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Abstract

A standard model of mind will involve not only an architec-
ture but also a set of capabilities. Ideally, the two should in-
form one another at a deep level, as an architecture is what
both enables and constrains capabilities. In that spirit, we con-
sider in some detail a routine and (deceptively) simple robotic
task. From it, we build out a substantial list of capabilities that
appear essential for a general-purpose execution of the task.
We argue that this type of exercise is an indispensable step
toward the establishment of a baseline for the comparison of
cognitive architectures, and that the resulting taxonomy can
inform the synthesis of a standard model of the mind.

Introduction

The idea that the cognitive sciences might have developed
sufficiently, at long last, to justifiably produce a unified the-
ory of cognition — i.e., one that describes a “single set of
mechanisms for all of cognitive behavior” — is not new at
all; it can be traced back at least to (Newell 1990). The
notion, on the other hand, that there might be consensus
enough among cognitive scientists to begin to compile a
standard model of mind is far more surprising, and it is just
this potential for consensus that forms the basis for the forth-
coming (Laird, Lebiere, and Rosenbloom 2017). We jump
into the discussion with our own ideas about what sorts of
abilities a standard model of mind must subsume in order to
be truly general and human-like, as well as how one might
use this as a framework to assess cognitive architectures.

We focus primarily on a story about a robot and a task she
has been given — a task that turns out to be more compli-
cated than it at first appears. The story is annotated with the
capabilities an intelligent agent would need to accomplish
the feats therein. After the story, we collect these capabilities
into a unified list, which we believe can serve as the basis for
a general list of desiderata for intelligent agents (and hence
their cognitive architectures).

Finally, we briefly discuss how one might evaluate exist-
ing and future cognitive architectures in light of our list, us-
ing our own ALMA system as an example.

Currently, we are unaware of any system that possesses all
of these capabilities to any advanced degree, nor of any sys-

tem that could successfully navigate a scenario like the one
we here lay out; we don’t believe this to be a coincidence.

Robbie — A Day in the Life

This story is inspired by a similar story featured in (Perlis et
al. 2013), but here we flesh it out considerably.

We use a bracket notation to show where items from our
list of desiderata (presented in a later section) appear in the
story. For example, the marker [1a] would mean that the pre-
ceding sentence features perception of the outside world.

Robbie the robot is in trouble. She has been tasked with
retrieving a book for us from room 128, but everything
has gone wrong!

Already, we’re hinting at one of our major themes — in
the real world, things often go wrong, and an intelligent
agent will need to be able to cope. This functionality is com-
monly referred to as perturbation tolerance.

We made our request at 11:30AM, asking that Rob-
bie bring us the book by noon. Robbie ran a simula-
tion[3a] and determined that, given the distance she
had to cover to reach room 128 and the motions in-
volved in picking up and carrying a book, this was well
within her capabilities[4e]. So, she planned out a suffi-
cient route and set off[1e,3b]. Once her initial planning
for the current task was done, she allocated the neces-
sary resources to navigate and watch for anomalies,
opting to use the rest of her processing power to con-
tinue working on a math problem we interrupted her in
the middle of solving[3h].

Here, we see that Robbie has some interesting cognitive
features. She can conduct physics simulations and make
multi-step plans. Implicitly, she must have been able to
break up a complex task into sub-parts (“retrieve the book”
becomes “go to the book,” “pick up the book,” and “return
here while still holding the book”). She has an understand-
ing of her own capabilities and limitations. Subtly, she stops
at a “sufficient route” to complete the task within the time
limit, rather than continuing to search until she has found
the “optimal route” — this requires her to understand that
the actions of reasoning and planning themselves take time!

Finally, the last sentence makes it clear that Robbie is
more than just an object retrieval bot. As a persistent, gen-
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eral agent, she has more to do and think about than just an
immediate command.

The trouble starts about halfway through the journey.
One of the hallways Robbie had planned to use was
closed for maintenance! Robbie realizes that she will
not be able to complete her original plan, and com-
putes a new, slightly longer route using a different hall-
way[3b]. She determines that she will still be able to
finish in time, and so sets off again.

Now Robbie has run into her first obstacle. She could
hardly be called an “intelligent agent” if she broke down or
quit when the first problem came up. She has the ability to
learn new information, incorporate it into her database, iden-
tify that this will prevent her from completing her current
plan, and make a new plan, all while keeping her original
goal in mind.

Robbie finally reaches room 128 — or, to be precise, the
room marked on her internal map as room 128[5c]. The
problem? Before opening the door, she notices that the
room number says 123, not 128[1a,4d]! Here, a con-
tradiction arises: the room in front of her appears to
be both room 123 and 128, but she knows that a room
in this building can only have one number. A lesser
agent might give up, but luckily Robbie has strategies
for dealing with apparent contradictions.

For an intelligent agent to deal with problems, the agent
must first be able to detect those problems. This particular
example requires some degree of visual processing, but any
such problem will at a minimum require the agent to have a
set of expectations, a means of checking those expectations
against reality, and strategies for resolving any conflicts.

Robbie reasons that either the room in front of her is
room 123, the room in front of her is room 128, or one
of her base beliefs about how room numbers work is
flawed[2h]. Robbie has a record of her past reason-
ing[2j], and so she knows that she has only limited ev-
idence for the room being either 123 or 128. There-
fore, she decides to trust her base beliefs for the mo-
ment, and directs her efforts towards obtaining more
evidence[3b] for the two more likely possibilities.

Here we see that Robbie is able to identify a plausible
set of beliefs that could be mistaken, and furthermore able
to leverage her memory to estimate how reliable each belief
is. Once she narrows it down to two suspicious beliefs, she
applies a common contradiction resolution strategy: gather
more data!

After some thought, Robbie finds a potentially rele-
vant fact in her knowledge base: “Room numbers ap-
pear in sequence.”[2f]. This looks promising; there may
be an even better method for resolving this situation
buried deep in her knowledge base somewhere, but she
has a strict time constraint and so cannot afford to be
picky[4a]. She quickly makes and executes subplans
to read the room numbers of the adjacent rooms, and
finds that the rooms on either side are numbered 126
and 130. This evidence supports the hypothesis that the

mystery room is in fact room 128. As she approaches
the room once more, she reflects on how it might be that
she saw 123 instead of 128[3d]. She does some quick
simulations[3a] and realizes that, if you rub away the
left part of an 8, it looks like a 3. She makes note of this
fact for future room-identification scenarios[2g].

An intelligent agent needs to be able to identify new goals
and make plans on the fly. Time continues to be an important
consideration — as soon as a viable plan that doesn’t take
too much time is found, Robbie springs into action. Once
the plan is executed, simulation capabilities are once again
highlighted, along with some nominal curiosity and learning
ability.

Robbie still isn’t 100% sure that the room is room 128,
but now she has much more evidence for it, and time is
of the essence[4a]. So, she pushes on the door — but it
won’t budge! She consults her knowledge base, but —
alas — to no avail: this door has a handle on it, and
Robbie hasn’t learned anything about handles yet[4e]!

“General purpose cognitive agent” does not, of course,
mean “omniscient robot.” There will be many times when a
cognitive agent (no matter how general) simply does not un-
derstand its environment, or its interactions with it. In such
cases, the agent must have other methods of coping. Robbie
must be able to ask for advice and learn from it.

So Robbie does what anyone in over their head
should do — she asks for help[3c]! Robbie phones her
researcher and briefly explains the situation:

ROBBIE: I am requesting assistance. I attempted to
open the door using my strategy of “push on the sur-
face of the door,” but this did not work. I am sending
you a picture of the door[1b,1c].
RESEARCHER: Ah, yes. I see what’s happened — this
type of door has a handle, so you’re going to have to
use your arm to turn it before you can open the door.
Here, I’ll send you a video of a person opening a door.
Hold on just a second. When you get it, watch it and try
to learn from it[1d,2g].

While it may be possible that communication skills are
not strictly necessary for an agent to qualify as “intelligent,”
the only intelligent agents we currently know about (hu-
mans) have sophisticated forms of communication, and the
two concepts certainly give the appearance of being inextri-
cably linked. In any case, for an intelligent agent to be able
to competently interact with humans, it will need at least a
rudimentary understanding of language — both how to inter-
pret it, and how to produce it.

The process by which Robbie learns how to open the door
may need to be a bit more involved than simply being told
or watching a video. That would be ideal, since humans are
able to do these types of advice-based and single-example
learning quite well, but the current trend in AI research is
more in the realm of training on hundreds or thousands of
examples (which is of course also very important — humans
also make good use of this type of learning). At any rate, we
aren’t particularly concerned with the specifics here — the
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important thing is that an intelligent agent must have some
mechanisms in place for learning new facts and skills.

Robbie successfully opens the door, and files this new-
found skill away for future use[2g]. She scans the in-
terior, and finds to her dismay (or whatever it is that
robots feel when their expectations aren’t met) that it’s
a mess! The floor is strewn with hundreds of books; per-
haps there was an earthquake, or maybe it was just
those crazy graduate students again. She does some
quick math to figure out how long it will take her to
sort through the mess to find the requested book[3a],
and determines it to be highly unlikely that she should
find it in time[4a]. Robbie realizes things are not go-
ing well, and so phones her researcher once more for
advice[3c,4f]. This time, he agrees that it’s likely im-
possible for her to get the book in time, and tells her
to call the whole thing off. Robbie obliges, and heads
back to the lab.

A perhaps underrated strategy for dealing with problems
is to know when to give up. This will involve at least two
abilities. The first is the ability to dynamically prioritize live
tasks on the basis of a cost-benefit analysis; the second, im-
plied by the first, is the ability to predict one’s probability of
success (or lack thereof) in a given task-instance.

Back in the lab, Robbie doesn’t just shut off, even
though she no longer has a task. Instead, she returns
to working on that math problem[3h].

A persistent agent must be, well, persistent.
This is for the AI researcher likely a satisfying ending to

the story. However, consider briefly an alternative ending,
which illustrates yet another important cognitive ability —
namely, the ability to imagine novel goals, or to infer goals
that other agents are likely to possess; and, in response, to
invent, prioritize, and initiate novel tasks. Watch:

[...] Robbie obliges, and starts to head back to the lab.
However, as she approaches the door, a subprocess re-
alizes that it would be helpful in the future for the room
to be in order, should she or someone else be tasked
with finding a book again[3d,3f]. She infers that this
goal also seems desirable to her researcher[3e], and
so assigns herself the task of organizing the books in
the room, marking it as the active goal but noting that
it can be interrupted if she is requested elsewhere. The
only other source of intrigue at the moment is that math
problem from before, but it has relatively lower prior-
ity[3g]. So, she gets to work cleaning the room with all
the alacrity characteristic of her programming.

Intelligent agents need to be able to plan for long-term
benefit. Plus, a robot might as well make itself useful!

List of Desiderata for Intelligent Agents

We now present a list of capabilities, primarily derived from
the story, which a general-purpose intelligent agent might
reasonably be expected to possess. We do not claim this to
be a complete list, only that a “smart” robot would likely
need most of these. For convenience, we have grouped

the list items into rough categories, although the category
headings are meant more as guidelines than rigid laws.

So, without further ado, we believe it safe to say that an
intelligent agent should be able to:

1. Interaction:

(a) Perceive the outside world;
(b) Bring attention to spatial entities (e.g. pointing);
(c) Generate simple language;
(d) Understand simple language;
(e) Move self and other objects;

2. Knowledge and Learning

(a) Identify objects;
(b) Keep track of real-valued quantities (such as counts);
(c) Learn new objects and how they behave (individuals

and classes);
(d) Deliberately affect its perceptions (e.g. move to get a

better viewing angle);
(e) Track own actions and processing in real time (e.g.

efference copy, as in (Brody, Perlis, and Shamwell
2015));

(f) Maintain a knowledge base (KB);
(g) Update the KB with new information (“learning”);
(h) Make inferences based on the KB;
(i) Maintain information about others’ knowledge;
(j) Keep a detailed history of own activity and perception;

3. Goals, Planning, and Acting

(a) Simulate behavior in imagination (for use in vi-
sion/planning);

(b) Make and execute plans to achieve goals, including
backup plans where appropriate;

(c) Ask for help effectively (knowing whom and how to
ask);

(d) Identify new goals, including ones for future or long-
term benefit;

(e) Identify needs of others;
(f) Be helpful (as appropriate);
(g) Keep track of priorities and rearrange them as neces-

sary;
(h) Seek knowledge as a general goal, when consistent

with other goals;
(i) Identify overly complex plans, and have strategies for

dealing with them (prune, get help, give up);

4. Real-World Considerations

(a) Control activities (including inference) to respect real-
time constraints;

(b) Forget and relearn when necessary;
(c) Possess and apply contextual awareness;
(d) Detect anomalies in the world and in reasoning, and

have strategies for dealing with them;
(e) Know its own capabilities and shortcomings;

457



(f) “Take stock”: how are things going overall in the
short/medium/long term?;

5. Special Category Distinctions

(a) Distinguish self from other;
(b) Distinguish parts from wholes;
(c) Distinguish appearance and thought from reality.

If you read the story carefully, you may notice that not all
of these capabilities are directly referenced. For the most
part, these are additional capabilities such as [4c] “Possess
and apply contextual awareness” which underly much of
the thought and action taking place throughout, even though
they aren’t the central focus of any single paragraph.

Notable Omissions

It may seem that some obvious things are missing from this
list. Take, for example, “communication between submod-
ules.” Minds are complex systems with lots of specialized
parts, and to navigate the world successfully an agent will
almost certainly need to be able to use several of them to-
gether at once.

However, this is the advantage of our approach. Perhaps
submodules need to be able to communicate, or maybe spe-
cialized submodules aren’t even required at all — it makes
no difference here! These are architectural considerations,
whereas we (at least in this paper) are concerned purely
with capabilities.

Of course, we still have likely omitted something that
should be on the list. Again, this list is not meant to be com-
plete or final — to the contrary, we encourage discussion and
iteration on both the content and structure of the list. In our
view, the development of such a list as this represents a sig-
nificant step on the path to a standard model of mind, and
can inform future work on intelligent agents and cognitive
architectures.

Existing Systems and Architectures

Of course, there are many systems and architectures that
have been thought up and implemented prior to the creation
of this list of desiderata. Originally, we had intended to eval-
uate a number established and/or recent systems, architec-
tures, and models (such as SOAR (Laird 2012), ACT-R (An-
derson et al. 2004), MIDCA (Cox 2013), DIARC (Scher-
merhorn et al. 2006), and HoA (Chaouche et al. 2014)) with
respect to our list. However, realistic cognitive architectures
like the ones we mentioned are tremendously complex, so a
“complete” analysis of each one would draw too much focus
from the rest of the paper, and anything less would be doing
the creators of these systems a disservice. Instead, we invite
these groups to examine their own work in the context of our
list. To demonstrate how this might be done, we will take a
look at our own ALMA (Purang 2001) system.

Case Study: ALMA

ALMA (short for Active Logic MAchine) is a general-
purpose reasoner which implements the titular active logic

formalism. Active logic is a form of first-order logic derived
from step-logic (Elgot-Drapkin, Miller, and Perlis 1991),
which is built to accomodate reasoning situated in time.

1. Interaction ALMA is a reasoning system, not a full em-
bodied agent, so many of the items in this section don’t re-
ally apply. However, systems have been built (e.g. (Josyula,
Anderson, and Perlis 2004)), and are being built in our cur-
rent work, that incorporate ALMA as a core component
which are capable of all of these.

2. Knowledge and Learning Being a reasoning system,
these items are the bread and butter of ALMA. [2f - 2h]
are central components of almost any reasoning system, and
[2e] and [2j] are central features that distinguish ALMA
from other systems. [2a], [2c], and [2i] are again more in
the domain of a larger, integrated system. [2b] is a current
research focus for the core of ALMA, and [2d] is an impor-
tant piece of a demo currently under construction in which
ALMA is being used as the control center for a robot.

3. Goals, Planning, and Acting ALMA has very rudi-
mentary planning facilities like [3b], specifically for execut-
ing tasks at future times, and [3a] and [3g] are active re-
search topics. There is still much to be desired on the items
in this section, although again this is mitigated by the fact
that it is meant to be combined with other systems (which
would handle planning and execution).

4. Real-World Considerations [4a] is the defining fea-
ture of ALMA. [4b] and [4d] have been written about ex-
tensively in papers relating to active logic (Miller and Perlis
1993), and this work has been partially implemented. There
has been some work on [4e] (Nirkhe et al. 1997), but it has
not been implemented. Not much has been done about [4f].

5. Special Category Distinctions [5a] is arguably cov-
ered — an instance of ALMA is aware of its own existence
as an entity, although this hasn’t been used for very much.
Much has been written about how to handle [5c] in papers
such as (Miller and Perlis 1993), although implementation
has lagged behind here.

Verdict Many of the items on our list of desiderata are
represented or at least considered; this is perhaps to be ex-
pected, as the system and its underlying logic have been
worked on by some of the very same minds as this paper.

Other Lists

Various other lists exist which can, at first blush, seem very
similar to ours. Here, we’ll pick out a couple of representa-
tives to demonstrate how our list distinguishes itself.

Constraints on Mind

In 1980, Allen Newell briefly presented a set of 13 con-
straints on the human mind (Newell 1980), a set which
was later expanded upon by Anderson and Lebiere (An-
derson and Lebiere 2003). Our list mostly subsumes this
one, barring the last few items (on the 2003 formulation):
“acquire capabilities through development”, “arise through
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evolution”, and “be realizable within the brain”. This is
because that list is about constraints on the human mind,
whereas we are looking at the more general class of intel-
ligent minds, and so are not concerned with how the mind
arises or whether it matches up with a particular physical
system.

Architecture

Orthogonal to papers such as (Laird, Lebiere, and Rosen-
bloom 2017), which center more on the cognitive system
architecture (the “how”), we focus on the possible types of
thought (the “what”). We intend this list to serve as a com-
plement to the more technically-minded papers in this col-
lection, as well as to future papers — in order to design an
architecture, you first have to have some idea of what you
want that architecture to be able to do.

Conclusion

We began by working through a scenario of our design and
considering what cognitive capabilities would be necessary
to successfully negotiate it. We then collated these capabil-
ities, and extended and generalized the resulting list into its
current form. This list is not meant to be a final, definitive
list of all the capabilities an agent must have to be consid-
ered intelligent in a general sense. However, it can serve as
the prototype for such a list; as such, we welcome discussion
and modification.

If the research community is able to reach a consensus
about what the contents of this list should be, then in turn it
can serve as a foundation for a standard model of the mind.
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