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Abstract

In a previous paper, we discussed the desirability of a formal
model of a self that emerged when a process became imme-
diately aware of its own processing. In this paper we discuss
some of the features that go into a realization of this pro-
cessual self in active logic. A description is given of some
specific extensions to active logic that would move toward
allowing for a computational processual self.

Processual Self
In (Brody, Cox, and Perlis 2013), we argued for the notion of
an immediate processual self as a uniting theme across cog-
nitive sciences. We have in mind a dynamic self that arises
from a process immediately observing itself and respond-
ing to its own processing. An intuition for this kind of pro-
cess can be developed by first imagining a program which
records its own history and modifies its behavior based on
that observation. A modification of this picture in which
the observation and modification occur simultaneously de-
scribes the kind of process we are positing 1.

Such a self seems to underlie a vast array of cognitive
phenomena, and consequently a formal model of a proces-
sual self has the potential to play a key role in approaching
numerous puzzles. These range on topics from the question
of how an agent is capable making references to questions
about the relationship between mind and brain.

We made some very preliminary gestures toward how one
might go about implementing such a self in a computational
system. In this paper we take those ideas further and flesh
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1On its face the notion of an observation occurring at the same
time as a response to that observation seems inherently paradoxical.
We will skirt this paradox by introducing a thick notion of time.

It is interesting to compare this with the prima facie paradoxi-
cality that is associated with the Liar Paradox in its various mani-
festations. In the case of Gödelian self-reference, we have a single
sentence in which the predicate and the parameter are in a sense the
same. More specifically, the parameter is a different object from
the predicate but is interpreted as referring to the predicate. Simi-
larly, in what follows we will have discuss forms of reference that
are really between one moment and a previous moment but that are
interpreted as being simultaneous.

out some of the components that might go into the creation
of an immediate processual self.

Towards an Implementation
Active Logics
Active logics, described in (Anderson et al. 2002), (Ander-
son et al. 2008) and (Purang 2001), among other places, are
a family of time-situated logics in which reasoning occurs in
time and about time. It has several distinguishing features,
including paraconsistency (the ability to work with contra-
dictory sentences in a knowledge base). We discuss some
of the features that make active logic a suitable basis for a
formalism that can model an immediate processual self.

In the first place, active logics are active. That is, they
do not view inference as a timeless phenomenon in which
all the consequences of a knowledge base are immediately
known to an agent. Rather, inference is carried out in time
via a series of one-step deductions (single applications of an
inference rule). This makes active logics appropriate for a
processual model of self, since they inherently model rea-
soning and description as processes.

In the second place, active logics are temporal. Specifi-
cally, every inference occurs at a given time and is marked
with a time-stamp. In particular, an active logic agent’s in-
ference of P at time t will be recorded in its database as
t : P Moreover, active logic has a built-in indexical Now(t)
which holds precisely at moment t. In this way, active logics
have a basic access to their own current state. Our plan is to
extend this mechanism to allow for access to a wider portion
of the current state.

Extending Active Logic
Our goal in this paper is to discuss extensions to active logic
that would facilitate the implementation of an immediate
processual self. Besides incorporating a wider notion of
access to state, we also want to work with what Nicholas
Humphrey has termed “thick time” (Humphrey 2006). In
particular, there are two potential ways of conceiving the im-
mediacy of a processual self. One could take as immediate
something that occurs at the current instant – this is the usual
notion of a zero-duration slice of time found in physics. This
however doesn’t allow enough time for a process to actually
arise. For many purposes, then, we choose to work with
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moments rather than instants. A moment will be an interval
of times, viewed as an equivalence class. There are differ-
ent approaches one could take to defining the equivalence
classes. A simple approach would be to simply make every
moment consist of an equal number of times (e.g. every 20th
time-stamp would mark a new moment)2. Another approach
would be to have moments centered on a particular content,
so that a moment is the duration of time it takes to think a
particular thought and have any associated meta-processing
with it. We will not settle on a particular approach in this
paper.

In our formalism, we will replace the time-stamps of ac-
tive logic with time-stamp, moment, state triples (t,m, σ).
Here the state is a tuple representing any extra data that an
agent will keep track and make use of.

We want our agents to have capabilities of introspection,
and would like our logic to have a certain kind of self-
reference. We first observe that introspection can occur on
different levels. One can be generally aware of what one
is thinking about but also be more finely aware of the in-
ner workings of one’s thought process. This is reflected
below in the distinction between the PreviousThought and
Introspect predicates.

For self-reference, we contend that what arises phenom-
enally as (instantaneously) simultaneous self-reference is
(at least potentially) often really momentarily simultaneous
other-reference. That is, it is reference that occurs in a sin-
gle moment, but if we divide that moment into instants it
would actually be reference from a thought at one instant to
a thought at another instant within the same moment. We
can thus distinguish between instantaneous self-reference in
which a logical term refers to itself at that instant, and mo-
mentary self-reference in which a term refers to another term
in the same moment. Both kinds of self-reference will play
a role in our discussion.

In our conception, the state σ will mirror the processing
determined by the inference rules. We thus imagine a re-
flective inference engine, which can see and modify its own
inferring in real-time. The thick moments make this possible
– an inference process can use an understanding of its cur-
rent behavior as a stimulus to modify its behavior in a single
thick moment.

To implement this in active logic, we will need to specify
what information the state variables contain, describe new
inference rules which will determine the meaning of the new
predicates we add to the active logic framework, and finally
discuss the needed modifications to the inference engine it-
self. Many of these details will vary; we specify some pos-
sibilities that could form the core of a specification.

State The information tracked in the state component will
vary. We give some possible components here (we expect
that the first two of these will be present in any instantiation.)

CurrentInference: Inference in active logic proceeds by a
series of 1-step deductions. That is a particular inference

2There is a body of scientific literature on temporal framing that
indicates that at least some parts of the human brain work this way.
See especially (Gevins et al. 1983) and (Varela et al. 1981)

rule is applied to a set of antecedents in the knowledge base
to derive a particular conclusion. The CurrentInference is
a triple (R,A, P ) consisting of the inference rule, the set of
antecedents, and the consequent of the application of that
rule at the current time.

CurrentThought: The consequent of the CurrentInference

MomentaryThought: If we conceive of moments as con-
stituting a particular thought and the auxiliary reasoning
that goes with it, then this will be the content of that main
thought.

Context: The context in which the current thought-process
is occurring. This will generally be a complex data struc-
ture that will contain things like the goals that the agent is
trying to accomplish, any time constraints it has, and other
essential information about the current context.

Inference Our new inference rules will introduce several
indexicals to supply access to the current state, and also
some predicates to deal with actions (many implementations
will probably want observation predicates as well). We give
the indexical predicates first.

• Now(t): This basic indexical is inherited from active logic
and tracks the current time. Its semantics are determined
by the rule

(t,m′, σ′) : ∅
(t+ 1,m, σ) : Now(t+ 1)

• ThisMoment(m): Tracks the current moment in an analo-
gous way. The semantics are determined by

(t,m, σ′) : ¬NewMoment(t,m)

(t+ 1,m, σ) : ThisMoment(m)

• PreviousThought(T): T is the thought that was just in-
ferred.

(t,m, σ′) : σ.CurrentThought == T

(t+ 1,m, σ) : PreviousThought(T )

• Introspect(P): This corresponds to an agent observing it-
self at a given time-stamp, and is governed by the follow-
ing inference rule:

(t,m, σ) : ∃R,A(σ.CurrentInference == (R,A, P ))

(t,m, σ) : Intropsect(P )

While this particular predicate doesn’t actually accom-
plish anything, it does demonstrate the possibility for in-
stantaneous self-reference. Note in particular that P will
always be pIntrospectq.

The discussion of actions is beyond the scope of the cur-
rent paper. However, we envision that most agents will have
mechanisms for such. In particular, any agent should have
a predicate Action(A) so that when Action(A) is inferred, the
inference engine will call the appropriate module to initiate
the action specified by A. Similarly, an Observe(O) pred-
icate should cause the inference engine to enter O into the
knowledge base.
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Another action we would like our agent to have is the abil-
ity to modify its inference rules. In particular, if we define
an inference rule as a triple (R,A,C) where R is a name
for the rule, A is a set of antecedents, and C is a conclusion,
then we would want the following actions:

AddInferenceRule(R,A,C)

RemoveInferenceRule(R)

Engine The workings of the inference engine will mostly
be the same as those of the standard active logic inference
engine (e.g., see (Purang 2001) and (Josyula 2005)). We
will, however, want the following extensions:

At every new time-step, the entire state should be updated
to reflect the state of the system. While an inference rule
was given above for the current time, this only works under
the assumption that the underlying inference engine cor-
rectly increments the time counter at each step. We simi-
larly need the engine to keep the state tuple current at each
time-step.

Similarly, we need a mechanism for adding predicates
NewMoment(m) to the knowledge-base and updating the
moment counter. Note that it is not sufficient to specify an
inference rule for this, since an active logic inference may
not be applied immediately.3

If the conclusion of an inference is an action, then execute
a module that performs that action. Similarly, if an obser-
vation comes in, it should be entered in the knowledge base
at an appropriate time.

Since our history-tracking and self-reflection mechanisms
are capable of drawing an infinite number of conclusions
from a single moment, we will need practical cut offs on the
amount of information generated. We could, for example,
set a limit on the amount of nesting of information that
could occur (with respect to self-referential statements).

The engine needs to be able to modify itself through the
addition and deletion of inference rules in accordance with
the actions given above.

Examples
Basic Existential Awareness
We imagine an agent that is simply aware of its own flow
through time, without have any particular content to its
thoughts. In particular, an agent with the following as its
only inference rule

(t,m, σ) : ∅
(t+ 1,m, σ) : Introspect(pIntrospectq)

would simply examine its own state in perpetuity.

3It is a feature of active logics that they have 1-step deduction
engines. In particular, between time t and time t+1 an active logic
agent will only apply one of the inference rules available to it. As
a consequence, an inference rule specifying, say, that at time 20
the moment counter should be incremented might not actually be
applied until time 24.

I was Speaking in French, but now I’m speaking in
English
We could also imagine an agent that is speaking to another
agent in French. At some point, the agent switches to En-
glish for reasons which it is not conscious of (perhaps it has
a hidden inference rule which tells it to do so at time s).
Upon realizing this, the agent might say something along the
lines of “I was speaking in French, but now I’m speaking in
English”. We imagine that it is in the very act of saying this
sentence that agent decides how to complete it; beginning
by saying “I was speaking in French”, the agent realizes it
isn’t any longer and completes the sentence with “but now
I’m speaking in English”.

In particular, let us imagine that our agent keeps track of
the current and previous speaking languages in its state, and
that it has an action Utter(S) which causes it to utter the
string S. If the agent was speaking in French, then it may
have a token of the form

(t0,m0, σ0) : (σ0.CurrentLanguage == French)

During the current moment (m1 ), perhaps the agent realizes
that it has switched languages.

To implement this, we will use an expanded state that we
will represent by a 6 tuple

(CurrentInference, CurrentThought,

MomentaryThought, Context,

PreviousLanguage, CurrentLanguage)
.

We describe a sequence of deductions that captures the
described scenario. For space considerations we make a
number of abbreviations (and omit times and moments; ev-
erything given can be assumed to take place in a single mo-
ment). Our notation is as follows:
• We indicate omitted state components with ·.
• C represents the context “Communicating with Agent2”.
• F and E denote French and English, respectively.
• U abbreviates Utter
• We let S1 denote the concatenation of the string “I was

speaking in ” with σ.PreviousLanguage, where σ is the
current state.

• PL and CL denote the PreviousLanguage and
CurrentLanguage components of the state.
• LC denotes the predicate LanguageChanged
• We let S2 denote the concatenation of “but now I’m

speaking in ” with σ.CurrentLanguage.
Then the following sequence of deductions

represents the agent’s realization that it has
switched languages and response to that realization.

State Derived Formula
(·, ·, ·, C, F,E) Action(pU(S1))q)

((α, σ.L 6= σ.PL,LC), ·, ·, C, F,E) LC

((β, LC, ·), ·, ·, C, F,E) Action(pU(S2)q)

4



Note that the self-reference here is momentary. In particu-
lar, within the system the reference is really other-reference;
it only becomes self-reference when the sequence of times
comprising the moment are taken as a single moment.

Modus Tollens
Finally, we imagine an agent that goes through its history
and examines the conclusions it has drawn. It realizes at
some point that whenever P → Q was in the knowledge
base and P was as well, then it always eventually added Q
to the knowledge base. It thus infers that is has a rule for
modus ponens. Through further reflection, it adds a rule for
modus tollens as well.

This requires some more sophisticated elements. In par-
ticular, we need mechanisms to parse elements of the knowl-
edge base and a mechanism for drawing universal infer-
ences.

We will therefore assume that we have a predicate
Implication(t, pPq, pQq) with semantics that will hold
whenever at time t an implication of the form P → Q is
in the knowledge base (here P andQ can represent complex
expressions as well as atoms).

We will also assume inductive rules for deriving universal
statements. In particular, rather than needing to prove uni-
versals from first principles as in classical logic, our agent
will draw universal conclusions based on it’s experience.
One of the great advantages of the non-monotonicity of ac-
tive logic is that the agent can always retract such conclu-
sions when confronted with a counterexample.

Specifically, we will introduce an inference rule that de-
rives universals from the absence of a counterexample:∧

t′<t(t
′,m′, σ′) : ¬∃a¬P (a)

(t,m, σ) : ∀xP (x)
As a practical consideration, it would make sense to only

use this rule for fairly large values of t, so that the chance of
having generated a counterexample is reasonable.

We also assume that knowledge is inherited: if the agent
deduces P at time t then P remains in the knowledge base
unless it is explicitly retracted.

Then for sufficiently large t, for any t′ < t the following
statement will be provable for arbitrary P,Q

Implication(t′, P,Q) ∧ P → ∃s,m, σ (t+ s,m, σ) : Q

Our inductive inference rule then suffices to conclude that
this statement holds for all values of t, P andQ, establishing
modus ponens as a statement in the knowledge base.

In order to derive modus tollens from modus ponens, our
agent will need to reason about truth and have some form of
basic epistemology. We introduce a predicate True(pPq)
which will be used to represents the agent’s beliefs about
truth. We take two forms of the law of the excluded middle
as axioms: True(P ∨ ¬P ) and True(¬(P ∧ ¬P )) (these
are, of course, logically equivalent, but we’re interested in
developing an agent that can deduce basic logical laws for
itself). We will assume that our inference engine supports
the standard rules of first order natural deduction (including
quantifier instantiation), although these needn’t be encoded
in the Truth predicate.

Then, since it has just discovered the rule for modus po-
nens it can take this as a basic truth, adding True((P →
Q ∧ P ) → Q) to its knowledge base. Because reasoning in
active logic is non-monotonic, it can use its knowledge base
as a kind of scratch area to reason about hypothetical situa-
tions. In particular, it can add assumptions to its knowledge
base, reason about their consequences, retract all the infor-
mation entered into the knowledge base since the original
assumption, and finalize the result by entering a conditional
statement into the knowledge base. This mirrors the process
of proving conditionals via natural deduction.

To apply this to proving modus tollens, we can introduce
a Deduction context. In this context, the agent will under-
stand its reasoning to be about general truths and will make
derivations appropriate to that context. We can define infer-
ence rules for that context which will follow the pattern out-
lined above, and basically turn the agent’s built-in reasoning
into a natural deduction system. In particular, we note that
any active logic agent has a need to specify how it will re-
solve contradictions. We can specify that in the Deduction
context contradictions serve to prove the negation of the ap-
propriate assumption. We can also specify that the results of
such a deduction should be encoded with the Truth predi-
cate.

A derivation of modus tollens could then proceed by a
simple deduction: assuming both (P → Q) ∧ (¬Q) and
P leads to a contradiction, so that the agent can conclude
True

((
(P → Q) ∧ (¬Q)

)
→ ¬P

)
.

Discussion
We have specified an extension to active logic that allows for
various technical properties of an immediate processual self.
We discuss the properties that are present and also where fur-
ther work is needed. Our ultimate goal is the emergence of a
dynamic self awareness that can ground a variety of cogni-
tive phenomena, and our discussion will accordingly focus
on what is needed for such an emergence. We first note that
our system has a self-model in the form of its access to its
current state. In fact, we argue that it has a self-model a
very strong sense, since its model of itself is based on direct
self-access, rather than being access to an intermediate rep-
resentation. Similarly, the system is capable of generating
the two kinds of self-reference mentioned above – instan-
taneous self-reference and momentary self-reference. One
might naturally wonder whether any of the paradoxes that
normally arise with self-reference are of concern here - in
particular, is our system capable of generating any sentence
analogous to “this sentence is false”, and if so, is it capa-
ble of interpreting it coherently? If not, this may point to a
potential weakness in our deductive capability. We intend
to examine these questions further in future work. Finally,
the system is capable of self-modification as demonstrated
in our second and third examples. In particular, in response
to its awareness of its own processing, an agent can mod-
ify its own inference rules and processing. One interesting
question is whether our system is capable of strong self-
reference. The distinction between strong and weak forms
of self-reference is due to Perlis (Perlis 1997).
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Weak self-reference occurs when a system’s referring is
not inherent in the system, but only occurs through the me-
diation of an outside agent. For example, if a random array
of pixels line up in a way to produce an image of an arrow
pointing to itself, then the arrow which appears is not inten-
tionally referring to itself (or anything) – it requires an out-
side agent to observe the pixels and interpret them as doing
so. Strong self-reference is self-reference that is not medi-
ated in this way – the referring is self-referring without any
external agent deeming it so. It is worth noting that the weak
self-reference that seems to be inherent in computer systems
has formed fodder for a number of philosophical arguments
against functionalism (for example, see (Kripke 1982)). One
of us has argued (Perlis 1997) that strong self- reference is
required to have fully conscious agents. More strongly, it
seems that it is required even for genuinely grounded refer-
ence to occur (Perlis 1991), (Perlis 1992). It would seem
at first sight that the reference in any digital computer is in-
herently weak – the machine is simply a stream of electrical
activity, it is only the agreed upon conventions between the
programmers and the users that make a certain pattern of
electrical activity a way of referring to the letter “x” (for ex-
ample). In the case of self-reference, however, it may be
possible to argue that a computer system examining its own
state is genuinely doing so, especially when that examina-
tion is not mediated through an external representation. In
particular, there is a causal connection between referent and
referring in such a system that is much stronger than is nor-
mally present.

Ultimately, we would like to ask ourselves if the formal-
ism presented here is capable of giving rise to an immediate
processual self that is adequate to the heavy work we have
claimed that such a notion can do. As things stand, it seems
like a fair amount work needs to be done before this question
can be answered. As a broad outline, we need to

1. Implement the ideas given here in a working system.
2. Specify in greater detail how a processual self helps solve

various puzzles, and test our system against proposed so-
lutions.

3. Understand the meta-logical properties of the enhanced
active logic we are proposing here.

Thus a full reckoning of the utility of this system must wait
for further progress. We do, however, believe that we have
made a move in the right direction.
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