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An Approach to Human-level Commonsense
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Abstract
Commonsense reasoning has proven exceedingly difficult both to model and to im-
plement in artificial reasoning systems. This paper discusses some of the features of
human reasoning that may account for this difficulty, surveys a number of reasoning
systems and formalisms, and offers an outline of active logic, a non-classical para-
consistent logic that may be of some use in implementing commonsense reasoning.

Introduction

Humans reason – of that there is no doubt. But what sort(s) of reasoning do we do?
Clearly there are some among us who do mathematical reasoning, and do it well.
And, it has been argued that all reasoning is an attempt to reach the ideal model of
mathematics, i.e., to arrive at true conclusions (from given assumptions).

Perhaps for this reason, efforts to examine human reasoning have tended to be in
formal logical dress, mimicking the rigor of mathematics, e.g., Aristotle, Leibniz,
Boole, and Frege.1 But there is evidence – recounted below – that human reasoning
is not always aimed specifically at true conclusions.

The field of artificial intelligence also followed in this math-based mode, at least
initially, despite many doubters. One such doubter, Marvin Minsky, pointed out
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an embarrassingly obvious difficulty: much of human reasoning tends to be non-
monotonic. What we conclude depends not only on what we believe but also on
what we do not believe. That is, we draw conclusions on the basis of not having
certain beliefs.

Minsky’s famous example is essentially this: Told Tweety is a bird, we may rea-
sonably come to believe that Tweety can fly. But if we had been told Tweety is a
bird and furthermore is a penguin, we would not have drawn that conclusion. That
is, the original conclusion (Tweety can fly) was performed by an inferential pro-
cess that can be halted by the presence of additional information. This completely
flies (pardon the pun) in the face of mathematical reasoning, where only ironclad
guaranteed true conclusions are of interest. Minsky’s example highlights the fact
that in everyday life very often we are content (indeed may have no other choice
except) to seek a very highly plausible conclusion. The real world has far too many
parameters for us to be able to have strict data on them all, so we end up reasoning
as if we had beliefs such as “most birds fly”, and so on. And this relaxing of the
truth-demand into a plausibility demand opens the door to retractions in the face of
further evidence.

Well, this did not stop the logic-based AI-ers from using logic. It simply encour-
aged them to find better logics, so-called non-monotonic logics, where an enlarged
set of assumptions might lead to a different set of conclusions that happens to be
missing one of the original ones. A number of proposals for such logics soon sur-
faced, and had high degrees of success, most notably those of McCarthy and of
Reiter.2

Nevertheless, smart artificial systems did not spring up. It seems that being non-
monotonic is not enough. In fact, it was pointed out a number of times that these new
logics tended to be designed for the purpose of specifying the kinds of conclusions a
smart reasoner ought to come to, but were not in general useful to system designers.
The logics did not lend themselves to specifying ways for a system to actually arrive
at these conclusions. The biggest roadblock was that the logics in question – like
those before them – provided a characterisation of the set of all theorems that would
follow from given axioms (or beliefs). This set typically is infinite, and the logics
give little or no indication as to how and in what order these theorems are to be
proven. Thus a system designer is stuck with the task of building an inference engine
that produces, little by little, the theorems specified by one of the formal logics.

Yet even if one solves these problems, another surfaces. Very many of the theo-
rems are of no use whatsoever to a given system’s activity. Logics in general tend
to have promiscuous rules of inference, concluding sentence after sentence without
regard for their usefulness. This problem of relevance had long been recognised.
But possibly an even worse aspect is that time (a lot of time) is being used up, both
on these irrelevant results and on the enormous (even infinite) set of all theorems.
Somehow a real-world reasoner must exercise some control over its reasoning so
that time is not wasted without regard to real-world exigencies.

2 While details are complicated, most such approaches aim at the inference of special additional
“normal” or “typical” formulas – such as Flies(x) from Bird(x) – when not ruled out by axioms.
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This is a major difficulty because time is highly significant in almost all endeav-
ours, and because formal inference crunches on and on forever, oblivious to time.
Clearly, on-board logic3 must be able to take into account the fact that time passes
as reasoning is going on, and what is important at one moment might not be so at
another. In short, a reasoner ought to realise that “now” changes out from under it, it
never stands still. So reasoning about time is slippery. As an example, the following
makes perfect sense and is essential for effective on-board logic, yet is absurd from
the point of view of spec logic:

From Now(t) infer ¬Now(t).

That is, as soon as the time is known to be t, it no longer is t. Given a small
unit or grain of time (e.g., a second, or a millisecond), the gist of the above can be
approximated by this rule:

t : Now(t)
——–

t +1 : Now(t +1)

The above “clock” rule is the essential feature of so-called active logics, a species
of on-board logic. While it might not seem particularly revolutionary, it has major
consequences. Three of the most important are as follows:

1. Reasoning can keep up with deadlines. Given a noon lunch appointment, one
reasons at 11:30am that at 11:45 one should start walking to the restaurant. Then
at 11:44 one reasons that it is time to stop reading the newspaper and put on one’s
coat. And by the time one’s coat is on, one reasons that it is time to walk (because
by the time that reasoning has been done it will be close enough to 11:45). Trivial
enough, but impossible to do with spec logics. But the clock rule makes deadline
sensitive reasoning possible.4

Here is a much-simplified example of the above form of reasoning in active logic,
involving a deadline. We have annotated each time-step in the reasoning with the
actual time on the left; via the clock rule, the logic has effective access to this infor-
mation as well, assuming it is started off with the correct time. In each step below
we have placed the agent’s relevant beliefs at that time, with any new ones listed
first; among these is always the current time, Now(t). And the last step shown has
the newly inferred belief "Walk” as well. Note that beliefs of the form Now(t) are
not inherited to the next step (see above clock rule) but that in general other beliefs

3 Let us call a logic that is used by a real-world reasoning agent (human or otherwise) as it goes
about its business an “on-board” logic (as opposed to a specification – “spec” – logic that charac-
terises limiting behaviours such as the set of all sentences that (eventually) can be proven). Thus we
are using the term “logic” quite broadly, to include any systematic method for drawing conclusions
from premises.
4 So-called tense logics and temporal logics express propositions about past, present, and future,
but the present is not represented as evolving: Now does not change as theorems are proved, in
contrast with the above Clock Rule. In other words, tense logics are also spec logics, rather than
on-board logics.
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– such as that one should start walking at 11:45 – tend to be retained (precisely
which beliefs are to be retained is a subtle issue; in particular cases there are useful
heuristics but no single general principle). Note that, in general, a belief at one time
is carried forward (remains a belief) at later times – for instance

Now(11 : 45)→Walk
remains a belief indefinitely, whereas some special beliefs, such as knowledge of
the current time, are dropped at the next step and replaced by a new belief (in this
case due to the above clock rule, because time is always changing; but something
similar can occur whenever there is reason to no longer hold a belief). Here is the
example:

[11:30]: Now(11:30), Now(11:45)→Walk
[11:30:01]: Now(11:30:01), Now(11:45)→Walk
...
[11:44:59]: Now(11:44:59), Now(11:45)→Walk
[11:45]: Now(11:45), Now(11:45)→Walk
[11:45:01]: Now(11:45:01), Walk, Now(11:45)→Walk
At time 11:45 above, modus ponens goes to work on the then-current beliefs, and

by 11:45:01 has inferred Walk. One simplifying assumption here is that it takes one
“step” of time to apply an inference rule. Note that the belief that at 11:45 the Walk
action should begin is still there among the beliefs, even though it is not likely to be
useful; this can be “pruned” by a cleanup rule that drops conditionals of the form

Now(t)→ X
after time t has passed; after all, Now(t) will never be true again after that time
so the conditional will always remain true but never useful in concluding anything
except at time t.

2. Inconsistency is a disaster for spec logics. They simply accept all sentences as
theorems, making them useless. Paraconsistent logics adopt various means to avoid
this “explosion” of consequences. But what is really needed is a paraconsistent logic
with the ability not only to side-step a contradiction, but to notice it and consider
what to do about it, possibly altering its status as a belief. After all, it might be an
important clue to something amiss. Again, time comes to the rescue, providing a
temporal “stratification” of theorems according to when they are proven, so that the
time at which one sentence is proven (believed) allows inferences at the next time-
step to comment on the previous result, such as that it is in contradiction with other
beliefs and should be abandoned:

t : P,¬P
————————
t +1 : Contra(P, t)

However, active logic does not discover all inconsistencies; that is in general
not computable in finite time. It simply scans the current knowledge base for an
occurrence of a wff and its negation. If deeper inconsistencies remain, so be it: just
as a human may unknowingly entertain contradictory beliefs, so with active logic.
Only when a contradiction is noticed – such as in the form of a direct contradiction
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between a formula and its negation, is an agent (human or otherwise) in a position
to do anything about it.

Also, once P and ¬P are noticed and removed from the KB, there is no general
method for adjudicating between them. In general, the reasoning agent may have
to be content with uncertainty. In particular cases, there are heuristics that may be
useful, such as deciding in favour of P if the evidence that produced it is more
compelling than that for ¬P. That of course requires additional machinery.

3. Inconsistency is just one example of a situation needing some sort of change
(e.g., distrust various sentences). But more generally, any manner of change might
be called for in a given situation. Even a change in language may be needed, if for
example that is a plausible way to resolve an inconsistency. For instance, given the
beliefs “John is reading,” and “John is wagging his tail," one might consider that the
word John is being used to name two different entities. This might then prompt the
introduction of two new names, John1 and John2. But to do this, the reasoning must
be able to have breathing room, time to make such changes before the inference
engine rushes ahead to all the infinitely many theorems that would arise from the
two earlier beliefs that together are implausible: that a dog is reading.

So where the does this leave us? Are we closer to commonsense reasoning? We
think so. One feature that we have identified, as a key to commonsense reasoning,
is the ability to notice – and respond usefully to – anomalies. And it turns out that
anomalies can easily be cast in the form of mismatches between expectations and
observations, i.e., a contradiction – or close enough so that the Contra and Distrust
rules can go into action. An evolving-time logic such as active logic provides just
this capability.

Human paraconsistency

Humans are very good at dealing with – reasoning and acting in the face of – un-
certainty, change and even contradictions. In contrast, AI systems, especially those
implemented with logic-based reasoning mechanisms, are notoriously bad at coping
with these pervasive features of real environments. One widely-accepted conclusion
from these observations has been that humans do not use logic-based mechanisms
to implement their core reasoning abilities. And, indeed, there is a great deal of em-
pirical evidence that seems to point in this direction. Humans often fail to achieve
the ideal of valid logical deduction, and in many contexts we seem to utilise repre-
sentational formats more suited to non- or extra-logical manipulations.

For instance, a large body of research has established that people are less likely
to judge instances of modus tollens to be valid than instances of modus ponens.5

Moreover, people are subject to some characteristic logical fallacies, such as the
converse error (example 1) and the inverse error (example 2):

5 For an overview of the various findings reported in this paragraph, see Evans (1982).
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Example 11.1.
If the horses went to the watering hole, we would see their tracks.
We see their tracks.
∴ The horses went to the watering hole.

Example 11.2.
If the horses went to the watering hole, we would see their tracks.
The horses did not go to the watering hole.
∴We will not see their tracks.

Interestingly, despite trouble with modus tollens in general, people have little
trouble with that logical form in the following sort of case:

Example 11.3.
If the horses went to the watering hole, we would see their tracks.
We do not see their tracks.
∴ The horses did not go to the watering hole.

This pattern of results has suggested to many that what looks like logical reason-
ing is actually causal reasoning. Rather than building formal logical models from
these sentences and judging the validity of the argument, we are in fact building
causal models of the situations depicted, and judging the likelihood of the outcome.
And, indeed, by those standards, arguments 11.1 and 11.2 represent fairly plausible
inferences.

Similarly, results from the Wason card selection task in Johnson-Laird & Wason
(1970) apparently point to the use of inference mechanisms that are not logic-based.
In this task, participants are shown four cards, e.g. [A,K,2,7], given a rule of the
form “If a card has a vowel on one side, it has an even number on the other” (p→ q),
and asked to choose the cards they need to turn over to check the validity of the
rule. The majority of participants choose A and 2 (i.e. p and q), even though the
logically correct choice is A and 7 (p and ¬q). To cite just two examples of how
this evidence has been interpreted, Oaksford & Chater (1994) take it to indicate that
decision making is instead driven by considerations of information yield (according
to their analysis, turning over A and 2 yields more information about the rule than
does turning over any other two cards), while Cosmides (1989) – after noticing that
participants make the logically correct choices when the abstract rule is replaced
with one governing social conduct, e.g., “If you drink beer you must be over 21”
– argues for the existence of mechanisms specialised for reasoning about social
exchanges.

Such results – and there are many more like them – are of course deeply inter-
esting, and assimilating them will be crucial to articulating a complete model of the
mechanisms supporting human reasoning. And while we do not wish to question
the existence and importance of the many different non-logical mechanisms that
have been proposed to account for the vast amounts of available data on human rea-
soning and decision-making – including causal and other mental models (Gentner
& Stevens (1983); Johnson-Laird (1983)), Bayesian inference (Oaksford & Chater
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(2007)), social exchange modules (Cosmides (1989)), expected utility curves (Kah-
neman & Tversky (1979)), frequency sensitivity (Gigerenzer (1994)), and expected
information gain (Oaksford & Chater (1994)) – we would like to suggest that there
is nevertheless room for continued empirical attention to human logical reasoning,
for at least the following reasons.

First, and most obvious, from the fact that humans possess some inferential
mechanisms that are not logic-based, it does not follow that we do not have and
use some native logic-based reasoning abilities. It might be noted in support of this
thought that people’s vulnerability to fallacies like those presented in arguments
11.1 and 11.2 largely disappears when the propositions involved are not causally
related as they are in the examples. This suggests that causal-model-based mech-
anisms may be interfering with logic-based ones in circumstances in which both
potentially apply.

Second, from the fact that logic-based AI is brittle while humans are not, it does
not follow that human flexibility is necessarily or entirely the result of non-logical
capacities. It may be that human logic takes a special form, or has certain features,
or interacts with non-logical capacities in particular ways, and these attributes of
human logic have simply not been captured in prevailing logic-based AI systems.

Third, even if it is proven that humans have no natural, native, logic-based in-
ference mechanisms, the fact that humans can nevertheless reason logically would
mean that our non- and extra- logical capacities can be harnessed to this end. Thus,
investigating human logical reasoning, particularly in the face of contradiction and
change, may help us understand what is special about our implementation of logic
such that it supports the observed flexibility of human reasoning.

Fourth and finally, given the significant advantages of logic-based implementa-
tions in AI – including the fact that rule-based systems are relatively easy for humans
to understand, and therefore to trust, and that changing their behaviour is as simple
and quick as changing the rules that govern it (something that is not the case in
systems that require extensive (re-)training) – it behooves us to consider how logic-
based systems can be made more robust in the face of various perturbations. Human
perturbation-tolerance can be a source of ideas and inspiration in this task.

Unfortunately, perhaps because human flexibility has been largely taken as an
indication of non- or extra-logical mechanisms at work, there has been relatively
little empirical work on human performance in the face of contradictory or changing
information in specifically logical contexts. There has nevertheless been some work
along these lines, enough to draw some preliminary conclusions that can be used to
guide the development of more robust logic-based systems. We will first review the
results, and then discuss what we take the implications to be.

In one interesting set of experiments Dean Sharpe & Guy Lacroix (1999) asked
adults and children how they resolve assertions of the form p&¬p, such as the re-
sponse “yes and no” to the question “Was the movie good?” In this work, 24 adults
and 48 children (ranging in ages from 3 to 8) were told a story about two charac-
ters having dinner. At the end of the meal, one asks the other, “Did you like your
supper?”, to which the other character replies “Yes and no. I liked my supper and I
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didn’t like it.” Participants were asked to explain what the second character meant
by the response.

The vast majority of participants (around 70%, including some children as young
as 4), dealt with the contradiction by reinterpreting the statement p (I liked my
supper) to take advantage of the internal structure of the object “supper”. That is,
they took the character to be asserting that he liked one part of the supper, but didn’t
like a different part. In addition, two other strategies were employed. Two adults and
nine children reinterpreted the meaning of p by drawing attention to the applicability
of the predicate “like”. These participants said things like: the supper was average,
so he neither liked it nor didn’t like it. In addition, four of the adults, but only one
of the children simply denied p, explaining that he didn’t like the supper, but was
trying to be polite. There were no other resolution strategies employed. The authors
summarise their main findings by noting that “adults and even preschoolers posses
interpretive structures – particularly object structure – that are non-classical in the
sense that they can be used to resolve apparent contradictions.” (Sharpe & Lacroix
(1999) p.489)

A different set of experiments revealed some similar tendencies. Renee Elio
(1997; 1998) asked what strategies people use to resolve logical contradictions of
the form {p, p→ q,¬q}. Participants were given premises like:

Example 11.4.

A If the ignition key is turned the car will start.
B The ignition key was turned.

They were then told:

C The car did not start

and asked: assuming that C is true, which statement A or B do you think it is more
plausible to disbelieve? What revision would you make to that statement to make it
consistent with the other premises?

Overall, participants were more inclined (around 60% of the time) to doubt p→ q
than they were to doubt p,6 and when they did so they usually (around 63% of the
time) made the statement consistent by re-interpreting the meaning of p, typically
by adding conditions. Thus, participants might revise the statement to read “If the
ignition is turned and the battery is not dead, then . . .” Most of the remaining re-
visions (around 30%) involved reinterpretations of q, with the effect of turning the
rule into a default, e.g. “If the ignition key is turned the car will usually start.”

This last finding is related to an interesting discovery by Ruth Byrne (1989),
that reasoners seem to tacitly treat many rules as defaults, and thus can be made
to suppress valid inferences under certain conditions. In her studies she found that
while participants were happy to accept as valid inferences like:

6 Although this preference was reversed when the initial statement was a definition such as: if a
mineral is a diamond then it is made of compressed carbon.
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Example 11.5.
If she has an essay to write then she will study late in the library.
She has an essay to write.
∴ She will study late in the library.

they will suppress the logically valid inference if certain additional premises are
added, as in the following.

Example 11.6.
If she has an essay to write then she will study late in the library.
If the library stays open then she will study late in the library.
She has an essay to write.
∴ She will study late in the library.

In the case of argument 11.6, participants’ chance of accepting the conclusion
that she will study late in the library drops from 96% to 38%.

So, what do these interesting findings mean?

1. Humans maintain control over their inferences, and don’t necessarily come to
all logically valid conclusions.

2. This control is content based, in that they do not manage inference by ceasing to
apply valid rules to all applicable forms, but instead selectively block applica-
tion of valid rules to certain formulas. As Byrne concludes: “The moral of these
experiments is that in order to explain how people reason, we need to explain
how the premises of the same apparent logical form can be interpreted in quite
different ways.”

3. Reinterpretation of the meanings of premises is the most commonly used strat-
egy for dealing with contradictory formulas. People maintain consistency of
beliefs by changing their meanings in appropriate ways.

4. People use only a few strategies to address inconsistencies; these strategies nev-
ertheless suffice for the purposes of everyday reasoning.

Can these features be captured in a formal system? We think so, and active logic
is intended as one proposal for how that might be done. For instance, feature 1 is
captured by active logic’s stepwise character – an active logic reasons in time and,
through the use of rules like contra(), permits “inspection” of its beliefs at each
step. This allows an active logic to decide whether to continue to trust certain be-
liefs, or cease using them in further inference. In conjunction with this, active logic
allows sentences to be “superscripted”, as in the earlier example of the two Johns.
This is a formal device implementing features 2 and 3, above. Its effect is to give
an active logic the freedom to resolve contradictions by giving sentences different
interpretations. Exactly how all of this is effected by active logic is described in de-
tail in the section on active logic below, and in Anderson, Gomaa, Grant & Perlis
(2008). Before getting to that, however, we turn to a brief survey of some of the
many other approaches to implementing AI reasoning systems. This will allow us
to better highlight the unique, and we think valuable, features of active logic.
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Formal models of human reasoning

From the theoretical perspective any AI reasoning system typically consists of two
main components: (1) a logical formalism for knowledge representation and (2) an
inference engine to conclude new knowledge from existing knowledge. Based on
the logical formalism and the theoretical and philosophical motivations behind the
reasoning system, the inference mechanism can either be deductive, inductive, non-
monotonic, default, defeasible, etc. An important issue in the implementation of the
inference engine is the use of heuristics for typically the complexity of an algorith-
mic approach is prohibitively high. In the following subsections we survey some
reasoning systems that take different approaches towards knowledge representation
and inferencing.

General intelligence in human beings can be analyzed in terms of levels of de-
scription (see Newell (1990)). Each level corresponds to a particular degree of ab-
straction or, more concretely, to a particular timescale of intelligent tasks. Every
increase in the order of magnitude on the timescale would instantiate a new higher
level of abstraction. Levels can be grouped into three bands (see Rosenbloom, Laird,
Newell & McCarl (1991)): (1) the neural band which corresponds to levels that do
not exceed the order of few milliseconds; this band is the focus of the connectionist
community, (2) the cognitive band which corresponds to levels starting with few
milliseconds and up to levels with few seconds; this band is the focus of the cog-
nitive science community, and (3) the rational band which corresponds to complex
goal-oriented planning and actions which take at least the order of seconds; this
band is the focus of the logicist and expert systems communities.

Soar

Soar (see Laird, Newell & Rosenbloom (1987); Rosenbloom, Laird, Newell & Mc-
Carl (1991)) is an implementation of a theoretical-based approach to general intelli-
gence that focuses on the cognitive band. The relationship of Soar to other bands are
investigated in Newell (1990); Rosenbloom (1989); Rosenbloom, Newell & Laird
(1990). Soar assumes no distinction between human intelligence and machine intel-
ligence, hence it has been extensively used both for developing artificial intelligence
applications and cognitive models.

The architecture of Soar can be described by four levels of abstraction. First it
uses an associative parallel memory to store long-term knowledge, and to identify
and retrieve knowledge relevant to the current problem solving context. This knowl-
edge is stored as a set of productions of the form P : condition→ action, where the
correct action is performed when its preconditions hold. Memory access consists of
the parallel execution of these productions. The result of this access is the retrieval
of information into a short-term working memory that stores contextual information
in the form of interrelated objects with attribute-value pairs. For example, an object
representing a blue Ford car owned by Heather might look like
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[Id = te12, type = car,model = Ford,color = blue,owner = Heather]

The second level of abstraction in Soar’s architecture is the decision making
mechanism which proceeds in two elaborate-decide cycles. During elaboration
memory is accessed repeatedly and the corresponding relevant productions are exe-
cuted in parallel. Then one or more of the retrieved actions is performed based upon
preference knowledge about what actions are acceptable and/or desirable.

Above the decision making comes the determination of goals. Goals are set out
whenever the decision procedure has reached a situation (called impasse) where
alternatives do not exist any more or there are alternatives, but not enough discrim-
inating information to choose among them (Rosenbloom, Laird, Newell & McCarl
(1991)). Along with the determination of a new goal, a new problem context is
generated which allows the continuation of decision making. If in the new context
another impasse is encountered, then a new sub-goal and context are generated and
the whole process recurs.

The final layer of abstraction is learning. When Soar resolves an impasse it sum-
marises and generalises all the reasoning that led to its resolution. This adds new
knowledge to its long-term memory that will prevent the occurrence of such an im-
passe in similar future situations. Soar’s learning mechanism can be used to learn
new conceptual knowledge, learn new procedures, and correct its knowledge from
the feedback obtained from its interactions with the surrounding environment.

Cyc

Cyc is a reasoning system that focuses on the construction of a vast knowledge base
(KB) of trivial and commonsense knowledge (see Lenat, Guha, Pittman, Pratt &
Shepherd (1990); Lenat & Guha (1990)). The rationale behind Cyc is as follows.
The research and design of AI reasoning systems have largely been concentrating
on the development of a logical formalism for knowledge representation and an
efficient inference engine based on that formalism. However, little attention has been
given to the construction of a real, or at least an approximation to a real, KB that
grounds the whole enterprise in reality (the raw material over which the reasoning
engine operates). This KB would encode commonsense knowledge about the world
that we take for granted concerning things such as time, space, agenthood, life,
death, etc.

The early systems lacked the kind and amount of knowledge that would make
them effective. With modest-sized KBs (102 to 103 domain-specific assertions or
rules), such systems sometimes showed very impressive performance in narrow
task domains but notable problems remained. For example, consider an expert sys-
tem that contains the following rules from Lenat, Guha, Pittman, Pratt & Shepherd
(1990):
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if frog(x), then amphibian(x)

if amphibian(x), then lays_eggs_in_water(x)

if lays_eggs_in_water(x), then lives_near_lots_of(x,water)

if lives_near_lots_of(x,water), then ¬ lives_in_desert(x)

Given the assertion that Freda is a frog, the expert system can conclude various
facts about Frida such as Frida is amphibian, lays eggs in water, lives near lots of
water, etc. However, it can not answer simple commonsense questions, that would
otherwise seem trivial to humans, such as: Does Freda lay eggs i.e., instead of asking
about laying eggs in water? Is Freda sometimes in water? Is Freda a living being?,
etc. Hence, such expert systems with complex detailed knowledge were very rigid,
non-robust, and could easily fail when encountering a situation or question that is
slightly different from the intended narrow domain.

Cyc is an attempt to overcome this brittleness. Its philosophy is to build a vast
KB (size at least the order of millions of facts) containing general commonsense
facts, domain-specific facts, general heuristics, specific heuristics, and heuristics for
analogizing.

The construction of Cyc is, by its very nature, incremental. This includes the
representation language, the inference engine, and of course the KB itself.

OSCAR

As opposed to Soar which is intended to simulate the cognitive band, OSCAR is
constructed to simulate the rational band (Pollock (1992)). It is an architecture for
rational agents based upon an evolving philosophical theory of rational cognition
(Pollock (1999)). The general architecture is described in Pollock (1995). OSCAR’s
overall behaviour can be briefly described by the following cycle: (1) OSCAR has
beliefs representing the surrounding environment, (2) it evaluates the current sit-
uation according to these beliefs, then (3) it engages in an activity to change the
world to its liking and to update its belief system. The most distinguishing feature
of OSCAR is that most of its rational cognition is performed by epistemic cogni-
tion, cognition about what to believe, as opposed to practical cognition which is
cognition about what to do.

OSCAR is essentially a defeasible reasoner. Additionally, by providing it with
the axiom schemas of first-order logic it becomes a complete theorem prover for
that logic (that is OSCAR is able to deduce every valid first-order formula). De-
feasible reasoning leads to conclusions that are not necessarily deductively valid.
The truth of the premises along with a rationally compelling argument provide good
support of the conclusion, even though it is still possible for the premises to be true
and the conclusion false. Such premises are called prima facie reasons. Conclusions
supported defeasibly might have to be withdrawn later in the face of new additional
information (Pollock (1999)). For instance, if something looks red to me, that gives
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me a prima facie reason for thinking that it is red. But if someone I trust insists
that it is not red then that gives a rebutting defeater. This kind of defeater attacks
the conclusion. Another kind of defeater would attack the relationship between the
premises and the conclusion. For example, learning that there was red light illumi-
nation should weaken my belief that the object is red. The interested reader may
consult Pollock (1987, 1989, 1991a,b) for further details.

SNePS

SNePS, the Semantic Network Processing System (Shapiro (1979); Shapiro & Ra-
paport (1987, 1992); Shapiro (1993)), is a logic-based approach to natural lan-
guage understanding and commonsense reasoning. Its ultimate goal is to acquire
new knowledge through natural language interaction either with human agents or
through media such as books, journals, radios, TVs, etc. SNePS should generally be
able to represent everything expressible in natural language and should be able to
reason in the presence of incomplete, circular, or inconsistent information.

Reasoning in SNePS is done through a formalism called SNePS logic SNeP-
SLOG which is an enhanced version of first-order logic that is adapted to the natural
language context (Shapiro (2000)). For example, one of the features of SNePSLOG
is the implementation of a new logical connective andor(i, j), which can be used to
express the fact that an object satisfies some properties among several alternatives.
This is not easily expressible in first-order logic because it is neither inclusive or
nor exclusive or. The general formal syntax of andor(i, j) is:

andor(i, j){P1, . . . ,Pn}

is true if and only if at least i and at most j of the first-order properties P1, . . . ,Pn
are true. Another improvement to first-order logic is the addition of the connective
thresh which has the following syntactical form:

thresh(i, j){P1, . . . ,Pn}

and is true if and only if fewer than i or more then j of P1, . . . ,Pn hold. This con-
nective could be used to capture equivalences among first-order properties. More
connectives, quantifiers and other logical features are included in SNePSLOG (see
Shapiro (2000)).

SNePS memory is a semantic network modeled as a directed graph. Nodes in this
graph represent concepts, individuals, general and specific rules, and propositions.
The neighbours of any node in the semantic network can determine more complex
structural properties of that node. For example, composite rules, propositions, and
concepts can be formed by following a path of several nodes along the edges. Figure
11.1 shows an example of a SNePS semantic network. The nodes ‘Max’, ‘David’,
and ‘John’ represent individuals, the node ‘Male’ represents a property, and the
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nodes ‘Has_gender’, ‘Is_parent_of’, ‘Is_child_of’, and ‘Equiv’ represent binary re-
lations.

Has_gender Male

Max David John

Is_parent_of

Equiv

Linda

Inv(Is_child_of)

Fig. 11.1 An example of a SNePS network (adapted from Shapiro, Woodmansee & Kreuger
(1968))

ACT-R

The ACT-R architecture is a simulation environment that supports the creation of
cognitive models capable of predicting and explaining human behaviour (Ander-
son, Bothell, Byrne, Douglass, Lebiere & Qin (2004); Lebiere & Anderson (1993)).
The architecture is constrained by the theory of rational analysis which is an em-
pirical program that aims at explaining the functions and purposes of cognitive pro-
cesses (Anderson (1990, 1991); Oaksford & Chater (1999)). According to rational
analysis it is important to step back from the investigation of human methods and
mechanisms to ask about the environment within which these mechanisms are ap-
plied (Gray, Sims, Fu & Schoelles (2006)). In the context of ACT-R, each compo-
nent of the cognitive system is optimised with respect to environmental demands,
given computational limitations (Taatgen, Lebiere & Anderson (2006)). According
to this pragmatic approach truth is not a fundamental notion in ACT-R, though it
is a derivative one: useful demand-based knowledge (either sensed directly from
the surrounding environment or extracted from the current beliefs given the contex-
tual environment) is usually true (weaker than defeasible reasoning described above
in OSCAR); however, true knowledge is not necessarily useful (deducing Fermat’s
Last Theorem or solving the Continuum Hypothesis are not useful in everyday activ-
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ities). This is in contrast to purely logical-based systems built upon (presumed) true
premises that are acted upon by sound reasoning rules irrespective of usefulness,
which is not a logical notion. As will be seen below, this notion of usefulness/utility
upon which ACT-R is based is manifested in the design of its memory.

ACT-R has two kinds of memory: declarative memory for facts and procedural
memory for rules. Declarative memory is defined by items called chunks. Chunks
have different levels of activation which reflect both their general access pattern and
their relevance to the current context. Chunks that are frequently accessed receive
a high activation. This activation decays stochastically over time if the chunk is
not used. Procedural memory is defined by a set of production rules. Similar to
the use of activation in declarative memory, each production rule has an associated
utility value that determines its usefulness in reaching the desired goal. Selection of
productions is based on the values of this attribute which are updated stochastically
through the use of learning mechanisms.

Active Logic

In contrast with most of the systems outlined above, active logic was explicitly de-
signed to capture some of the non-classical aspects of human commonsense rea-
soning, including time-awareness, control of inference, paraconsistency and non-
monotonicity, including the ability to re-interpret the meanings of formulas. We
have provided a detailed semantics (for a propositional version of active logic) in
Anderson, Gomaa, Grant & Perlis (2008), but we offer some of the highlights here.

Formulas in active logic are expressed in a sorted first-order language L with
two parts Lw, a propositional language in which are expressed facts about the world,
and La, a first-order language used to express facts about the agent, including the
agent’s beliefs, for instance that the agent’s time is now t, that the agent believes P,
or that the agent discovered a contradiction in its beliefs at a given time.

Lw is a propositional language consisting of the following symbols:

• a set S of sentence symbols (propositional or sentential variables) S = {S j
i : i, j ∈

N} (N is the set of natural numbers).
• the propositional connectives ¬ and→
• left and right parentheses ( and )

SnLw is the set of sentences of Lw formed in the usual way. These represent
the propositional beliefs of the agent about the world. For instance S0

1 might mean
“John is happy”. For later use we assume there is a fixed lexicographic ordering for
the sentences in SnLw .

La, contains the unary predicate symbol Now, used to express the agent’s time,
the binary predicate symbol Contra, used to indicate the existence of a direct con-
tradiction in its beliefs at a given time, and the binary predicate symbol Bel, which
expresses the fact that the agent had a particular belief at a given time. La contains
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only the connective ¬; hence statements such as Bel(θ , t)→ Bel(θ , t +1) are not in
the language.

All inferences in active logic depend on the knowledge base (KB) of the agent.
The agent’s knowledge base at time t, KBt , is a finite set of sentences from L ,
that is, KBt ⊆ SnL . In the case of KB0 we allow only formulas of SnLw whose
superscripts are all 0.

For Lw, we use a fairly standard notion of interpretation h : SnLw →{T,F} over
the sentences in Lw that extends an Lw-truth assignment h as follows:
h(¬ϕ) = T ⇐⇒ h(ϕ) = F
h(ϕ → ψ) = F ⇐⇒ (h(ϕ) = T and h(ψ) = F)

We also stipulate a standard definition of consistency for Lw: a set of Lw sen-
tences is consistent iff there is some interpretation h in which all the sentences are
true. Notationally we write the usual h |= Σ , to mean that all the sentences of Σ are
assigned T by h.

The interpretation for La is somewhat more unusual. The symbol for the inter-
pretation is HΣ

t+1; it is an interpretation at time t + 1 based on Σ , where Σ is to be
understood formally as any set of sentences from L . For current purposes, the most
important aspects of the interpretation are as follows:

• The predicate symbol Now has the following semantics: HΣ
t+1 |= Now(s) ⇐⇒

s = t +1 and Now(t) ∈ Σ ; otherwise HΣ
t+1 |= ¬Now(s).

• The predicate symbol Contra has the following semantics: HΣ
t+1 |=Contra(σ ,s)

⇐⇒ either s < t and Contra(σ ,s) ∈ Σ or s = t and ∃σ ,¬σ ∈ Σ ; otherwise
HΣ

t+1 |= ¬Contra(σ ,s).
• The predicate symbol Bel has the following semantics: HΣ

t+1 |= Bel(θ ,s) ⇐⇒
either s < t and Bel(θ ,s) ∈ Σ or s = t and θ ∈ Σ ; otherwise HΣ

t+1 |= ¬Bel(θ ,s)

For this version of active logic, we assume that the sentences in La are consistent,
but allow for the possibility of inconsistency in the set of Lw sentences. We use
the term Γ to refer to the potentially inconsistent set of Lw sentences in Σ : Γ =
Σ ∩SnLw .

In order to model the sentences in Γ , active logic uses an “apperception func-
tion”. The notion of an apperception function is intended to help capture, at least
roughly, how the world might seem to an agent with a given inconsistent belief set
Γ . For a real agent, only some logical consequences are believed at any given time,
since it cannot manage to infer all the potentially infinitely many consequences in
a finite time, let alone in the present moment. Moreover, even if the agent has con-
tradictory beliefs, the agent still has a view of the world, and there will be limits on
what the agent will and won’t infer. This is in sharp distinction to the classical notion
of a model, where (i) inconsistent beliefs are ruled out of bounds, since then there
are no models, and (ii) all logical consequences of the KB are true in all models.

The idea is simple: suppose S0
i , S0

i → S0
j and ¬S0

j are all in Γ , we imagine that
the agent might not realise, at first, that the two instances of Si are in fact instances
of the same sentence symbol. That is, it might seem to the agent that the world is
one in which, say, S1

i is true, and so is S2
i → S0

j .
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The apperception functions we define can make changes only to Γ . An apper-
ception function does not change Σ −Γ . We use the same notation ap when the
apperception function is applied to an occurrence of a sentence symbol, a sentence,
or a set of sentences. We start by defining a function that changes the superscripts
of sentence symbols to 0. This is used to recover the original direct contradictions
that were modified by the assignment of superscripts.

Definition 1 For any sentence φ ∈ SnLw , let z(φ) be the sentence φ with all super-
scripts reset to 0. If Σ ⊆ SnLw , then z(Σ) = {z(φ)|φ ∈ Σ}.

Definition 2 An apperception (awareness) ap is a function ap : Σ → Σ ′ where Σ

and Σ ′ are sets of L -sentences. An ap is represented as a finite sequence of non-
negative integers: 〈n1, . . . ,np〉. The effect of ap on Σ is as follows:

1. Let Σ be a set of L -sentences and let Γ = Σ ∩Lw. Using the lexicographic
order given earlier, let the kth sentence symbol in Γ be S j

i . The effect of the
ap = 〈n1, . . . ,np〉 is to change S j

i to Snk
i if 1≤ k≤ p, otherwise S j

i is unchanged.
2. ap(Σ) = (Σ −Γ )∪ap(Γ ). (ap does not change Σ −Γ ).

Example 11.7. Let Σ = {Now(5),Bel(S0
2,4),¬S1

2,S
1
2,S

0
1 → S4

5}. In this case Γ =
{¬S1

2,S
1
2,S

0
1 → S4

5}. Writing the elements lexicographically yields ord(Γ ) = {S1
2,

¬S1
2, S0

1→ S4
5}. Consider ap = 〈1,3,2,16,7〉. Then

ap(Σ) = {Now(5),Bel(S0
2,4),S

1
2,¬S3

2,S
2
1→ S16

5 }.

The purpose of the apperception functions is to get rid of inconsistencies in Σ .
Hence we are interested only in apperception functions that output consistent sets.
The set of apperception functions that do this depends on Σ .

Definition 3 Let AP denote the class of all apperception functions. APΣ = {ap ∈
AP|ap(Σ) is consistent }.

It turns out that APΣ is never empty (Anderson, Gomaa, Grant & Perlis (2008)).
At this point we are ready to define the notion of active consequence at time t

– the active logic equivalent of logical consequence. Here again, the full technical
details are given in Anderson, Gomaa, Grant & Perlis (2008), but we outline some of
the more important elements here. We start by defining the concept of 1-step active
consequence as a relationship between sets of sentences Σ and Θ of L , where
Σ ⊆ KBt and Θ is a potential subset of KBt+1. When we define this notion we want
to make sure that Θ contains only sentences required by Σ and the definition of
HΣ

t+1. This is the reason for the next definition.

Definition 4 Given Σ and ap ∈ APΣ , define
dcs(Γ ) = {φ ∈ Γ |∃ψ ∈ Γ such that z(φ) = ¬z(ψ) or ¬z(φ) = z(ψ)}.
apz(Γ ) = ap(Γ )−dcs(Γ ).

The meaning of Definition 4 is that we are removing direct contradictions from
ap(Γ ) while ignoring the superscripts.
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Definition 5 Let Σ ,Θ ⊆ SnL . Then Θ is said to be a 1-step active consequence of
Σ at time t, written Σ |=1 Θ if and only if ∃ap ∈ APΣ such that

i. if σ ∈ Θ ∩ SnLw then apz(Γ ) |= σ (σ is a classical logical consequence of
apz(Γ )), and

ii. if σ ∈Θ ∩SnLa then H(Σ−Γ )∪z(Γ )
t+1 |= σ .

Definition 6

i. Let Σ ,Θ ⊆ SnL . Then Θ is said to be an n-step active consequence of Σ at
time t, written Σ |=n Θ , if and only if

∃∆ ⊆ SnL : Σ |=n−1 ∆ and ∆ |=1 Θ . (11.1)

ii. We say that Θ is an active consequence of Σ , written Σ |=a Θ , if and only if
Σ |=n Θ for some positive integer n.

Next we give some examples to illustrate the concept of active consequence.

Example 11.8.

i. Let Σ = {Now(t),S0
1,S

0
1 → S0

4,S
0
12} and Θ = {Now(t + 1),S0

4,S
0
12}. Let ap ∈

APΣ be the identity function. It is easy to see that {S0
4,S

0
12} are logical conse-

quences of {S0
1,S

0
1 → S0

4,S
0
12}. Also by definition HΣ

t+1 |= Now(t + 1). Hence
Σ |=1 Θ .

ii. Let Σ = {S0
1,S

0
2,S

0
2 → ¬S0

1} and Θ = {Contra(S0
1, t + 1)}. We will see that

Σ |=2 Θ . Let ∆ = {S1
1,¬S2

1}. Then Σ |=1 ∆ , through the apperception function
ap(Σ) = {S1

1,S
2
2,S

2
2→¬S2

1}. Then ∆ |=1 Θ by the second part of the definition,
regardless of the apperception function applied in this step.

Note that in Example 11.8.ii, it is not the case that Σ |=1 {Contra(S0
1, t)} even

though the conditions for the later appearance of the relevant direct contradiction
were already in place at time t. This underlines the fact that in active logic it can
take time for consequences to appear in the KB. Apperception functions give active
logic agents control over which inferences to make, and which to suppress. They
allow the agent to have inconsistent beliefs while still having a consistent world
model. Moreover, this allows us to see how an agent with inconsistent beliefs could
avoid vacuously concluding any proposition, and also reason in a directed way, by
applying inference rules only to an appropriately apperceived subset of its beliefs.

For instance, consider the following active logic inference:

Definition 7 If ϕ,¬ϕ ∈ KBt , where ϕ ∈ SnLw , then the direct contradiction infer-
ence rule is defined as follows:

t : ϕ,¬ϕ

t +1 : Contra(ϕ, t)
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This inference is sound based on the definition and interpretation of Contra. And
because of this, along with apperception functions, the following inference is un-
sound:

Definition 8 Let Σ ⊆ SnLw be inconsistent. Let ψ ∈ SnLw . We define the explosive
rule with respect to the language Lw as follows.

t : Σ ; Inconsistent(Σ)

t +1 : ψ

The explosive inference rule is unsound. For consider the case where ψ is
¬(S0

1 → S0
1). No apperception function ap that turns Σ into a consistent set can

logically derive ψ . Hence ap(Σ) 6|=1 ψ .
This shows that active logic is paraconsistent. We hope that this approach to para-

consistency can shed some light on focused, step-wise, resource-bounded reasoning
more generally. More details on the semantics for active logic, and many more ex-
amples of its use, can be found in Anderson, Gomaa, Grant & Perlis (2008).

Comparison with reasoning systems and formalisms

Active logic possesses several interesting properties. It has a temporal component
so that inference occurs in time: for a set of formulas Γ at time t deduce formula
φ at time t + 1. Active logic is paraconsistent as both φ and ¬φ may hold at some
time t. Active logic is also non-monotonic because a formula φ that holds at time t
does not necessarily hold at time t + 1; this happens in particular when φ and ¬φ

are replaced by the Contra formula.
We are not aware of any other logic system that possesses such a temporal com-

ponent as well as paraconsistency and non-monotonicity. SOAR, Cyc and ACT-
R do not appear to incorporate any of these features, and while OSCAR is non-
monotonic, it is neither time-tracking nor paraconsistent. The closest of the above
systems to having the distinctive features of active logic is SNePS, but there are
some important differences between the two approaches. For instance although
SNePS incorporates a time-tracking feature, in a SNePS-based agent NOW is a
meta-logical variable, rather than a logical term fully integrated into the SNePS se-
mantics. The variable NOW is implemented so that it does, indeed, change over time,
but this change is the result of actions triggering an external time-variable update.
In active logic, in contrast, reasoning itself implies the passage of time. Perhaps in
part because of this difference, SNePS is a monotonic logic, whereas active logic is
non-monotonic, leveraging the facts that beliefs are held at times, and beliefs can be
held about beliefs, to easily represent such things as “I used to believe P, but now I
believe ¬P” using the Bel operator. SNePS is also able to represent beliefs about be-
liefs, but there is no indication that this ability is leveraged by SNePS to guide belief
updates. Rather, all beliefs are about states holding over time, so that belief change
is effected by allowing beliefs to expire, rather than by formally retracting them.
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This is a strategy similar to that employed by the situation calculus (which does
not itself incorporate a changing Now term) (McCarthy & Hayes (1969)). Finally,
although SNePS is a paraconsistent logic, in SNePS contradictions imply nothing at
all, whereas in active logic contradictions imply Contra, a meta-level operator that
can trigger further reasoning.

Nevertheless, although there are few examples of implemented systems with the
features of active logic, we know that a substantial amount of work has been done on
non-monotonic paraconsistent logics. While these logics are not really comparable
to active logics, we provide here information on some such systems.

An early influential paraconsistent non-monotonic logical system was presented
in Priest (1989). The logic LP has 3 truth values: True, False, and Both. The con-
nectives and entailment in LP are defined as in classical logic, but on account of the
third truth value, LP is paraconsistent. LP is then extended to LPm with consistency
as a default assumption and a notion of default consequence relation |=m is defined
using minimal models. LPm is a non-monotonic paraconsistent system.

Another such system is a combination of LEI (Logic of Epistemic Inconsistency)
and IDL (Inconsistent Default Logic), called IDL&LEI. We refer to Martins, Pe-
queno & Pequeno (2002) for details about it including a multiple world semantics.
Formulas in LEI are divided into 2 groups: the irrevocable formulas and the plausi-
ble formulas; the latter are distinguished by a question mark, as in α?. No contra-
dictions are allowed involving any irrevocable formula; contradictions are allowed
only for plausible formulas. LEI is paraconsistent. non-monotonicity is obtained by
adding default rules using IDL. The IDL&LEI system has both an elegant syntax
and a multiple world semantics.

Finally we mention the work in Arieli & Avron (1998) where a non-monotonic
paraconsistent logic uses Belnap’s 4-valued logic with a notion of logical conse-
quence based on minimal preferential models. The approach here is primarily se-
mantical. (Actually, it turns out that a 4-valued semantics is available also for IDL.)
The recent paper by Arieli (2007) uses quantified Boolean formulas in the context
of multiple-valued logics to represent several non-monotonic paraconsistent logics.
This paper also contains many references to recent related work.

Conclusions

As shown by many psychological experiments, the logic used by human is sub-
stantially different from classical logic, and for just this reason may be more use-
ful to commonsense reasoning. Hence logic-based AI systems should be attuned
to, and where possible implement, these non-classical features. We have described
several AI reasoning systems, as well as active logic, a logic designed to capture
features such as time-awareness, control of inference, paraconsistency, and non-
monotonicity, that we think are important to human commonsense reasoning.
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