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Abstract 
Researchers have studied problems in metacognition both in 
computers and in humans. In response some have imple-
mented models of cognition and metacognitive activity in 
various architectures to test and better define specific theo-
ries of metacognition. However, current theories and im-
plementations suffer from numerous problems and lack of 
detail. Here we illustrate the problems with two different 
computational approaches. The Meta-Cognitive Loop and 
Meta-AQUA both examine the metacognitive reasoning in-
volved in monitoring and reasoning about failures of expec-
tations, and they both learn from such experiences. But nei-
ther system presents a full accounting of the variety of 
known metacognitive phenomena, and, as far as we know, 
no extant system does. The problem is that no existing cog-
nitive architecture directly addresses metacognition. Instead, 
current architectures were initially developed to study more 
narrow cognitive functions and only later were they mod-
ified to include higher level attributes. We claim that the so-
lution is to develop a metacognitive architecture outright, 
and we begin to outline the structure that such a foundation 
might have. 

Introduction   
For many years, the study of metacognition was a relative-
ly isolated and limited field within cognitive science. But 
recently the subject has gained a more prominent role and 
attained widespread attention within both psychology and 
computer science. Studies include a wide ranging set of 
experiments in the cognitive psychology literature that 
demonstrate the ability and limitations of human self-
monitoring and control of reasoning. For example, Dun-
losky and colleagues (see Dunlosky, Serra, & Baker, 2007) 
have investigated subjects’ use of memory judgments to 
regulate further time spent on learning material for memo-
ry tasks. Bogunovich and Salvucci (2011) have shown that 
subjects can dynamically control their problem-solving 
process based upon knowledge of the relative task de-
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mands and the required mental resources to complete it. 
Metcalf and colleagues (e.g., Metcalfe, Eich, & Castel,
2010) have studied subjects’ ability to discriminate be-
tween actions caused by others and by themselves. In the 
artificial intelligence community, many new research 
agendas have arisen in recent years under the terms meta-
cognition in computation and metareasoning (see Anderson 
& Oates, 2007; Cox, 2005 for pertinent reviews). Yet with-
in these disparate research efforts, few take a comprehen-
sive approach or place their claims and findings within the 
context of a cognitive architecture. Here we intend to ad-
dress this concern by outlining a new cognitive architecture 
that focuses on metacognition and that proposes to inte-
grate many related metacognitive phenomena. 
 Rather that constituting a technical issue at the periphery 
of intelligence, the problem of reasoning about reasoning is 
a central challenge at the heart of high-level cognition. Al-
though some disagreement exists about the degree to which 
metacognition is uniquely human (e.g., Smith et al., 2009), 
it is nonetheless one of the most prominent aspects of our 
cognitive make-up. For example, metacognition is particu-
larly associated with critical thinking independent of a 
more general cognitive aptitude or achievement (Ku & Ho, 
2010). But despite the centrality and importance of this 
phenomenon, few cognitive architectures model it or di-
rectly address its computational structure.  
 A select few research efforts in metacognition do base 
their models upon a cognitive architecture. For example, 
the work of Salvucci cited above uses the ACT-R architec-
ture to model the problem-solving behavior in question. 
However, the modeling has concentrated mainly on 
threaded multitasking behavior and has not clarified the 
specific relationship between multitasking and metacogni-
tion. Furthermore, the ACT-R theory was not developed 
with specific metacognitive effects in mind. The control of 
reasoning is actually considered to be part of the cognitive 
function; whereas monitoring of reasoning is classified as 
metacognitive (see for example Anderson, Betts, Ferris, & 
Fincham, 2011). In any case, many of the existing cogni-

Advances in Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01)

74



tive architectures have limitations when modeling meta-
cognitive activity and have been modified on an as needed 
basis to fit the circumstances. 
 To clarify the problem, let us consider the most basic 
mechanisms of high-level reasoning about the self. Meta-
cognition research encompasses studies regarding reason-
ing about one’s own thinking, memory and the executive 
processes that presumably control strategy selection and 
processing allocation. Metacognition differs from standard 
cognition in that the self is the referent of the processing or 
the knowledge (Wellman, 1983). In most interpretations 
(e.g., Hayes-Roth, Waterman & Lenat, 1983; Kuokka, 
1990; Perlis, 2011), meta-X can be translated to “X about 
X:” Thus metaknowledge is knowledge about knowledge, 
and metacognition is cognition about cognition. But often 
metaknowledge and metamemory (memory about one’s 
own memory) are included in the study of metacognition, 
because they are important in self-monitoring and other 
metacognitive processes. Thus in much of the literature, 
the term metacognition is broadly construed to apply to all 
self-reflective facets of cognition (Cox, 2005). 
 Nelson and Narens (1992) first proposed a model of me-
tacognition in humans that divided mental processes into 
an object level (cognition) and a meta-level (metacogni-
tion) such that the meta-level contains within it a dynamic 
model of the object level. Monitoring is the flow of infor-
mation from the object level to the meta-level, and control 
information flows from the meta-level to the object level. It 
was Cox (2005) that first noted that this model applies to 
computational models of metareasoning as well as to hu-
man models of metacognition. Finally Cox & Raja (2011) 
extended this model to the one shown in Figure 1. 
 The relationship between ground and object levels 
represents a classical action and perception cycle. Events at 
the ground level are perceived as a set of percepts through 
some collection of sensors. In response the object level se-
lects some sequence of actions and performs them through 
the agent’s effectors. This interacts with and changes the 
environment at the ground level, and the cycle continues. 
Likewise, the relationship between the object level and the 
meta-level is cyclical. Like perception, introspective moni-
toring is the reception of information that describes the 
events and transitions at the object level. In response, me-

ta-level control determines a sequence of mental actions or 
otherwise mediates the functioning of the object level. Me-
tareasoning causes the reasoner to think in certain ways as 
reasoning causes the agent to act in a certain manner. It is 
this duality of reasoning and metareasoning (or of cogni-
tion and metacognition) 1 that an integrated architecture 
must capture and through its fixed structure enable the 
modeling of various tasks both computationally and psy-
chologically.  
 Note that most existing cognitive architectures concern 
the orange areas (i.e., the lighter color if in grey-scale) as-
sociated with the action and perception cycle. This paper 
will recast this cycle in a new structural and representa-
tional framework based on a model by Norman (1986) and 
will add the blue colored layer to formulate an analogous 
cycle at a higher level. We will introduce this framework 
by first considering in the next section two different sys-
tems that model metacognitive processes and that share 
many aspects. Then in the subsequent section, we will pro-
pose a specific new metacognitive-architectural frame-
work. The conclusion will summarize and will suggest an
applied, task domain of self-regulated learning within
which to implement and evaluate our ideas.  

Two Current Implementations 
Researchers have implemented a number of computational 
systems that follow the basic metareasoning model above. 
Here we will briefly examine two such implementations 
with which the authors have experience. First we consider 
the concept and implementation of the Meta-Cognitive 
Loop and then the Meta-AQUA system. 

The Meta-Cognitive Loop 
The MetaCognitive Loop (MCL) (Anderson & Perlis, 
2005; Schmill et al., 2011) represents an architecture that 
enables a system to reason about itself. Conceptually, MCL 
in its current form consists of a module attached to a given 
“host” system H (see Figure 2). The host system supplies 
information to MCL about its possible actions and their 
purposes in the form of general expectations of outcomes 
of those actions under various conditions. For instance, the 
action “go to location X” might be associated with the ex-
pectation “be at location X within ten seconds.” H also 
                                                
1 In this paper we use metareasoning and metacognition in a roughly syn-
onymous way. We will often use the term metareasoning when referring 
to AI aspects and metacognition when referring to human aspects. How-
ever we also consider metareasoning to be a more narrow term when con-
sidered technically. It means reasoning about reasoning and does not nec-
essarily include related issues such as metaknowledge or reasoning about 
other agent’s reasoning. Metacognition on the other hand is used here and 
by other authors more generally in a broad sense to include many related 
high-level functions such as self-modeling, metalinguistic self-
referencing, knowing what one does not know, and feelings of self-
efficacy.

Figure 1. Simple model of metareasoning

75



supplies MCL with sensor readings, such as “current loca-
tion” and “time” so that MCL can monitor the success of 
H's actions by comparing expectations and outcomes. This 
is the first of three steps in MCL's loop: note anomalies 
(mismatches between expectations and outcomes). 

 Once an anomaly is noted, MCL assesses the anomaly in 
light of its knowledge about factors such as importance, 
likely causes, similarity to other anomalies, and possible 
responses (e.g., try again, ask for help, recalibrate sensors, 
postpone, give up). Finally, MCL selects – and guides H to 
enact – a response based in part on its likelihood of suc-
cess. Thus MCL is in effect the following algorithm: note; 
assess; guide; repeat. Our underlying vision of MCL, then, 
is as a module that, when suitably attached to a host system 
H, leads dynamically to enhanced performance in the 
MCL+H symbiot.  
 MCL is intended to be a domain-general framework for 
autonomously identifying and dealing with anomalous sit-
uations. To achieve this goal, MCL must require minimal 
domain-dependent engineering and therefore must also be 
able to leverage abstract, domain-independent reasoning to 
find solutions to problems without burdening the host sys-
tem designer with the task of specifying how the host 
might fail and how to cope with those failures. To allow 
for this ability, we have developed three ontologies (see 
Figure 2) that support the required classification and rea-
soning abilities in each of the three MCL phases of note, 
assess, and guide. The core of these ontologies contains 
abstract and domain-neutral concepts; when an actual 
anomaly is detected, MCL attempts to map it onto the 
MCL core so that it may reason about it abstractly. Nodes 
in the ontologies are linked, expressing relationships be-
tween the concepts they represent. There are linkages both 
within and between the ontologies, which together allow 
MCL to perform abstraction and reasoning about the ano-
maly being considered. 
 In our current implementation, each of the three phases 
of MCL employs one of the ontologies to do its work. The 
note phase uses an ontology of indications, where an indi-
cation is a sensory or contextual signifier that the system's 
expectations have been violated. Processing in the indica-
tion ontology allows the assess phase to map nodes in the 
indication ontology to nodes in the failure ontology, which 

contains nodes that abstractly describe how a system might 
fail. Nodes in the failure ontology represent the underlying 
cause of expectation violations. Finally, when hypotheses 
about the failure type have been generated, the guide phase 
maps that information to its own response ontology, which 
describes means for dealing with failures at various levels 
of abstraction. Through these three phases, reasoning starts 
at the concrete, domain-specific level of expectations, be-
comes more abstract as MCL moves to the concept of sys-
tem failures, and then becomes more concrete again as it 
selects a specific system response based on the hypothe-
sized failure. 
 Reasoning from indications to responses is done by 
treating the ontologies as a Bayesian network in which all 
random variables are Boolean (Schmill et al., 2011). The 
random variables in the indications ontology are true if the 
corresponding indication has been observed and are false 
otherwise. Random variables in the failure network are true 
if the corresponding failure has actually occurred and are 
false otherwise. This is not directly observable, but stan-
dard inference methods make it possible to compute a 
probability distribution over these variables based on the 
observable evidence (the indications). Finally, random va-
riables in the response ontology are true if the response 
will likely repair the underlying failure and are false oth-
erwise. Each response has an associated cost, and again 
standard inference methods are used to find the response 
with the highest expected utility. 
 MCL in various versions has been used in a wide variety 
of domains, including robot navigation, reinforcement 
learning, natural-language human-computer dialog, and 
playing an arcade tank-game; see Haidarian et al. (2010) 
for an overview and Wright (2011) for technical detail.2  

Meta-AQUA 
Meta-AQUA (Cox, 2007; Cox & Ram, 1999) is an imple-
mentation of a theory of Introspective Multistrategy Learn-
ing (IML) and a cognitive model of introspection. As a 
model of goal-driven learning it shares much with the note-
assess-guide cycle of MCL. For example they both focus 
on responding to failure. However as a model of introspec-
tion, many differences exist between the two. 
 IML theory focuses on the deliberative aspects of learn-
ing as opposed to a more unconscious process of rein-
forcement or operant conditioning. Like the note-assess-
guide cycle, introspective learning starts when expectations 
fail. A contradiction is said to exist when actual observa-
tions or outcomes differ significantly from an agent’s ex-
pectations. However failure symptoms other than contra-

                                                
2 Among these, the first two (navigation and RL) were not metacognitive 
in the strict sense: the implementations did not involve an explicit know-
ledge base, and the monitoring and control were applied directly to beha-
vior rather than beliefs. 
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Figure 2. The meta-cognitive loop
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diction can also trigger learning. An impasse occurs when 
no expected outcome can be generated, and a surprise oc-
curs when there is no expectation and no attempt to gener-
ate an expectation. All three of these cases are considered 
anomalies or symptoms of failure in IML theory. They are 
detected in an identification phase similar to the note step 
of the metacognitive loop. 
 Given a failure symptom, the next phase is to explain the 
failure or the underlying cause. Here explanation can be 
thought of as a diagnostic symptom to fault mapping and 
as such is an instance of self-diagnosis. The explanation 
process is considered a generation phase of learning and 
corresponds to the assess step in MCL. The task of the 
phase is to generate an explanation that bridges the gap 
from failure symptom to failure cause. For example the 
symptom may have been that a person expects to be correct 
when calling a new acquaintance Bill instead of John, and 
the cause could be that he confused John with another per-
son he already knew. Thus the contradiction is between the 
expectation name=Bill and the observation name=John; 
whereas, the causal explanation is that the person forgot 
the correct name (i.e., the cues in the context of the utter-
ance were not sufficient to retrieve the name of John, be-
cause the storage indexes did not match the retrieval 
probe).  
 The explanation generation phase in IML is a know-
ledge-rich process. The Bayes net approach in MCL is a 
knowledge light approach. The explanations in the former 
contain not only the structure of the failure, but they also 
identify what possible parts of the structure may be respon-
sible for the failure. For example the name-forgetting ex-
planation may highlight the index of the memory retrieval 
as the main causal factor in contradictions of this type. 
Along with this identification, the structure will also asso-
ciate a learning goal with the flawed index. The goal would 
be to achieve an index that would have retrieved the cor-
rect name given the context. Subsequently a deliberate 
learning process would create and execute a plan to 
achieve the learning goal. This plan and execute phase cor-
responds to MCL’s response step.
 The performance task of the Meta-AQUA system is sto-
ry understanding. The system inputs a story in a pre-parsed 
conceptual representation, and it outputs a model of the ac-
tions and events in the story along with a set of explana-
tions that explain why agents perform particular actions. A 
story is understood if the incremental representation of the 
story is predictive (i.e., schema instantiations anticipate 
subsequent events in the story stream), coherent (i.e., the 
graph structure underlying the representation is fully con-
nected), and explanatory (i.e., annotations provide motiva-
tional causality for interesting or anomalous events).  
 As shown in Figure 3, Meta-AQUA contains a number 
of major subsystems. At the ground level is a story genera-
tion module called Tale-Spin that produces a sequence of 

stories for Meta-AQUA to understand. The stories are at 
the ground level because the performance task at the object 
level is to understand events in the story. One could think 
of input story concepts as percepts from an imagined envi-
ronment. The performance subsystem uses knowledge 
structures from its background knowledge (BK) to interp-
ret and explain events and to create a representation of the 
story in it foreground knowledge (FK). The FK and BK 
constitute a memory system for Meta-AQUA. 
 The Meta-AQUA system implements the IML model as 
an introspective version of case-based explanation (see for 
example Schank, Kass & Riesbeck, 1994). That is, the 
computational problem is to retrieve from a case-base of 
introspective meta-explanations (Meta-XPs) an explanation 
pattern that partially matches the structure of the current 
trace of reasoning representing a given anomaly. The struc-
tures are called meta-explanations, because initially they 
represented meta-level explanations of object-level expla-
nation failure. The Meta-AQUA program is a model of in-
trospection, because it represents traces of reasoning with 
Meta-XPs and allows the system to reason about the prior 
reasoning that underlies this representation.  
 When explanation failure occurs at the object level task 
of understanding the story, a trace of the reasoning that 
preceded the failure is passed to the learning subsystem. 
This trace constitutes a form of introspective monitoring. 
The learning component then retrieves an introspective 
meta-explanation and binds it to the reason trace. As men-
tioned above, this instantiated explanation pattern will then 
contain a set of learning goals with which a planner can 
generate a learning plan. The execution of this plan will 
then change memory structures in the BK, thus producing 
meta-level control of the object level reasoner. If learning 
is successful, similar explanation failures will not reoccur 

Figure 3. Meta-AQUA cognitive architecture
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given similar stories in the future. See Cox & Ram (1999) 
for further details. 

Limitations and Gaps 
Although both MCL and Meta-AQUA have produced sig-
nificant contributions, neither system implements a full 
metacognitive architecture. They each contain a number of 
limitations that prevent them from fully acting as a model 
of metacognition.  
 Although MCL when attached to a host such as a robot 
represents an agent embodied in a real world, MCL has a 
weak model of perception and no model of high-level un-
derstanding and interpretation. Meta-AQUA performs deep 
understanding and reasons about the mental states of other 
characters, but it is essentially a disembodied agent, lack-
ing a model of action and personal agency. Whereas Meta-
AQUA has a complex multifaceted memory and reasons 
about memory events, MCL does not have a model of 
memory or retrieval. However neither agent has an episod-
ic memory to represent cases of personal experience and 
individual actions. Despite the lack of work on episodic 
memory in the cognitive architecture literature (but see 
Nuxoll & Laird, 2007), it has been argued that such auto-
biographical memory associated with a cognitive and non-
verbal self is an important precursor to metacognitive 
awareness and the development of children’s theory of 
mind (Howe, Courage, & Edison, 2003).
 Finally neither MCL nor Meta-AQUA has an explicit 
model of self. The systems do not have a model of the con-
tents of their background knowledge for example, and thus 
they cannot answer questions such as what kinds of tasks 
are they expert at. They have no feelings of confidence as 
they perform a cognitive task, and thus they cannot decide 
whether or not they are getting close to an answer. Without 
such a model the system is severely limited in its ability to 
explain itself (Cox, 2011). Instead of adding on these miss-
ing attributes to an already existing framework, we claim 
that what is required is a principled new architecture that 
addresses issues of metacognition from the start.

A Dual-Cycle Metacognitive Architecture
Norman (1986) posits a useful model of human-computer 
interaction that emphasizes a significant contrast between 
two major cognitive systems. For him, complex, human in-
teraction is driven by the twin processes of action execu-
tion and goal evaluation (see main orange cycle in Figure 
4).3 In the former process, an individual decides to execute 
actions to achieve goals, and in the latter, the individual 
evaluates how well the change in the environment matches 
                                                
3 We are not the first to take inspiration from Norman. Lewis (1998) used 
the model to more effectively understand various strategies of human-
agent interaction. 

the goals. Like many cognitive theories, intelligence is or-
ganized around an action-perception cycle.  
 For Norman each part of the cycle contains certain sub-
processes. The execution side consists of intention, plan-
ning, and then action execution; the evaluation side con-
sists of perception, interpretation, and goal evaluation. The 
cycle is to take a goal and commit to achieving it in a gen-
eral way. The human then plans to achieve the goal and 
subsequently executes the planned actions that change the 
world, thereby making the goal state so. The evaluation 
part of the cycle perceives the changes to the world af-
fected by the actions, interprets the percepts with respect to 
the plan, and evaluates the interpretation with respect to the 
goal.  
 The example Norman uses is the goal of having an im-
proved document appearance. Thus a user intends to 
change the justification from ragged right to justified using 
a word processor. The plan is to select the text body and 
then to apply justification formatting. The actions involve a
series of mouse movements and key clicks. These opera-
tions change the appearance of the document and the user 
perceives the change. The user interprets the percepts with 
respect to the plan and then evaluates the document ap-
pearance to determine whether the goal is achieved. We 
embrace this formulation and propose to extend it with a
number of embellishments. 
 One of the important factors that Norman neglected in 
his model was a role for memory. Many mistakes of rea-
soning occur due to memory, and it plays a central function 
in both cognitive and metacognitive processes. We have 
thus included memory in our model and consider all cogni-
tive processes to have access to it. As seen in Figure 4, 
memory would contain both semantic and episodic com-
ponents. Here also would be a model of the current envi-
ronment, plans, and a visual memory. None of these addi-
tions are particularly unique to cognitive architectures, but 
they are necessary. 

Figure 4. Norman's (1986) model extended
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 Furthermore and like most cognitive theories, Norman’s 
treatment of goals is static. That is, goals are simply given; 
the model does not account for their genesis. However, as 
an innovative claim we contend that they are dynamic ob-
jects instead and will change over time. Goals are mallea-
ble and are subject to transformation and abandonment 
(Cox & Zhang, 2007). Figure 4 illustrates this in the reflex-
ive loop from goals to themselves. Goals also arise from 

traditional sub-goaling on unsatisfied preconditions during 
planning (again see Figure 4). Finally new goals arise as 
problems are recognized in the environment due to anoma-
lies. The agent recognizes the problem, explains what 
causes the problem, and generates a new goal to remove 
the cause (Cox, 2007). This type of operation, called goal 
insertion, is indicated by the thin, black arrow from the in-
terpretation process in Figure 4. 

 Taken as a whole, Figure 4 represents the object level 
and the ground level of a perception-action cycle as shown 
in Figure 1. Figure 5 shows a metacognitive reflection of 
Figure 4 integrated into a single, dual-cycle architecture.4  
 Two different ways exist that the meta-level (in blue) 
can affect the object level (in orange). First the meta-level 
can act as an executive function in a manner similar to 
CLARION (Sun, Zhang, & Mathews, 2006). It can decide 

between object-level parameters, it can allocate resources 
between competing object-level processes, and it can set 
priorities on object level goals. The kinds of decisions an 
executive function may determine are as follows. 

                                                
4 Note that although memory is shown as separated into two parts, this is 
an artifact of the split diagram. For example both the object level and the 
meta-level can access episodic memory. There are not two distinct episod-
ic memory stores. 

Figure 5. A metacognitive integrated dual-cycle architecture (MIDCA)

79



• When to switch between cognitive processes. 
• When to act at the ground level instead of thinking fur-

ther. 
• When to change goal priorities. 
• How resources are distributed between cognitive 

processes. 

 Another qualitatively different way in which the meta-
level can have an effect on the object level is for it to 
change the essential structure and content of reasoning. 
Given that reasoning is goal-directed processing of an in-
put using specific knowledge (Cox & Ram, 1999), the me-
ta-level reasoner can change either the goals, the processes, 
the input, or the knowledge to orchestrate the object level.
 Consider changing the knowledge that an agent uses to 
make decisions (i.e., learning). As pointed out in an earlier 
section, Meta-AQUA receives traces of faulty reasoning 
via introspective monitoring. It then interprets the reason-
ing trace to explain the failure and generate a learning goal. 
This goal represents a desired change in its own back-
ground knowledge. The system then creates a learning plan 
and executes that plan to achieve the learning goal. Subse-
quently this change to its knowledge affects and indirectly 
controls the subsequent performance at the object level in 
Meta-AQUA. The above sequence is completely at the me-
ta-level within Figure 5 (c f., Figure 3). For extensive de-
tails concerning representations and algorithms implement-
ing this sequence, see Cox & Ram (1999). See Cox (2011) 
for a detailed example of the representation used to imple-
ment reasoning traces (i.e., the information passed during 
introspective monitoring). 
 The other three strategies are to change the object-level 
goals of the system, change the processes, or change the 
input. Given our earlier statement that goals are malleable, 
we can imagine a meta-level goal management process that 
changes a checkmate goal in chess into one of achieving a 
draw. Alternatively the meta-level can select a different 
process to use for achieving a given goal. For example an 
agent may switch from using first principles inference to 
using case-based reasoning to solve a particular problem. 
Finally the system can change its focus of attention. This 
could be performed by changing the perceptual field of 
view (e.g., turning one’s head to a different direction).
 In an integrated metacognitive architecture, one 
represents a number of different structures in memory. As 
shown in Figure 5, an agent has a representation for strate-
gies, an episodic memory for not only what it performed at 
the ground level but also for what it remembers and thinks 
(at least to some level of detail), a set of assertions about 
its own knowledge (or the lack thereof), and a self-model. 
Given the limits of the size of this paper, we will only state 
that to be complete, the architecture will provide a mechan-
ism for representing and processing such structures.  

Some early work has been performed on parts of this ar-
chitecture, but most of this model is in the early stages of 
development. The outline here gives a high-level overview 
and provides the details for the core of the model. 

Conclusion 
This paper has proposed a novel architecture that incorpo-
rates both a perception-action cognitive cycle and a moni-
tor-control metacognitive cycle. This dual-cycle arrange-
ment includes access to a general memory system and ac-
counts for independent goal-based operations. Having an 
episodic memory provides an agent with a representation 
for its past self, having a self-model gives it a representa-
tion for its current self, and independent self-generated 
goals represent its future self. 
 We plan to further develop the outline presented here by 
implementing a full architectural specification and apply-
ing it to models of self-regulated learning. This task is an 
important potential application for a number of reasons. 
First of all much human data has been collected with re-
spect to the task (see for example Azevedo & Cromley, 
2004). Comparisons between this data and a computational 
model are thus possible.

Secondly the task is wide in scope and very relevant for 
the study of metacognition. Students studying for a test 
must regulate their learning efficiently and at a very high 
level. They have to not only learn the domain, but they 
must pace and control themselves using an understanding 
of what they already know, how well they can perform in 
the domain, and what is expected of them by the instructor. 
For example a student will review reading material, lecture 
notes, and homework problems to determine what material 
is understood well enough, what material is not important, 
and what material is both poorly understood and likely to 
be on the test as indicated by the instructor’s behavior or 
common sense. The student then must pace the study of the 
reduced prioritized material given the time remaining. The 
self-regulated learning task will thus combine models of 
cognition, metacognition, and theory of mind (i.e., models 
of the mental states of others).  
 Finally self-regulated learning is an important applica-
tion, because it has the potential of improving the learning 
ability of actual students. If insights into metacognitive ar-
chitectures and their implementation can be translated into 
benefits in the classroom, then the impact will be signifi-
cant. 
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