12 The Metacognitive Loop and Reasoning about Anomalies

Matthew D. Schmill, Michael L. Anderson, Scott Fults, Darsana josyula, Tim Oates,
Don Perlis, Hamid Shahri, Shomir Wilson, and Dean Wright

3

Murphy's Law states, “if anything can go wrong, it will.” Though it is more of an
adage than a law, it is surprisingly predictive. For each of the fifteen participants in
the 2004 DARPA Grand Challenge driverless car competition, Murphy’s Law held true.
Each of the entries was an impressive engineering feat; to receive an invitation each
team’s vehicle had to navigate a mile-long preliminary obstacle course. Yet in the
longer course, every one of the driverless vehicles encountered a situation for which
it was unprepared: some experienced mechanical failures, while others wandered off
course and into an obstacle their programming could not surmount (Hooper, 2004).

The DARPA Grand Challenge highlights the enormity of the defensive design task,
in which the engineer must attempt to enumerate the ways in which a system might
fail so that they can be appropriately managed. For sophisticated computer systems,
particularly autonomous systems operating in the real world, this is a great challenge.
In general, no system designer, whether we are talking about a learning system, a
planning system, or any other artificial intelligence (AI) technology, can enumerate
all the possible contingencies his or her system will encounter. This is not a unique
observation. Such a view has been pointed out before (Brachman, 2006). Systems that
learn and adapt attempt to address this, but learning processes themselves are also
constrained to work in the space for which they were designed. Learning systems can
improve robustness, but only in the situations for which they are designed.

Consider, though, a driverless vehicle that has become stuck on an embankment
(a fate of several of the participants in the grand challenge). If that vehicle had a self-
model that allowed it to reason about its own control and sensing capabilities, it may
have been in a position to notice and diagnose its own failure. Such a system would
also have the ability to reason about which of its cognitive components, whether they
be controllers, learning algorithms, or planners, might allow the system to recover
from the current failure, or at least prevent it from happening the next time. How can
an Al system create such a self-model so that it can diagnose its own failures?

We propose that at some level of abstraction, the ways in which a system can fail
are finite. Thus, a domain-general metareasoning component can be developed and



184 M. D. Schmill et al.

equipped with knowledge of how systems fail (and how to recover from these failures).
This component, when integrated with an existing Al system (which we will call the
host), will allow that system to diagnose failures and thus become more robust.

In this chapter we present our architecture for generalized metacognition aimed at
making Al systems more robust. The key to this enhancement is to characterize a
system by its expectations each time it engages in activity, to watch for violations of
system expectations, and to attempt to reason in an application-general way about
the violation to arrive at a diagnosis and plan for recovery. Our architecture is called
the metacognitive loop (MCL), and we present it here along with details of its
implementation. '

®

The Metacognitive Loop

Human intelligence manages to work not just in everyday situations, but also in novel
situations, and even in significantly perturbed situations. For our purposes, we define
a perturbation as a change in conditions under which an agent (human or artificial)
has. obtained competency.

Suppose someone who has spent his entire life in the desert is suddenly dropped
in the middle of a skating rink. This person has learned to walk, but never on ice. His
usual gait will not produce the desired result. In coping with this new situation, he
starts by noticing that the proprioceptive feedback he is receiving is unusual in the
context of walking. He must become more aware of what he is doing and reason
sensibly about the situation. This allows him to assess what has changed or gone awry.
Once he has made an assessment, he must respond to the perturbation by modifying
his usual behavior: become more cautious and deliberate, or attempt to learn the
dynamics of walking on ice. :

Dealing with perturbations invariably involves reasoning about one’s own self:
about one’s abilities, expectations, and adaptivity. We recognize when we possess a
necessary capacity or whether we need to acquire it. What would be required of a
computer system that endeavored to have that same level of robustness?

" An Al system capable of reasoning about its own (reasoning) caﬁabﬂiﬁes is said to
possess the ability of metareasoning. A typical metareasoner can be laid out as in figure
12.1, consisting of a sensorimotor subsystem, shown in the figure as the ground level
and responsible for sensing and effecting changes in an environment; a reasoning
subsystem, shown as the object level and responsible for processing sensory informa-
tion and organizing actions at the ground level; and a metareasoning component,
shown as the metalevel and responsible for monitoring and controlling the applica-
tion of components at the object level (see Cox and Raja, this vol., chap. 1).

We are developing an embedded, general-purpose metareasoner based on this basic
architecture. The metacognitive loop (MCL) is a metalevel component that endows




The Metacognitive Loop 185

A

control { monitoring

perception

action

Figure 12.1
An overview of a typical metareasoning system.

K
F
:
: .
i expectations
H
H
t
\

erception

Figure 12.2
An overview of an MCL-enhanced Al system. -

Al systems with self-modeling, monitoring, and repair capabilities. An overview of an

MCL-enhanced system can be seen in figure 12.2. A reasoning system that employs

MCL (called the host.systern) makes explicit its components, capabilities, actions, per-
cepts, and internal state information to compile the infrastructure necessary for a
self-model. Additionally, the host declares expectations about how its activities will
affect the perceptual and state information. MCL monitors the operation of the host
(including its actions and sensory feedback) against its expectations, waiting for viola-
tions to occur. When a violation of expectations is detected, it employs a combination
of a domain-general problem solver and the host’s self-model to make recommenda-
tions on how to devote computational resources to anomalous host behavior.




186 M. D. Schmill et al.

The operation of MCL is analogous to the thought process of the human walking
on ice presented above. It can be thought of as a background process consisting of
three steps: () monitoring for and noticing anomalies; (ii) assessing them (probable
causes, or severity); and (iii) guiding an appropriate response into place.

The monitoring phase corresponds to an agent’s “self-awareness.” As an agent
accumulates experience with its own actions, it develops expectations about how they
will unfold. An agent might expect an internal state to change to a new value, for a
sensor to increase at some rate, or for an action to achieve a goal before some deadline.
As the agent engages in a familiar behavior, deviations from expectations (anomalies)
cause surprise, and initiate the assessment phase.

In the assessment stage of MCL, a profile of the anomaly is ge?nerated. How severe
is the anomaly? Must it be dealt with immediately? What is its likely cause? This
anomaly profile enables MCL to move on to the guide state, where a response will be
selected to either help the agent recover from the failure, prevent it from happening
in the future, or both. Once this response is guided into place by the host system,
MCL can continue to monitor the situation to determine whether or not the response
has succeeded. Should MCL determine that its initial response has failed, it can move
down its list of possible responses until it succeeds, decides to ask for help, or move
on to work on something else. '

Domain-General MCL

Implementing our MCL-enhanced pilot aiaplications has provided two key insights
into building robust Al systems. First, building systems that employ an MCL compo-
nent requirés a structured understanding of how the system and all of its parts func-
tion. Object-level capabilities and expected behaviors must be known or learnable such
that the metareasoner can detect any perturbations to the system. Indeed, in similar
work greét attention is paid to the methodologies that enable self-modeling and robust
behavior in Al (Stroulia, 1994; Ulam, Goel, Jones, & Murdoch, 2005; Williams &
Nayak, 1996), and in the literature of fault detection, isolation; and recovery (FDIR)
(Frank, 1990; Isermann, 1997). '

The second insight is that although there may be many different perturbations
possible in a given domain, there are a limited number of distinct ways in which they
may create system failures, and generally an even smaller number of coping strategies.
Can we produce a taxonomy of the ways in which Al systems fail, and reason about
failures using the general concepts present in that taxonomy, such that one generai-
purpose reasoner can be useful to a wide variety of host systems and domains? Indeed,
our primary scientific hypothesis is that the answer to this question is “yes,” and our
current research seeks to determine to what extent this hypothesis is correct.




The Metacognitive Loop 187

It is useful to consider two different forms of generalized utility here. A system/
domain-general MCL would be coupled “out-of-the-box” with any of a wide variety
of host systems and in a wide variety of domains; the host would at a minimum need
only provide MCL with expectations and monitoring information and specify any
tunable actions it might have. An anomaly-general MCL would have a sufficiently
high-level typology of anomalies such that virtually all specific anomalies would fall
into one type or another. Since actual instances of anomalies tend to be system or
domain specific, the two dimensions are not totally independent. However, a system/
domain-general MCL would have a protocol design facilitating a kind of “plug and
play” symbiotic hook-up, where the system/host need only provide and receive data
from MCL in a specified format, even if MCL might not be equipped to handle anoma-
lies in some domains. An anomaly-general MCL, by contrast, would be equipped to
process virtually any anomaly for any system or domain, even if it might be tedious
to provide the add-on interface between them. Combining the two gives the best of
both worlds: easy hook-up to any host (as long as the designer follows the communi-
cation protocol) and an ability to deal flexibly with whatever comes its way. Indeed,
the primary difference between MCL and much of the related work, perhaps best
exemplified by that of Goel, is that rather than requiring a complete self-model, MCL
can operate with more modest knowledge about expectations, the failures (probabi-
listically) indicated by violations thereof, and potentially effective repairs.

The current generation of MCL implements such a generalized taxonomy and uses
it to reason through anomalies that a host system experiences. MCL breaks the uni-
verse of failures down into three ontologies that describe different aspects of anoma-
lies, how they manifest in AI agents, and their prescribed coping mechanisms. The
core of these ontologies contains abstract and domain-general concepts. When an
actual perturbation is detected in the host, MCL attempts to map it into the MCL core
so that it may reason about it abstractly. Nodes in the ontologies are linked, expressing
relationships between the concepts they represent. The linkage both within the ontol-
ogies and between them provides the basis-that MCL uses to reason about failures.

Although the hierarchical network structure of the ontologies lends itself to any of
a number of graph-based algorithms, our implementation represents the ontologies
as a Bayesian network. This allows us to express beliefs about individual concepts
within the ontologies by probability values, to model the influence that the belief in
one concept has on the others, and to use any of the many Bayesian inference algo-
rithms to update beliefs across the ontologies as new observations are made by MCL.
_ The core of our implementation is based on the SMILE reasoning engine.!

1. The SMILE engine for graphical probabilistic modeling, contributed to the community by the
Decision Systems Laboratory, University of Pittsburgh (http://dsl.sis.pitt.edu).




188 M. D. Schmill et al.

abstract

concrete '{

Figure 12.3 . .
An overview of the MCL ontologies.

Each of the three phases of MCL (note, assess, guide) employs one of the ontologies
to do its work (Schmill, Josyula, Anderson, Wilson, Oates, Perlis, Wright, & Fults, °
2007). A flow diagram is shown in figure 12.3. The note phase uses an ontology of
indications. An indication is a sensory or contextual cue that the system has been
perturbed. Processing in the indication ontology allows the assess phase to hypothe-
size underlying causes by reasoning over its failure ontology. This ontology contains
nodes that describe the general ways in which a system might fail. Finally, when
failure types for an indication have been hypothesized, the guide phase maps that
information to its own response ontology. This ontology encodes the means available
to a host for dealing with failures at various levels of abstraction. Through these three
phases, réasoning starts at the concrete, domain-specific level of expectations, becomes
more abstract as MCL moves to the concept of a system failure, and then becomes
more concrete again as it must realize an actionable response based on the hypothe-
sized failure.

In the following sections, we will describe in greater detail how the three ontologies
are organized and how MCL gets from expectation violations to responses that can
be executed by the host system, using the MCL-enhanced reinforcement learning
system as an example. To help illustrate the functions of the ontologies, we will use

a previous study of ours as an example (Anderson, Oates, Chong, & Perlis, 2006). In
this study we deployed MCL in a standard reinforcement learner. There, learned
reward functions in a simple 8 x 8 grid world formed the basis for expectations.? When
reward conditions in the grid world were changed, MCL noted the violation and would
respond in a number of ways appropriate to relearning or adapting policies in RL
systems. In a variety of settings, the MCL-enhanced learner outperformed standard

2. Q-learning (Watkins & Dayan, 1992), SARSA (Sutton & Barto, 1995), and prioritized sweeping
(Moore & Atkeson, 1993) were used.




~ The Metacognitive Loop : . 189

reinforcement learners when perturbations were made to the world’s reward
structure.

Indications
A fragment of the MCL indication ontology is pictured in figure 12.4. The indication
ontology consists of two types of nodes separated by a horizontal line in the figure:
domain-independent indication nodes above the line, and domain-specific expecta-
tion nodes below it. Indication nodes belong to the MCL core and represent geheral
classes of sensory events and expectation types that may help MCL disambiguate
anomalies when they occur. Furthermore, there are two types of indication nodes:
fringe nodes and event nodes. Fringe nodes zero in on specific properties of expecta-
tions and sensors. For example, a fringe node might denote what type of sensor is
being monitored: internal state, time, or reward. Event nodes synthesize information
in the fringe nodes to represent specific instances of an indicator (for example,
reward not received). Expectation nodes (shown below the dashed line) represent
host-level expectations of how sensor, state, and other values are known to behave.
Expectations are created and destroyed based on what the host system“is doing and
what it believes the context is. Expectations may be specified by the system designer‘
or learned by MCL, and are linked dynamically into indication fringe nodes when
they are created.

Consider the ontology fragment pictured in figure 12.4. This fragment shows three
example expectations that the enhanced reinforcement learner. might produce when
it attempts to move into a grid cell containing a reward. First, a reward x should be

1
short § ( timej( state ]

Figure 12.4
A fragment of the MCL indication ontology.

expectation: | | expectation:
LY=LY LX=LX-1




190 M. D. Schmill et al.

experienced at the end of the movement. Second, the sensor LY should not change.
Lastly, the sensor LX should decrease by one unit.

Suppose that someone has moved the location of the reward, but LY and LX behave
as if the reward were still in the original position. MCL will notice an expectation
violation for the reward sensor and create a fresh copy of the three ontologies to be
used as a basis for reasoning through a repair. Based on the specifics of the violation,
appropriate evidence will be entered into the indication fringe to reflect the fact that
a violation occurred: a change in a reward sensor was expected, but the change never
occurred. The relevant expectation node in the fragment in figure 12.4 is denoted by
boldface, and its influence on associated nodes in the indjcation ontology is denoted
by heavy arrows. Through the conditional probability tables maintained by the Bayes-
ian implementation of the ontology, MCL's belief in fringe nodes “reward” and
“unchanged” will be boosted. From there, influence is propagated along abstraction
links within the indication core (activating the sensor node and others). Finally,
fringe-event links combine the individual beliefs of the separate fringe nodes into
specifically indicated events. In figure 12.4, the “reward not received” node is believed
to be more probable due to the evidence for upstream nodes. Once all violated expec-
tations have been noted, and inference is finished, the note phase of MCL is
complete. ' '

Failures
The note stage having been completed, MCL can move to the assessment stage, in
which indication events are used to hypothesize'a cause of the anomaly experienced.
The failure ontology serves as the basis for processing at the assessment stage.

Belief values for nodes in the failure ontology are updated based on activation in
the indication ontology. Indication event nodes are linked to failure nodes via interon-
tological links called diagnostic links. They express which classes of failures are plau-
sible given the active indication events and the conditional probabilities associated
with those relationships. ‘

Figure 12.5 shows a fragment of the MCL failure ontology. Dashed arrows indicate
diagnostic links from the indications ontology leading to the sensor failure and miodel
error nodes, which are shaded and bold. These nodes represent the nodes directly
influenced by updates in the indications ontology during the note phase in our
enhanced reinforcement learning example; a “reward not received” event can be
associated with either of these types of failure. The remaining links in the figure are
intraontological and express specialization. For example, a sensor may fail in two ways:
it may fail to report anything, or it may report faulty data. Either of these is a refine-
ment of the sensor failure node. As such, sensor not reporting and sensor malfunction
are connected to sensor failure with specialization links in the ontology to express
this relationship.




The Metacognitive Loop ) 191

N

knowledge
error

sensor not
reporting

N N
sensor predl;:’tl;/e procegulral
malfunction mode moade
failure failure
. 7/ \, .
expressivity model fit
failure error
. 7 7

S

Figure 12.5
A fragment of the MCL failure ontology.

As in the note phase, influence is passed along specialization links to activate more
specific nodes based on the probabilities of related abstract nodes and priors. Of par-
ticular interest in our RL example is the predictive model failure node, which follows
from the model error hypothesis. The basis for action in Q-learning is the predictive
model (the Q function), and failure to achieve a reward often indicates that the model
is no longer a match for the domain.

Responses

Outgoing interontological links from probable failure nodes allow MCL to move into
the guide phase. In the guide phase, potential responses to hypothesized failures are
activated, evaluated, and implemented in reverse order of their expected cost. The
expected cost for a concrete response is computed as the cost of the response multi-
plied by one minus the estimated probability that the response will correct the
anomaly, where the cost is quantified by the host. Interontological links connecting
failures to responses are called prescriptive links.



192 M. D. Schmill et al.

modify modify
predictive procedural
models models
Y ' A .
’ —
activate rebuild change
learning models parameters

Figure 12.6.
A fragment of the MCL response ontology.

Figure 12,6 shows a fragment of the MCL response ontology. Pictured are both MCL
core responses (which are abstract, and shown in italics) and host-level responses
(pictured in bold), which are concrete actions that can be implemented by a host
system. Host system designers specify the appropriate ways in which MCL can effect
changes by declaring properties (such as “employs reinforcement learning”) that are
incorporated into the conditional probability tables for the response nodes. Declaring
“employs reinforcement learning,” for example, will make nonzero the prior belief
that responses, such as “reset Q values” as seen in figure 12.6, will be useful.

In the portion of the response ontology pictured, prescriptive links from the failure
ontology are pictured as dashed arrows. These links allow influence to be propagated
to the nodes “modify predictive models” and “modify procedural models.” Like the
failure ontology, internal links in the response ontology are primarily specialization
links. They allow MCL to move from general response classes to more specific ones,
eventually arriving at responses that are appropriate to the host. In our example,
concrete nodes correspond to either parameter tweaks in Q-learning or resetting the
Q function altogether.




The Metacognitive Loop 193

Iterative and Interactive Repairs

Once MCL has arrived at a concrete response in the guide phase, the host system can
implement that response. In our enhanced RL ekample, this may mean clearing the
Q values and starting over, or boosting the € parameter to increase exploration or the
o. parameter to accelerate learning. A hybrid system, with many components, may
have several probable responses to any given indication. This is why all the activated
ontology nodes are considered hypotheses with associated conditional probabilities.
MCL will not always have enough information to arrive at an unambiguously correct
response. MCL must verify that a response is working before it considers the case of
an anomaly closed.

When a response is found to have failed, either by explicit feedbadk from the host,
or implicitly by recurrence of expectation violations, MCL must recover its record of
the original violation and reinitiate the reasoning process. The decision of when to
recover a reasoning process is actually quite complex: repairs may be durative (requir-
ing time to work), interactive (requiring feedback from the host), or stochastic. Each
time an anomaly is experienced, it may be a manifestation of an all-new failure, the
recurrence of a known failure, or even a failure introduced by an attempted repair.
The heuristics required to make the decision of whether to initiate a new reasoning
process or resume an existing one remain a topic of our ongoing research.

Once the decision has been made that a response has failed and a reasoning process
should be resumed, MCL reenters and updates the ontologies in two ways. First, it
revises down the belief that the “failed response” node will solve the problem, possibly
driving it to zero. The inference algorithm is Tun and the influence of having dis-
counted the failed response is propagated throughout the ontologies. Next, it feeds
any new indications that may have occurred during the execution of the original
response into the indications ontology and again executes the inference algorithm.
Then utility values for concrete responses are recomputed and the next most highly
rated response is chosen and recommended for implementation by the host. Once a
successful response is implemented and no new expectation violations are received,
the changes effected during the repair can be made permanent, and the violation is
considered addressed. ‘

Evaluation and Future Work

In this section, we describe a new system architecture we are developing that has the
requisite complexity to highlight how a metareasoner can contribute to a more robust
system. Through this system we also hope to demonstrate the generality of the rea-
soner, as MCL will have to cope with a variety of problems encountered as the various
system components at the object level interact. We also include a short discussion of
our planned evaluation methods.




194 . M. D. Schmill et al.

user level

TS

security

broker
asset | asset b b e

object level

controller 1 /| controller N

ground level
|aAa|BIOW

environment

Figure 12.7
An overview of an end-to-end MCL-enhanced Al'system. -

An overview of our system architecture is pictured in figure 12.7. At the ground
- level are “assets”—simulated agents with sensing and possibly effecting capabilities
that operate in a simulated environment. The architecture is designed to be configu-
rable; the assets might be rover units operating in a simulated Mars environment, or
unmanned aerial vehicles operating in a virtual battlefield. The core of the simulation
was built based on the Mars rover simulation introduced by Coddington (2007), and
is currently discrete, although an obvious development path would be to transition
to a two- or three-dimensional, continuous world, and eventually to actual robots
acting in the real world. For the purpose of this discussion, we will use the simulated
Mars rover as an example.

At the object level of the testbed system are three major cognitive components.
First is the monitor and control system of each asset. It is responsible for sequencing
execution of effecting and sensing actions on the actual assets. Our Mars rover con-
troller contains a simple planner that performs route planning to navigate between
waypoints on a map, while taking reasonable measures to attend to the rover’s




The Metacognitive Loop 195

resource constraints. The rover controller can also learn operator models for the Mars
environment, in a form similar to those found in STRIPS (Fikes & Nilsson, 1971).

The second object-level component is a human-computer interface that accepts
natural language commands from human users. Users specify their goals to the lan-
guage processor, which converts them to a goal language usable by the rover control-
ler. The rover controller in turn generates ground-level plans to achieve the user’s
goals, and also manages the inevitable competition for limited asset resources.

Finally, the system contains a security broker. The security broker places constraints
on both the assets and users’ access to them. For example, the security broker may
state that two rovers may not perform science in the same zone, or the security broker
may state that user U may access panoramic images taken by the rover, but not specific
scientific measurements in a particular zone.

The three object-level components address three distinct classes of Al problems.
The rover controller is, obviously, a classic Al control problem. It requires the use of
planning, scheduling, and learning, and the coordination of those capabilities to
maximize the utility of the system assets. The user-asset interface is a classic Al natural
language understanding, learning, and dialogue management problem. Finally, the
security broker introduces security policies as a constraint, as well as information
fusion.

The domain presents many possibilities for perturbations and associated system
failures. Fach path between the ground and object level represents a conceptual
boundary, whereby one component asserts control and has expectations about the
result. Consider a few possible perturbations: the human user may use unknown
lexical or syntactic constructs, the user may be denied access to imagery due to con-
flicting security policies, or the rover may generate useless observations due to unfore-
seen changes in the Mars environment. Each interaction and its associated expectations
will be monitored by MCL, and any violation will be mapped to the core ontologies.
Possible explanations and repairs will be considered in an order consistent with prior
and learned probabilities in an attempt to prevent further violations.

After building the various components outlined above, our main experimental task
will be to build and test the MCL ontologies. We want to show that the MCL approach
is effective and results in more perturbation-tolerant systems, and we want to show
that the MCL approach is general, that the same MCL core can handle many different
kinds of perturbations in many different systems.

For measuring the effectiveness of MCL, the main strategy will involve ablation
studies. Performance metrics will include time to task completion and cost of task
completion (e.g., fuel burned, number of messages sent), and more particularly the
degree of increase in these measures as the scenario difficulty increases (Anderson,
2004). We will compare performance for three versions of the system: (1) full adaptive
response: all the components/agents of the system with all parts of MCL enabled.



196 M. D. Schmill et al.

(2) Fixed maintenance: the components/agents of the system with no MCL, but rather
a fixed maintenance policy in which available repair actions are executed in a preven-
tative manner. For instance, the rover rebuilds models every n timesteps, recalibrates
sensors every m timesteps, and so on. (3) Fixed response: The components/agents of
the system with the MCL note phase working, but with the failure and response
ontologies replaced by a single response, which is to run down a list of all available
repairs until one succeeds. Insofar as MCL is an effective strategy for ensuring pertur-
bation-tolerance, the performance of system version (1) should be far better than the
others.

For measuring the generality of MCL, a different approach must be employed.
Recall that we intend for all the MCL instantiations (e.g., for the natural language
interpreter and the rover) to have identical core algorithms and core nodes (at least
initially), but different fringe nodes (e.g., the type and number of expectations). In
the course of development, we expect that the differences between the host systems
will suggest changes to the core nodes and their connections, in order to enhance
performance. The open research questions are: how much will they end up differing,
and can they be reunified after optimization to generate a more truly universal MCL
system? We will answer those questions in the following four steps.

First, we will allow each MCL core to be changed and trained however much is
required to achieve the best enhancement over base-level performance (as noted
above). After this initial training and testing, we will measure the following traits of
the MCL systems: (1) which specific nodes get used in each system, and (2) what are
the most frequent subtrees used in the ontologies. What we hope to see within each
MCL core is that a majority of the nodes and subtrees are being activated in the course
of processing the various anomalies.

" What we hope to see between any two MCL cores is significant overlap between
the subsets of nodes and subtrees being used in each case. Dice’s coefficient is a con-
venient measure for this, as it allows quantification of the overlap between sets, in
this case the subset of activated nodes or subtrees, as compared with the full set of
available nodes or subtrees (within the MCL core) or as compared with other subsets
of activated nodes of subtrees (between MCL cores). Low scores (below 0.5) would
indicate poor coverage (extraneous nodes that aren’t being used) or insufficient
abstraction (different specialized paths being used for each different system), and
would trigger a redesign of the MCL core.

Second, once we have generated MCL cores that both serve their host systems and
indicate good coverage and abstraction, we will compare the whole cores to one
another using a tree-edit distance measure. We hope to see that the MCL cores remain
fundamentally similar (requiring few edits to turn one into the other).

Third, we will merge the two MCL cores into one, containing all the nodes and
connections of the two. If the unified MCL is domain general, it should work equally




The Metacognitive Loop 197

well when reattached to the initial host systems. We will test this claim by rerunning
the initial performance tests, and seeing if the enhanced, unified MCL works as well
as the preunification specialized MCLs.

Fourth and finally, once we have a single, unified MCL core with good coverage
and abstraction that works well on both host systems, we will install MCL on a system
not designed by us (and with minimum modifications) that we can use as a test-host.
We do this to ensure that we have not inadvertently built our original test systems so
that they would automatically work with MCL.

Conclusion

We have described a generalized metacognitive layer aimed at providing robustness
to autonomous systems in the face of unforeseen perturbations. The metacognitive
loop encodes commonsense knowledge about how Al systems fail in the form of a
Bayesian network and uses that network to reason abstractly about what to do when
a system’s expectations about its own actions are violated. Our aim is to provide an
engineering methodology for developing metalevel interoperable Al systems and in
so doing provide the benefit of adding reactive anomaly-handling using the MCL
library. We have also introduced a system architecture with a number of interacting
cognitive components at the object level that we believe is a useful testbed for meta-
cognitive research.

Acknowledgments
Supported by NSF (1150803 739), AFOSR (FA95500910144), and ONR (N000140910328).
References

Anderson, M. L. (2004). Specification of a test environment and performance measures for per- -
turbation-tolerant cognitive agents. In R. M. Jones (Ed.), Proceedings of the AAAI Workshop on
Intelligent Agent Architectures (pp. 11-18). Technical Report WS-04-07. Menlo Park, CA: AAAI Press.

Anderson, M. L., Oates, T., Chong, W., & Perlis, D. (2006). The metacognitive loop I: Enhancing
reinforcement learning with metacognitive monitoring and control for improved perturbation
tolerance. Journal of Experimental & Theoretical Artificial Intelligence, 18(3), 387-411.

Brachman, R. J. (2006). (AA)AIL: More than the sum of its parts. Al Magazine, 27(4), 19-34.

Coddington, A. (2007). Motivations as a meta-level component for constraining goal generation.
In A. Raja & M. T. Cox (Eds.), Proceedings of the First International Workshop on Metareasoning in
Agent-Based Systems (pp. 16-30). Collocated with AAMAS-07. Columbia, SC: IFAAMAS.



198 . M. D. Schmill et al.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving. Artificial Intelligence, 2(3-4), 189-208.

Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based
redundancy—A survey and some new results. Automatica, 26(3), 459-474.

Hooper, J. (June, 2004). DARPA’s debacle in the desert: Behind the scenes at the DARPA grand
challenge, the 142-mile robot race that died at mile 7. Popular Science, 64—67.

Isermann, R. (1997). Supervision, fault-detection and fault-diagnosis methods—An introduction.
Control Engineering Practice, 5(5), 639-652.

Moore, A, W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less
data and less time. Machine Learning, 13(1), 103-130. *

Schmill, M., Josyula, D., Anderson, M. L., Wilson, S., Oates, T., Perlis, D., Wright, D., & Fults, S.
(2007). Ontologies for reasoning about failures in Al systems. In A. Raja & M. T. Cox (Eds.),
Proceedings of the First International Workshop on Metareasoning in Agent-Based Systems (pp. 1-15).
Collocated with AAMAS-07. Columbia, SC: IFAAMAS.

Stroulia, E. (1994). Failure-driven learning as model-based self redesign. Doctoral dissertation, Georgia
Institute of Technology, College of Computing, Atlanta.

Sutton, R. S., & Barto, A. G. (1995). Reinforcement learning: An introduction. Cambridge, MA: MIT
Press.

Ulam, P, Goel, A., Jones, J., & Murdoch, W. (2005). Using model-based reflection to guide rein-
forcement learning. In D.W. Aha, H. Mufioz-Avila, & M. van Lent (Bds.), Proceedings of the IJCAI
Workshop on Reasoning, Representation and Learning in Computer Games. (pp. 107-112). Washing-
ton, D.C.: Naval Research Laboratory, Navy Center for Applied Research in Artificial
Intelligence.

’ ~ Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279-292.

Williams, B. C., & Nayak, P. P. (1996). A model-based approach to reactive selfconfiguring
systems. In Proceedings of the National Conference on Artificial Intelligence (pp. 971-978). Menlo
Park, CA: AAAI Press.



https://www.researchgate.net/publication/284441497



