
Comparing Matrix Decomposition Methods for Meta-analysis and Reconstruction
of Cognitive Neuroscience Results

Kevin Gold
Rochester Institute of Technology

kgold@mail.rit.edu

Catherine Havasi
MIT Media Lab

havasi@media.mit.edu

Michael Anderson
Franklin and Marshall

michael.anderson@fandm.edu

Kenneth Arnold
MIT Media Lab

kcarnold@media.mit.edu

Abstract
The results of 2,256 neuroimaging experiments were an-
alyzed using singular value decomposition (SVD) and
non-negative matrix factorization (NMF) to extract pat-
terns in the data. To evaluate the techniques’ efficacy
at capturing regularities in the data, one positive and
one negative result from each of 100 random experi-
ments were treated as missing, and the values were it-
eratively reconstructed using each technique for dimen-
sionality reduction. Under the best conditions, preci-
sion and recall of roughly 78% was achieved for each
method. Weighting the domain matrix and area matrix
to have equal first eigenvalues before combining them, a
technique known as blending, significantly improved re-
sults for both methods. While using unnormalized data
appeared to produce a peak in results for 10-15 dimen-
sions, normalizing to take into account variation in the
popularity of experiment types removed the effect. The
basis vectors produced by each method do not support
the idea that current cognitive ontologies map well to
individual brain areas.

Introduction
One of the most tantalizing promises of machine learning
is its potential to inform other areas of science where the
theories are still developing. Neuroscience is an excellent
example of a discipline in which there is a wealth of detail,
but a paucity of data-grounded methods for producing and
verifying broad theories. A typical functional magnetic res-
onance imaging (fMRI) experiment tests only a small ex-
perimental manipulation for its effect on overall brain activ-
ity, but because the experimental paradigm for how to con-
duct one of these studies is clear, there is a wealth of these
highly specific fMRI results. Our goal in this paper is to
show how to take these results and, using dimensionality
reduction techniques such as singular value decomposition
(SVD) and non-negative matrix factorization (NMF), extract
the higher-level patterns of brain activity that span many ex-
periments. We introduce in this paper a methodology for
evaluating how well these low-dimensional approximations
reflect reality – namely, by examining how well values omit-
ted from the data can be reconstructed using the approxima-
tions. We also show that two techniques for balancing the
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importance of all the data – namely, blending and normal-
ization – are likely necessary for distinguishing effects such
as experiment popularity from actual results.

Although the prevailing view of brain function assumes
brain areas are highly selective and specialized, with each
area responding to a restricted class of inputs and contribut-
ing primarily to a single cognitive domain such as language
or motor control, the actual degee of selectivity of individual
brain regions has increasingly come into question (Poldrack
2006; Anderson 2010). Though looking at a single brain-
imaging experiment can appear to confirm the hypothesis of
a very specific local function when the experimental manip-
ulation produces the desired result, looking at many studies
often reveals that any given brain area is more versatile than
the single experiment would suggest. A statistical analysis
of 1,469 brain imaging experiments shows that most brain
areas appear to be reused across a variety of domains (An-
derson 2010). Moreover, it appears to be not the individual
area that is selective to a given cognitive domain, but net-
works of different areas. Nevertheless, the actual degree of
selectivity of brain networks is still largely unknown.

The current study uses a database of 2,603 brain-imaging
experiments to further investigate the selectivity of brain
networks. The experiments were extracted from 824 jour-
nal articles published between 1996 and the present, in-
cluding, for instance, all qualifying articles from the Jour-
nal of Cognitive Neuroscience (Anderson, Brumbaugh, and
Suben 2010). All the experiments in the database use func-
tional magnetic resonance imaging (fMRI), a technique for
determining which areas of the brain are active when the
subject is engaged in particular tasks. The experiments in
the database produce images of brain activity by finding ar-
eas1 of the brain that are significantly more activated 2 un-
der some experimental condition than in a control condi-
tion. For each experiment, the data also includes a list of
the cognitive domains that the experiment was addressing
– for example, “Perception: Vision” or “Cognition: Lan-
guage” – using the BrainMap (Fox and Lancaster 2002;

1Based on standard Freesurfer regions;
http://surfer.nmr.mgh.harvard.edu/

2Here, “activated” means an increase in the Blood-Oxygenation
Level Dependent (BOLD) signal that fMRI detects. The BOLD
signal is an indirect indicator of neural activity; see (Logothetis
2007; Logothetis et al. 2001) for an overview.



Laird, Lancaster, and Fox 2005) classification system.

Since our database can essentially be represented as a
large matrix, there are two methods that appear most promis-
ing for extracting high-level patterns of activity: singular
value decomposition (SVD) and non-negative matrix fac-
torization (NMF). We can plot each experiment in a high-
dimensional space that represents the brain areas and cog-
nitive domains involved, then use the SVD to collapse the
space into a basis that more readily captures the regulari-
ties in the data. In the best case, the dimensions of the new
space can represent meaningful variables – for example, an
SVD on the statements in the Open Mind Common Sense
database can reveal axes such as liked versus hated objects,
and possible versus impossible actions (Speer, Havasi, and
Lieberman 2008). Ideally, the dimensions of a space of brain
experiments might represent networks of regions that mean-
ingfully co-activate. NMF is similar, but instead makes the
assumption that we are looking for a strictly additive com-
bination of non-negative components. NMF can be used to
decompose a data set of photographs of faces into parts such
as eyes, noses, eyebrows, and mouths (Lee and Seung 1999).
One might hope that if brain activity can be characterized by
the sum of distinct networks responsible for each cognitive
domain, that NMF would better characterize this activity as
the sum of somewhat independent parts.

Two previous studies are most similar to the current work.
One used NMF to find text associated with particular areas
of the brain, using a matrix of abstract text versus brain
area to find terms commonly associated with particular ar-
eas (Nielsen, Hansen, and Balslev 2004). Another used SVD
and independent component analysis (ICA), a method sim-
ilar to NMF without the non-negativity constraint, to find
networks of co-activation in the resting brain, comparing
them against networks found using the same techniques on
reported experimental results (Smith et al. 2009). In both pa-
pers, a critical question was left unanswered: how would it
be possible to evaluate the networks and meanings that were
extracted?

In this paper, we introduce a technique for examining the
goodness of fit of these methods for extracting patterns in
brain activity – namely, the ability of the matrices to re-
liably reconstruct results when they are omitted from the
data, using iterative reconstruction (Kurucz, Benczúr, and
Csalogány 2007; Zhang et al. 2006). The idea of relating
the quality of a model to its predictive capability is natu-
ral within machine learning, but it has apparently not been
used before for neuroimaging results. By using this tech-
nique, we show that the quality of the approximation can
dramatically decrease when using too many dimensions. We
also show that when the data is normalized to take into ac-
count the frequency with which areas are activated and do-
mains are tested, there is no particular difference in the num-
ber of dimensions used, nor whether SVD or NMF is used
– demonstrating that large artifacts in the data can appear
when metastudies do not take the frequency of experiments
into account.

Methods
We have chosen two models to test in representing our data,
non-negative matrix factorization and singular value decom-
position. SVD is characterized by decomposing a matrix-
based data representation into a set of orthonormal basis
vectors which represent latent patterns in the source data
set. NMF decomposes its source matrix into a set of non-
negative basis vectors. Unlike SVD, an NMF decomposi-
tion is not necessarily unique or the optimal decomposition
of the space. Since NMF prohibits negative values, it cannot
directly represent inhibition. However, the non-negativity
constraint causes the NMF to not have tendency to use these
negative values to overfit a space.

To create our source space, we used data on fMRI activa-
tions from the NICAM database collected by Anderson et
al (Anderson, Brumbaugh, and Suben 2010). We created
two source matrices — A for brain areas which showed ac-
tivation in the fMRI data and D for domain tags (such as
“Cognition, Language, Phonology”) used by the data set’s
curators. Each row of these matrices represented an experi-
ment and each column either a brain activation or a domain
tag. These two data sets were combined together to form a
single source matrix. In some experiments, we then normal-
ized this matrix to account for the fact that certain experi-
ment areas are more popular than others.

This matrix is used as the source matrix for either SVD or
NMF analysis. These decomposition techniques find a set
of basis vectors which compress the space by representing
it in terms of a basis of patterns or clusters which represent
the variance in the data. We can see an example of this by
examining how one of the SVD’s basis vectors represents
language-related tags an area in Figure 4. The spaces cre-
ated by these methods can be evaluated to understand how
various factors such as normalization and the number of ba-
sis vectors affect the model. The optimal space can then be
used in future work to continue to analyze brain function.

Creating the Matrix
Our data consisted of two matrices, the brain area matrix
A and the experiment domain matrix D, created from a
database of 2,603 subtraction-based within-subject fMRI
experiments from the NICAM database (Anderson, Brum-
baugh, and Suben 2010). The experiments were extracted
from 824 journal articles published between 1996 and the
present, including, for instance, all qualifying articles from
the Journal of Cognitive Neuroscience (Anderson, Brum-
baugh, and Suben 2010). Of these experiments, 155 were
excluded because they did not activate any of the Freesurfer
regions, and 192 were excluded because they contained only
the coarsest level of domain description (e.g., “Cognition”),
presumably because they fit no more specific category. The
remaining experiments were described by the 2,256 rows of
each matrix. A was a 2256 × 80 matrix in which entry aij

was 1 iff the Freesurfer brain area j was reported to have
significant activation in experiment i, and 0 otherwise. D
was a 2256 × 73 matrix in which entry dij was 1 iff the
database reported experiment i as testing cognitive domain
j. Each experiment could belong to more than one domain,



including many cases in which the domains were in different
branches of the BrainMap hierarchy. Experiments classified
in a sub-subdomain also resulted in a 1 in the parent classifi-
cation’s column.

Blending
We must combine A and D together so we can create a single
space to reason over that is influenced by both the domain
tags and brain activations. Thus, our final target matrix has
rows that represent experiments and columns that represent
either a brain area or a domain tag. We explored simply
concatenating the two matrices, as compared to using the
blending methodology, which aims to balance the influence
that each data set has on the final results.

We combined A and D into a single 2256 × 153 matrix
B = [f1A f2D]. The factorization of B gives a vector
space that represents correlations within and across both ma-
trices. In concatenation, f1 = f2 = 1; in blending (Havasi
et al. 2009), the weighting factors f1, f2 are set so that one
matrix does not overpower the other: fi = 1/σ1i, the first
singular value of the matrix.

Normalization
Normalization takes into account the fact that certain types
of experiments are more popular in the literature than others,
and attempts to correct for that fact in the source matrix. We
would like the columns of B to sum to one, so that each ex-
periment or tag is given equal weight in the decomposition.

In the case of blending, both an unnormalized and nor-
malized combined matrix were examined; in the normalized
case, each entry was divided by the Euclidean norm of its
column to balance the importance of each domain and area.

Evaluation Methodology
To test the SVD and NMF’s ability to reconstruct missing
values, 100 experiments were selected at random, and a ran-
dom positive entry was set to 0 for that experiment, to create
a matrix B0. Another zero entry was selected from each
experiment for testing precision later. The positive and neg-
ative entries selected resulted in a mask M where mij = 1
if the entry was being tested, 0 otherwise. In the case of
SVD, the entries were iteratively reconstructed by factoring
Bt into U t,St, and V t, truncating to the first k singular val-
ues, reconstituting the matrix Rt = UkΣkV T

k , and setting
Bt+1

ij = Rt
ij if Mij = 1 and Bij otherwise. That is, the test

values were set to the reconstituted values from dimension-
ality reduction, and all other values were left alone. This
process was repeated until the process converged, as deter-
mined by the root mean square of the difference between Bi

and Ri falling below a constant (ε = 0.0001).
The reconstitution for NMF was similar; the reconstituted

entries was replaced at each step with entries from Wk ∗Hk,
where these were the low-dimensional approximations re-
turned by the NMF. The constant ε for convergence was
kept the same (ε = 0.0001), though because NMF has ran-
dom starting points and local minima, the reconstruction did
not necessarily converge; it was also terminated when a re-
construction resulted in a larger difference from the previous

matrix than at the last step. After convergence, or this termi-
nation, the NMF was run 10 times with random initialization
on the reconstructed matrix, and the lowest error approxima-
tion was taken.

In both cases, to decide whether a reconstructed entry
should be considered to return “true” for the purpose of
evaluation, the matrix entry was compared to a threshold
of 0.05λi, where λi was the submatrix’s blending factor (1
if no blending was performed). This threshold was chosen
after some experimentation to produce a good tradeoff be-
tween precision and recall for both SVD and NMF; we tried
values between 0.01 and 0.5 at k = 10, 20, and 30. In the
case of normalized entries, this threshold was also scaled by
the column’s normalization factor.

We repeated the steps above for k =
5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 dimensions, with the
same 100 experiments run for each condition. The whole
run was then repeated 10 times, each with a different 100
experiments as test examples. We calculated precision as
the proportion of reconstructed values that were nonzero
in the original matrix, and recall as the proportion of 100
omitted positive values that were correctly reconstructed.
The F measure weights both of these factors equally.

Results
In the unnormalized, unblended case, SVD consistently out-
performed NMF for all numbers of dimensions, though the
difference was negligible for their best performance (Fig-
ure 1). SVD’s best average F measure was at k = 10
(F = 0.740), with 78% average precision and 72% recall.
NMF’s best F measure also occurred at k = 10 (F = 0.736),
with 76% average precision and 71% average recall. The
difference in F measures between the two methods across
the ten runs was not significant for k = 10, but was signifi-
cant for k ≥ 35 via a nonparametric Wilcoxon ranksum test
(p < 0.05).

Blending (weighting the area and domain matrices to have
equal first eigenvalues) appeared to improve performance
across the board for both algorithms, and was of particular
benefit to the NMF algorithm (Figure 2). Blending factors of
λA = 0.0187, λD = 0.362 were found to balance the eigen-
values of A and D, thus weighting the domain matrix three
times as heavily as the area matrix. The best performance
for SVD was now at k = 15 (F = 0.784), with 83% pre-
cision and 75% recall. Best performance for NMF was still
at k = 10 (F = 0.783), with 80% precision and 77% recall.
Again, the difference between the algorithms was not signifi-
cant when comparing their best performance, but now, NMF
performed significantly better (p < 0.05) than SVD when
compared at 30, 40, and 50 dimensions. Blending signifi-
cantly improved both algorithms’ performance across all di-
mensions (p < 10−9 (SVD) and p < 10−24 (NMF) combin-
ing all F measures), and in particular significantly improved
the algorithms’ performance when compared at only their
best k (p < 0.02).

Normalization of the columns of the matrix, which served
to remove bias toward particular areas, had little effect on the
algorithms’ best performance, but dramatically improved



Figure 1: F measures for the unblended, unnormalized ma-
trix for dimensionality reduction to varying numbers of
dimensions k (x-axis) for SVD (squares) and NMF (dia-
monds). Between 10 and 15 dimensions appear to be the
ideal number, with performance dropping as dimensions in-
crease. SVD produces the best performance in this naive
case. (Bars are standard error across 10 runs.)

Figure 2: F measures for the blended (i.e., equally weight-
ing areas and domains) unnormalized matrix for varying k
(x-axis) for SVD (squares) and NMF (diamonds). Overall
performance is better once the two data sources are weighted
to contribute equally, and predictive performance with more
dimensions does not suffer as much. NMF benefits most
from the weighting, now outperforming SVD with more di-
mensions.

Figure 3: F measures for the blended (i.e., equally weighting
areas and domains) and normalized matrix for varying k (x-
axis) for SVD (squares) and NMF (diamonds). Remarkably,
with normalization, the performance does not drop off much
at all with more dimensions, suggesting that previous results
about the true number of subcomponents of brain activity
may simply be a result of oversampling particular kinds of
experiments. Normalization also appears to eradicate any
difference in performance between the two methods. (Graph
scaled to match previous figure.)

performance for dimensionality reduction at higher dimen-
sions (Figure 3). Best performance for SVD was again at
k = 10 (F = 0.778), with a mean precision of 78% and
a mean recall of 78%. This performance was not signif-
icantly different from the best unnormalized performance.
Nor was the NMF performance significantly different at its
best k (k = 10, F = 0.769, precision = 77%, recall =
77%, insignificant difference from SVD or unnormalized
case). However, as the figure shows, the effect is striking
for higher dimensions; there is no longer a significant differ-
ence for either algorithm between performance at 10 and at
50 dimensions! Normalization also removes any significant
difference between the algorithms at k = 50. What may
have seemed a fundamental insight about the true number
of dimensions to posit in the brain, or whether a parts-based
or holistic representation of the brain is more accurate, may
actually be an artifact of a bias in how common it is to run
particular kinds of experiments.

We can further examine qualitatively the results of each
experiment by plotting the basis vectors created for each do-
main and area (Figures 5 and 6). We used SVDview (Speer
et al. 2010) to visualize the basis vectors, which can help
give an intuition for which domains and areas would be clus-
tered together when a clustering algorithm is run on the re-
duced space. In general, areas with known function tended
to occur near their respective domains – for example, “pars
opercularis,” a part of the language area known as Broca’s
area, was clustered along the same axis as the domains of
phonology, semantics, and general language (Figure 4). In
addition, matching areas on opposite sides of the brain – for
example, the left and right superior temporal cortex – tended
to land near each other in the space (Figure 5). However,
there were many domains that did not fall near any particu-
lar area; and in some cases, particularly for areas typically
associated with high-level cognitive function and language,
left and right areas did not land near each other. In other
words, although the results sometimes fit with our canonical
understanding of local function, there is in general no clear



Figure 4: Plotting a projection of the first two dimensions of
the 20-dimensional SVD. Related areas and domains tend to
fall along an off-axis line from the origin, including seman-
tics, language, and the left pars opercularis (Broca’s area)
extending to the upper right, and vision, attention, and ac-
tion execution extending to the lower right.

mapping between domain and area.
The results are even more striking when the basis vectors

of the NMF are visualized (Figure 6). Here, the components
of the basis vectors H are again plotted in the space, and
for most of the basis vectors, areas were not clustered with
domains. Instead, for each basis vector, one area or domain
tended to dominate the vector. This is a very different find-
ing from what we would expect if the current BrainMap on-
tology mapped well to brain areas, in which case, we would
expect vectors with large area components to have large com-
ponents of the corresponding domain, and vice versa.

Conclusions
The questions we begin to approach here are much larger
than what we can answer in a single paper: How is the brain
truly organized? How good is the current ontology for neuro-
science experiments, and can we improve it through dimen-

Figure 5: Plotting the domains and areas into the collapsed
space produced by the SVD for 20 dimensions in SVDview.
An area’s mirrored counterpart on the opposite side of the
brain tends to be co-activated with the area in many cases,
resulting in the left and right areas plotted close to each other
in the space.

sionality reduction and clustering or NMF? How specific in
function are the brain’s areas, and is it any easier to iden-
tify function when we look at co-activity of multiple areas?
As we attempted to answer these questions, we found that
we had to develop new methodology for even evaluating the
quality of our dimensionality reduction – much less mak-
ing any conclusions from the reduced space. We have not
yet made any new neuroscientific conclusions, but we have
made several contributions here in methodology.

First, our results demonstrate the importance of evaluat-
ing the quality of these reduced spaces, and give a concrete
methodology for doing so: that of reconstruction of values
from nearly complete information. Given our results in Fig-
ures 1 and 2, it is clear that studies that collapse to a large
number of dimensions are at risk of overfitting. Our results
show the importance of separating training from test data
when performing metastudies. This is a useful contribution
of our work.

Second, our results show the importance in scientific
metastudies of normalization to take into account that cer-
tain hypotheses and experiments may be more popular than
others. Had we not run our analysis on normalized data,
we would likely have concluded that there are roughly 10-
15 fundamental networks in the brain. Instead, we draw the
conclusion that there are roughly 10-15 very commonly stud-
ied cognitive domains, and unnormalized metastudies are
likely to overfit to these domains at the expense of less well-
understood areas.

Third, this paper represents the first application of blend-
ing to NMF, and we have shown that blending improves
results in this domain for both SVD and NMF. We have



Figure 6: Visualizing two columns of the basis matrix H
for the NMF factorization with 20 basis vectors in SVD-
view. Though one might predict that areas would be cou-
pled tightly with experimental domains in an NMF decom-
position, this does not appear to happen at all. Instead, each
basis vector is dominated by a single area or domain.

also shown that the existing reconstructive algorithms for
SVD and NMF work with blended matrices as well, and
have shown (but not proven) that scaling the reconstruction
thresholds by the blending factor gives satisfactory perfor-
mance.

Fourth, we have provided a potentially useful application
for neuroscientists; an 80% precision is high enough to make
it potentially worthwhile to run an experiment to look for an
activation in a novel area, or to check whether an unexpected
domain would evoke an area. Ideally, our method could be
used to both construct new hypotheses and check data that
already exists in the database; one future application we in-
tend to pursue is to check the efficacy of the algorithm in
reconstructing the missing subdomains for the studies we
omitted.

This is our first work in applying SVD and NMF to cog-
nitive neuroscience data, and many questions remain unre-
solved: Why does NMF not pair the domains with areas
more effectively? Can we produce a better experimental
ontology through these methods, and if so, how? Why is
there no effective difference between the two methods on
the normalized data, when they make fundamentally differ-
ent assumptions about the nature of the components? We
are excited by the possibility of using these techniques to
generate novel discoveries in cognitive neuroscience.
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