An Incremental
Approach for Planning Operator Acquisition. In Proceedings of the
Twelfth International Conference on Machine Learning, 1995.

