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Self-adjusting autonomous
systems
Michael T. Cox and Don Perlis

A solution to the problem of brittle software systems is to endow them
with a metacognitive layer that enables the system to reason about
failure.

The long-standing promise of artificial intelligence (AI) is a
bright new world in which smart machines positively transform
the ways we live and work. However, a well-known difficulty
for AI is the problem of brittleness.1 Autonomous systems tend
to ‘break’ when confronted with even slight deviations from the
situations anticipated by their designers. Of course, this is not
surprising. Why would something ‘work’ in a given situation if
it was not built to do the right thing? We would not expect Deep
Blue (a supercomputer) to be able to play even mediocre check-
ers, because it was built specifically for chess. But AI strives for
systems that work in a variety of situations, including ones not
anticipated. The solution that we outline here is to add an addi-
tional, metacognitive layer of intelligence that watches a system
and adjusts its behaviour when the system fails.

Most approaches attempt to avoid failure altogether by
programming specific reactions for various classes of situations,
but this requires classes that cover all possible failure states. Un-
fortunately, the approach has proven intractable. Instead, we
note that an intelligent agent learns from a failure. A fool is
doomed to repeat it.2 Metacognition (cognition about cognition)
has also been tried before, but much of this research focuses on
improving existing performance by adding a metalayer (details
published elsewhere3, 4). Our research is different in that we de-
fine a relatively small set of failures or anomalies and provide a
generalizable mapping at the metalevel to a small set of recovery
response strategies.

A lightweight, three-phase architecture exists for deploying
response strategies (see Figure 1). We call this architecture the
metacognitive loop or MCL.5, 6 MCL acts as an executive mon-
itor and controller when connected to an intelligent host. First,
it notes when host behaviour or sensor readings diverge from
expectations. Second, it assesses any such anomaly and the op-
tions the host has for dealing with the difficulty. Finally, it guides
the host towards putting these options into action.

Figure 1. The metacognitive loop (MCL).

To implement this architecture, we have developed three
ontologies (knowledge representation hierarchies) that support
the classification and reasoning abilities in each of the MCL
phases. The core of these ontologies contains abstract and
domain-neutral concepts. When an actual anomaly is detected,
MCL attempts to map it onto the core of the loop so that it may
reason about it abstractly. Nodes in the ontologies are linked,
expressing relationships between the concepts they represent.
There are linkages both within and between the ontologies,
which together allow MCL to perform abstraction and reason-
ing about the anomaly being considered.

Each of the three phases of MCL employs one of the ontolo-
gies. The note phase uses an ontology of indications, where an
indication is a sensory or contextual signifier that the system’s
expectations have been violated. Processing in the indications
ontology allows the assess phase to map nodes in the indications
ontology to nodes in the failure ontology, which contains nodes
that abstractly describe how a system might fail. Nodes in the
failure ontology represent the underlying cause of expectation
violations. Finally, when hypotheses about the failure have been
generated, the guide phase maps that information to its own
response ontology, which describes means for handling failures
at various levels of abstraction.

Reasoning from indications to responses is done by treat-
ing the ontologies as a Bayesian network in which all random
variables are Boolean.7 The random variables in the indications
ontology are true if the corresponding indication has been ob-
served and are false otherwise. Variables in the failure network

Continued on next page



10.2417/3201111.003951 Page 2/2

are true if the corresponding failure has actually occurred and
are false otherwise. This is not directly observable, but standard
inference methods make it possible to compute a probability
distribution over these variables based on the observable evi-
dence (the indications). Finally, random variables in the response
ontology are true if the response will likely repair the underlying
failure and are false otherwise. Each response has an associated
cost, and again standard inference methods are used to find the
response with the highest expected utility. Using the lightweight
methodology described here and a more knowledge-intensive
version described elsewhere,8 MCL has been shown effective in
numerous domains and various cognitive tasks.5, 9, 10

As discussed, our approach to the brittleness problem is to
add a metacognitive layer that facilitates a host system’s ability
to adjust itself in the face of failure. A significant feature that
we have started to explore is the use of MCL to decide what,
when and how to learn a new skill. Thus, a particular anomaly
might lead to the response (conclusion) that training is needed
to be better equipped for the given situation. The guide phase
then amounts to initiating a training program and monitoring its
progress. Finally, we are also exploring a new metacognitive in-
tegrated dual-cycle architecture that applies the MCL principles
at both the metacognitive and cognitive levels.11 The hope is that
such research will enable a more robust kind of intelligence that
can withstand a volatile environment.
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