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Figure 12.l 

An overview of a typical metareasoning system. 

Figure 12.2 

An overview of an MCL-enhanced AI system. 

AI systems with self-modeling, monitoring, and repair capabilities. An overview of an 

MCL-enhanced system can be seen in figure 12.2. A reasoning system that employs

MCL (called the host-system) makes explicit its components, capabilities, actions, per­

cepts, and internal state information to compile the infrastructure necessary for a

self-model. Additionally, the host declares expectations about how its activities will

affect the perceptual and state information. MCL monitors the operation of the host

(including its actions and sensory feedback) against its expectations, waiting for viola­

tions to occur. When a violation of expectations is detected, it employs a combination

of a domain-general problem solver and the host's self-model to make recommenda­

tions on how to devote computational resources to anomalous host behavior.
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reinforcement learners when perturbations were made to the world's reward 
structure. 

Indications 

A fragment of the MCL indication ontology is pictured in figure 12.4. The indication 
ontology consists of two types of nodes separated by a horizontal line in the figure: 
domain-independent indication nodes above the line, and domain-specific expecta­
tion nodes below it. Indication nodes belong to the MCL core and represent general 
classes of sensory events and expectation types that may help MCL disambiguate 
anomalies when they occur. Furthermore, there are two types. of indication nodes: 
fringe nodes and event nodes. Fringe nodes zero in on specific properties of expecta­
tions and sensors. For example, a fringe node might denote what type of sensor is 
being monitored: internal state, time, or reward. Event nodes synthesize information 
in the fringe nodes to represent specific instances of an indicator (for example, 
reward not received). Expectation nodes (shown below the dashed line) represent 
host-level expectations of how sensor, state, and other values are known to behave. 
Expectations are created and destroyed based on what the host system is doing and 
what it believes the context is. Expectations may be specified by the system designer 
or learned by MCL, and are linked dynamically into indication fringe nodes when 
they are created. 

Consider the ontology fragment pictured in figure 12.4. This fragment shows three 
example expectations that the enhanced reinforcement learner.might produce when 
it attempts to move into a grid cell containing a reward. First, a reward x should be 

t 

state 

expectation: expectation: 
LY=LY LX=LX-1 

Figure 12.4 

A fragment of the MCL indication ontology. 
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experienced at the end of the movement. Second, the sensor LY should not change. 
Lastly, the sensor LX should decrease by one unit. 

Suppose that someone has moved the location of the reward, but LY and LX behave 
as if the reward were still in the original position. MCL will notice an expectation 
violation for the reward sensor and create a fresh copy of the three ontologies to be 
used as a basis for reasoning through a repair. Based on the specifics of the violation, 
appropriate evidence will be entered into the indication fringe to reflect the fact that 
a violation occurred: a change in a reward sensor was expected, but the change never 
occurred. The relevant expectation node in the fragment in figure 12.4 is denoted by 
boldface, and its influence on associated nodes in the indication ontology is denoted 
by heavy arrows. Through the conditional probability tables maintained by the Bayes­
ian implementation of the ontology, MCL's belief in fringe. nodes "reward" and 
"unchanged" will be boosted. From there, influence is propagated along abstraction 
links within the indication core (activating the sensor node and others). Finally, 
fringe-event links combine the individual beliefs of the separate fringe nodes into 
specifically indicated events. In figure 12.4, the "reward not received" node is believed 
to be more probable due to the evidence for upstream nodes. Once all violated expec­
tations have been noted, and inference is finished, the note phase of MCL is 
complete. 

Failures 

The note stage having been completed, MCL can move to the assessment stage, in 
which indica�ion events are used to hypothesize'a cause of the anomaly experienced. 
The failure ontology serves as the basis for processing at the assessment stage. 

Belief values for nodes in the failure ontology are updated based on activation in 
the indication ontology. Indication event nodes are linked to failure nodes via interon­
tological links called diagnostic links. They express which classes of failures are plau­
sible given the active indication events and the conditional probabilities associated 
with those relationships. 

Figure 12.5 shows a fragment of the MCL failure ontology: Dashed arrows indicate 
diagnostic liriks from the indications ontology leading to the sensor failure and model 
error nodes, which are shaded and bold. These nodes represent the nodes directly 
influenced by updates in the indications ontology dilling the note phase in our 
enhanced reinforcement learning example; a "reward not received" event can be 
associated with either of these types of failure. The remaining links in the figure are 
intraontological and express specialization. For example, a sensor may fail in two ways: 
it may fail to report anything, or it may report faulty data. Either of these is a refine­
ment of the sensor failure node. As such, sensor not reporting and sensor malfunction 
are connected to sensor failure with specialization links in the ontology to express 
this relationship. 
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A fragment of the MCL failure ontology. 
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As in the note phase, influence is passed along specialization links to activate more 

specific nodes based on the probabilities of related abstract nodes and priors. Of par­

ticular interest in our RL example is the predictive model failure node, which follows 

from the model error hypothesis. The basis for action in Q-learning is the predictive 

model (the Q function), and failure to achieve a reward often indicates that the model 

is no longer a match for the domain . 

Responses 

Outgoing interontological links from probable failure nodes allow MCL to move into 

the guide phase. In the guide phase, potential responses to hypothesized failures are 

activated, evaluated, and implemented in reverse order of their expected cost. The 

expected cost for a concrete response is computed as the cost of the response multi­

plied by one minus the estimated probability that the response will correct the 

anomaly, where the cost is quantified by the host. Interontological links connecting 

failures to responses are called prescriptive links. 
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(2) Fixed maintenance: the components/agents of the system with no MCL, but rather
a fixed maintenance policy in which available repair actions are executed in a preven­

tative manner. For instance, the rover rebuilds models every n tirnesteps, recalibrates 
sensors every m timesteps, and so on. (3) Fixed response: The components/agents of 

the system with the MCL note phase working, but with the failure and response
ontologies replaced by a single response, which is to run down a list of all available 
repairs until one succeeds. Insofar as MCL is an effective strategy for ensuring pertur­
bation-tolerance, the performance of system version (1) should be far better than the 
others. 

For measuring the generality of MCL, a different approach mpst be employed. 
Recall that we intend for all the MCL instantiations (e.g., for the natural language 
interpreter and the rover) to have identical core algorithms and core nodes (at least 
initially), but different fringe nodes (e.g., the type and number of expectations). In 

the course of development, we expect that the differences between the host systems 
will suggest changes to the core nodes and their connections, in order to enhance 
performance. The open research questions are: how much will they end up differing, 
and can they be reunified after optimization to generate a more truly universal MCL 
system? We will answer those questions in the following four steps. 

First, we will allow each MCL core to be changed and trained however much is 
required to achieve the best enhancement over base-level performance (as noted 
above). After this initial training and testing, we will measure the following traits of 
the MCL systems: (1) which specific nodes get used in each system, and (2) what are 
the most n;equent subtrees used in the ontologies. What we hope to see within each 
MCL core is that a majority of the nodes and subtrees are being activated in the course 
of processing the various anomalies.·

What we hope to see between any two MCL cores is significant overlap between 

the subsets of nodes and subtrees being used in each case. Dice's coefficient is a con­
venient measure for this, as it allows quantification of the overlap between sets, in 
this case the subset of activated nodes or subtrees, as compared with the full set of 
available nodes or subtrees (within the MCL core) or as compared with other subsets 
of activated nodes of subtrees (between MCL cores). Low scores (below 0.5) would 
indicate poor coverage (extraneous nodes that aren't being used) or insuffi.dent 
abstraction (different specialized paths being used for each different system), and 
would trigger a redesign of the MCL core. 

Second, once we have generated MCL cores that both serve their host systems and 
indicate good coverage and abstraction, we will compare the whole c.ores to one 
another using a tree-edit distance measure. We hope to see that the MCL cores remain 
fundamentally similar (requiring few edits to turn one into the other). 

Third, we will merge the two MCL cores into one, containing all the nodes and 
connections of the two. If the unified MCL is domain general, it should work equally 
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