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Abstract— Due both to the speed and quality of their
sensors and restrictive on-board computational capabilities,
current state-of-the-art (SOA) size, weight, and power (SWaP)
constrained autonomous robotic systems are limited in their
abilities to sample, fuse, and analyze sensory data for state
estimation. Aimed at improving SWaP-constrained robotic
state estimation, we present Multi-Hypothesis DeepEfference
(MHDE) - an unsupervised, deep convolutional-deconvolutional
sensor fusion network that learns to intelligently combine noisy
heterogeneous sensor data to predict several probable hypothe-
ses for the dense, pixel-level correspondence between a source
image and an unseen target image. This new multi-hypothesis
formulation of our previous architecture, DeepEfference [1],
has been augmented to handle dynamic heteroscedastic sensor
and motion noise and computes hypothesis image mappings
and predictions at 150-400 Hz depending on the number of
hypotheses being generated. MHDE fuses noisy, heterogeneous
sensory inputs using two parallel architectural pathways and
n (1, 2, 4, or 8 in this work) multi-hypothesis generation
subpathways to generate n pixel-level predictions and corre-
spondences between source and target images. We evaluated
MHDE on the KITTI Odometry dataset [2] and benchmarked it
against DeepEfference [1] and DeepMatching [3] by mean pixel
error and runtime. MHDE with 8 hypotheses outperformed
DeepEfference in root mean squared (RMSE) pixel error by
103% in the maximum heteroscedastic noise condition and by
18% in the noise-free condition. MHDE with 8 hypotheses was
over 5, 000% faster than DeepMatching with only a 3% increase
in RMSE.

I. INTRODUCTION

The sensing and processing pipelines of autonomous and

semi-autonomous robotic systems pose a fundamental limit

on how fast these systems may safely travel through an

environment. For example, when moving at 20 m/s, a 30 Hz

sensor-derived state estimate update rate means that a given

robot will travel 0.66 meters between state updates. While

traveling those 0.66 meters, the robot will effectively be blind

to any unexpected changes in the environment (e.g., a tree

branch blown by a wind gust or an unexpectedly opened

door). As a result, current size, weight, and power (SWaP)

constrained autonomous and semi-autonomous robotic sys-
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tems are forced to move very slowly through their environ-

ments.

The slow operational speeds of SWaP-constrained au-

tonomous systems are especially pronounced for mobile

robots operating in dynamic, gps-/communications-denied

environments where safe navigation must be performed only

with on-board sensors and computational resources. For

unmanned aerial vehicles (UAVs), navigation is typically

performed through a fusion of visual odometry (VO) esti-

mates, inertial measurements, and simplified predictive linear

motion models in a Kalman filter framework. These SWaP-

constrained VO-pipelines force the use of lightweight feature

matching approaches for visual correspondence that are

out-performed by computationally heavier SOA approaches.

For example, the visual matching algorithm DeepMatching

has enabled SOA matching and optical flow [4] but the

correspondence-finding step alone can require from 16 sec-

onds to 6.3 minutes per RGB image pair depending on the

parameter regime used for matching [3]. For real-time op-

eration on SWaP-constrained systems, correspondence must

be computed orders of magnitude faster (e.g., a minimum of

33 ms per matching pair for a 30 FPS camera commonly

used for SWaP-constrained robotic applications).

We argue that contextual information can greatly reduce

the computational burden for image correspondence ap-

proaches and enable both higher-quality and lower-latency

state estimation. One way to provide context is by fusing

measurements from multiple sensory modalities. However,

intelligently integrating multimodal information into low-

level sensory processing pipelines remains challenging, es-

pecially in the case of SWaP-constrained robotic systems.

We have previously shown that our architecture DeepEffer-

ence [1] can efficiently fuse visual information with motion-

related information to greatly increase runtime performance

( 20, 000%) with minimal performance degradation ( 12%)

for dense image correspondence matching. However, in

our previous work, we used motion estimates as inputs to

DeepEfference that were accurate to within approximately

10 cm of actual pose. In the real-world, systems will rarely

have access to comparatively clean signals. Additionally, real

noise sources are often heteroscedastic and input-dependent.

With the original DeepEfference’s fast runtime, we saw the

possibility of generating many different hypothetical outputs

for each input image and then selecting the most accurate

at execution time. By learning how to produce n image

reconstruction predictions, the DeepEfference architecture

could be expanded to better handle real-world noise sources.

In this work, we introduce Multi-Hypothesis DeepEf-
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Fig. 1: Sample MHDE outputs from different hypothesis pathways. A-E: MHDE ouputs from 5 pathways. D shows the output

from an inactive pathway (i.e. a pathway that the network did not optimize). F-E: Reconstruction error for the hypotheses

shown in A-E. From F we can see that the reconstruction shown in A had the lowest error (yellow-dashed box).

ference (MHDE) which is an extension of DeepEfference

[1] that mitigates performance impacts of noisy motion

estimates. A side-effect of this multi-hypothesis approach

is enhanced performance even in the absence of added

noise that achieves a mean pixel error within 3% of SOA

approaches with an over 5, 000% decrease in runtime. By

learning how to generate multiple hypothetical outputs,

MHDE can effectively sample the space of possible image

transformations. This is enabled by a multi-pathway network

architecture and novel loss rule that enables the network to

explicitly learn multiple, independent network pathways.

The remainder of the paper is organized as follows:

Section II describes the background and motivations for

MHDE; Section III outlines our deep network approach to

fusing noisy heterogeneous sensory inputs and describes the

MHDE architecture; Section IV outlines our experimental

and evaluation approaches; Section V presents our experi-

mental results; Section VI discusses the results from Section

V; and Section VII offers a summary, concluding thoughts,

and directions for future work.

II. BACKGROUND

A. Visual Odometry and Multi-Sensor Fusion

In VO as well as many other vision tasks such as motion

understanding and stereopsis, a key challenge is discovering

quantitative relationships between temporally or spatially

adjacent images. Within the last decade, bio-plausible ap-

proaches for the visual task of object recognition have set

new benchmarks and are now the defacto standard. We agree

strongly with Memisevic that bio-plausible, local filtering-

based approaches similarly hold promise for the correspon-

dence problem [5].

A known failure mode for visual odometry (VO) is in

highly dynamic scenes. Most VO algorithms are subject to

the static scene assumption whereby additional error is intro-

duced when independently moving points in the scene move

inconsistently with their dependently moving neighbors.

Feedback outlier detection approaches based on algorithms

such as RANSAC [6] seek to discover the most likely motion

that has caused a given transform. However an unconstrained

key-point match between two images across a large temporal

window and spatial extent is at least exponentially complex

[7]. By fusing sensor information from separate modalities,

we can effectively constrain the matching process.

Constraining the matching process to be consistent with a

narrow range of transforms gleamed from another modality

can lead to increased VO performance relative to computa-

tional requirements and processing time. Previous work has

applied extra-visual feedback signals from IMUs or GPS

[8], [9] to constrain the matching process. Simple motion

models [10], [11] have also been used to predict future

images based on previously observed image motion. These

approaches have been extended to use quadratic motion

models [12] which showed improved performance in specific

environments (e.g., on flat roads). However, these models

implicitly sacrifice responsiveness as they wait for changes

in an underlying sensory distribution rather than detecting

dominant motion from a separate extra-visual modality.

B. Deep Spatial Transformations

The correspondence problem describes the challenge of

determining how the pixels in one image spatially correspond

to the pixels in another image. Traditionally, the correspon-

dence problem has been tackled with closed-form, analytical

approaches (see [13] for a review) but recently, deep, bio-

inspired, solutions have also begun to show promise. These

deep approaches solve the correspondence problem by learn-

ing to estimate the 3D spatial transformations between image

pairs.
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Fig. 2: MHDE network diagram with two hypotheses shown for brevity. We experimented with up to 8 hypotheses in this

work.

In computer vision, siamese-like deep network architec-

tures such as those based on multiplicative interactions have

been used successfully for relationship learning between

images [5], [14]–[18]. However,there are two problems with

these and other deep approaches (e.g. the DeepMatching

[3], [4] algorithm described earlier) to image transformation

learning.

First, these approaches require expensive computation on

both initial and target images. They employ siamese archi-

tectures that require parameter-heavy learning and expensive

computations to be performed on both source and target

images. For SWaP-constrained robots, the number of compu-

tational operations required by these siamese networks must

be significantly reduced. Approaches such as L1 and group

lasso-based pruning [19]–[21] offer potential mechanisms to

reduce the size of networks but fundamentally still require

extensive computation on both source and target images.

Second, these approaches do not provide a mechanism

to include extra information from another modality as a

motion prior while maintaining end-to-end trainability. For

robotic applications, heterogeneous sensor information is of-

ten available that can be leveraged and may allow for reduced

computational constraints and increased performance (see

Section II-C).

C. Extra-Modal Motion Estimates and Heteroscedastic
Noise

Unlike algorithms in pure computer vision domains, algo-

rithms intended for robotic applications need not rely solely

on vision. For example, when estimating a robotic system’s

egomotion by tracking changes in feature point locations on a

robot’s camera’s imaging plane, additional non-visual motion

estimates can be fused with visual information(i.e. to bias or

serve as a motion prior) to improve egomotion estimation.

On real-world systems, additional non-visual motion es-

timates could be derived from measurements taken from

IMUs, GPS, LIDARs, ultrasonic ranging sensors, or the

actual input motor commands given to the system. Further-

more, motor errors exhibit heteroscedastic noise properties

where larger movements generate larger sources of noise

[22]. Any approach that seeks to leverage extra-modal motion

estimates needs to be robust to real-world heteroscedastic

noise.
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III. APPROACH

MHDE is an unsupervised deep heterogeneous neural

network that employs multiple separable pathways to fuse

noisy, heterogeneous sensory information and predict how

source images correspond to unseen target images.

MHDE effectively reverses the prediction pipeline - rather

than using the previous image to reconstruct the future image,

it uses the target image to reconstruct the source image. The

network receives a noisy estimate of the change in 3D camera

position between source and target frame acquisitions and

learns:

1) 2D affine transformation parameters that are applied as

a global spatial transform; and

2) Local, pixel-level shifts that encapsulate aberrations

due to varied scene depth, non-rigid scene objects, etc.

The affine transformations and localized shifts are learned

and applied via two interconnected architectural pathways:

one for determining global 2x3 affine 2D transformation

matrices, and a second encoder-decoder pathway that pre-

dicts localized, pixel-level shifts that are not captured by the

global, approximated 2D affine transformation (see [1] for

more information on the DeepEfference architecture).

Unlike the original DeepEfference, MHDE generates sev-

eral hypothetical reconstructions which enable increased

robustness to noisy inputs. Thus, while DeepEfference only

has two architectural pathways, MHDE has the same two ar-

chitectural pathways plus n additional hypothesis generation

pathways (2− 8 in this work).

A. Winner-Take-All (WTA) Loss Rule

MHDE generates multiple hypothesis reconstructions to

enable robustness to stochastic, heteroscedastic, input noise

such as found in the real-world. The previous DeepEfference

architecture that generated only a single predicted reconstruc-

tion used Euclidean error to train the network by minimizing

the loss function

L(θ, It, Is) = argmin
θ
‖Ir(θ, It)− Is‖2 (1)

where Ir is an image reconstruction, It is the image target,

and Is is the image source being reconstructed.

If instead of generating a single reconstruction Ir, the

network generated n reconstructions Iir, i ∈ N , the loss rule

would need to be expanded to train across all hypothesis

pathways in the new network. A naive way to compute error

for such a multi-hypothesis network would be to simply sum

the Euclidean error from all hypotheses and divide by the

total number of hypotheses. Then, the network would be

trained by minimizing the loss function

L(θ, It, Is) = argmin
θ

∑N
i ‖Iir(θ, It)− Is‖2

N
(2)

where Iir is a hypothesis image reconstruction and the

remaining terms are the same as before.

The naive multi-hypothesis loss rule of Eq. 2 would lead

the network to optimize all pathways simultaneously with

each update. However, this may not be optimal for increased

robustness to noise. Effectively, we desire the network to

generate distinct predictive hypotheses by sampling from

a noise distribution that the network implicitly learns. For

example, consider when the network has perfectly optimized

the loss function of Eq. 2:

L(θ, It, Is) =

∑N
i ‖Iir(θ, It)− Is‖2

N
≈ 0 (3)

In this case, ‖Iir(θ, It) − Is‖2 ≈ 0, ∀i ∈ N which means

that each hypothesis reconstruction Iir(θ, It) is approximately

equal. As the network is trained and converges to a local

minima, loss will affect parameters in each pathway ap-

proximately equally and drive outputs from all pathways

to a common approximate solution. This is the opposite of

what we want from MHDE. Effectively, such a loss rule is

equivalent to the standard Euclidean loss rule used in [1]

where a single prediction is generated and fails to leverage

the multiple outputs that can be generated by MHDE.

To leverage its multiple outputs, we train MHDE using

what we call a winner-take-all (WTA) Euclidean loss rule:

I∗r (θ, It)←− argmin
i
‖Iir(θ, It)− Is‖2 (4)

L(θ, It, Is) = ‖I∗r (θ, It)− Is‖2 (5)

where I∗r is the lowest error hypothesis. Loss is then only

computed for this one hypothesis and error is backpropagated

only to parameters in that one pathway. Now, only parameters

that contributed to the winning hypothesis are updated and

the remaining parameters are left untouched.

B. Pathway 1: Global Spatial Transformer

Spatial transformer (ST) modules [23] apply parametrized

geometric transformations to feature-maps (either data inputs

or intermediate outputs) in deep networks. The parameters

for these transformations (2D affine transformations in our

case) can be directly provided to the network as input or

can be learned and optimized alongside the other network

parameters (e.g., network weights and biases).

MHDE was provided with estimates of the true 3D trans-

formation between source and target images (δx, δy, δz, δα,

δβ, δγ). Note, however, that the visual input to MHDE was a

single grayscale source image without any depth information.

Even if the provided 3D transformation was noise-free and

perfectly accurate, it is not possible to analytically perform

a 3D warp (assuming translation) on a 2D image due to

unknown scene depth at each pixel location. Thus, MHDE

approximated 3D warps as 2D affine transformations through

a linear-nonlinear optimization using four fully-connected

layers, each followed by an additional rectified linear unit

(ReLU) [24] non-linearity layer.

We modified the standard ST module in tensorflow [25] by

splitting the layer into two layers - one to perform the affine

transformation on grids of source pixel locations (xs, ys) and

output target pixel coordinates (xt, yt) and a second layer to
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perform bilinear sampling given pixel coordinates and an

image to sample from.

Although the sampling component of our ST module takes

an input image as input, no learn-able parameters are based

on input image content and thus our global pathway is a

function only of the input transformation estimate and is

image content-independent.

C. Pathway 2: Local, Pixel-Level Shifter

The pixel-level encoder/decoder pathway refines the ST

estimate from the first pathway and provides localized esti-

mates of pixel movement to account for depth, non-rigidity,

etc.

We implemented this pathway as a convolutional-

deconvolutional encoder-decoder. First, the convolutional

encoder compresses a source image through a cascade of

convolutional filtering operations. The output of the convo-

lutional encoder is concatenated with intermediate outputs

from the fully-connected layers from the first, global pathway

(the black and blue vertical lines in the center of Fig. 2).

This concatenated representation is then expanded using a

deconvolutional decoder to generate n pairs of (xt′ , yt
′
) pixel

locations that are summed with the target pixel coordinates

(xt, yt) from the global pathway before bilinear sampling

(see [1] for more details).

IV. EXPERIMENTAL METHODS

We conducted experiments with MHDE using four dif-

ferent noise conditions and four different architectures. All

architectures were based on DeepEfference [1] and imple-

mented both global pathway and local pathways. MHDE was

evaluated on the KITTI Odometry dataset [2] and results

were benchmarked against correspondence matching results

from the SOA DeepMatching approach [3] (see [1] and the

Appendix for more information).

We experimented with four noise conditions where α was

0.0 , 0.1, 0.25, or 0.5. We trained networks with 1, 2, 4 or

8 hypothesis generation pathways. For each noise and and

hypothesis combination, we trained three networks for a total

of 48 different networks.

A. Noise

As shown in Fig. 3, we simulated real-world noise con-

ditions by applying heteroscedastic noise to each transform

input. For each transform T = (δx, δy, δz, δα, δβ, δγ), we

introduced heteroscedastic noise to create network input T ∗

according to:

T ∗ = T +N (0, α
√
T ) (6)

where α was a constant modifier that was either 0.0, 0.1,

0.25, or 0.5.

B. Evaluation

We evaluated MHDE by measuring the mean pixel error

of MHDE projections of DeepMatching keypoints from

source images to target images. The projection errors for

each method compared to groundtruth projections were used

Fig. 3: Heteroscedastic noise as a function of transform

magnitude for the X and Y components of the transform

input over the test set for a network with a noise parameter

α = 0.25.

Fig. 4: Inverse mean pixel error (higher is better) for several

noise conditions produced by MHDE networks trained to

generate 1, 2, 4, or 8 maximum hypotheses. Dashed line is

DM (SOA) error.

to determine mean pixel errors for each method (see [1]

and Appendix A. for a more thorough explanation of the

experimental evaluation).

C. Training

We trained MHDE for 200, 000 iterations on KITTI

Odometry scenes 1 − 11 for all experiments. We used

the Adam solver with batch size=32, momentum1=0.9,

momentum2=0.99, gamma=0.5, learning rate=1e − 4, and

an exponential learning rate policy for all experiments. All

networks were trained using our modified WTA loss rule. All

experiments were performed with a Nvidia Titan X GPU and

Tensorflow (see [1] and the Appendix for a more thorough

explanation of training procedures).

V. RESULTS

Fig. 4 shows the performance of MHDE with various

maximum hypotheses compared to DM. A network’s max-

imum hypotheses is the maximum number of hypothesis

generation pathways a given network was allowed to learn.
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Fig. 5: Inverse mean pixel error (higher is better) for several

noise conditions produced by MHDE networks. Results are

from the same networks shown in Fig. 4 but are instead

plotted as a function of active pathways learned by each

network.

Because of our WTA loss rule, this does not mean that

the network effectively learned how to use all pathways.

For example in Fig. 6d, a network with four maximum

hypotheses predominantly trained and used a single pathway.

This can also be seen in Fig. 5 where the same results from

Fig. 4 are plotted as a function of the total active hypotheses.

Active hypotheses are considered hypothesis pathways that

performed better than all other pathways for at least one

testing expemplar (for reference, Fig. 1(d) shows the network

output of an inactive pathway).

There is positive relationship between performance and

both maximum hypotheses and active hypotheses. This is

true for all noise conditions as well as the no-noise condition.

We also see that the rate of improvement when moving from

one to six active hypotheses is greater for higher noise levels.

Fig. 6 shows the activations by pathway for networks

trained with four or eight maximum hypotheses. Surprisingly,

regardless of noise conditions, we see no strong relationship

between active pathways (pathways that produced the best

result for at least one test exemplar) and noise level.

Tab. I details the comparative runtimes between Deep-

Matching and MHDE with various numbers of hypotheses.

MHDE runtime scales linearly with number of hypotheses.

Overall, the runtime gains of MHDE compared to DM show

that providing a strong prior on camera motion allows for

far more computationally efficient image predictions and

matchings.

VI. DISCUSSION

We were concerned that MHDE networks might only

optimize a single pathway. For example, if one pathway

consistently produced the lowest estimate error at the be-

ginning of training, then perhaps only that pathway would

be updated and thus the network would not be used to it’s

TABLE I: Average runtimes for DeepMatching (DM) and

Multi-Hypothesis DeepEfference (MHDE) with equivalent

frames per second (FPS)

# Hypoth. Mean StDev. Med. FPS
DM N/A 0.4115 s 0.00132 0.407 s 2.4

MHDE 1 0.0024 s 0.00008 0.00238 s 417.4

MHDE 2 0.00303 s 0.00009 0.00302 s 330

MHDE 4 0.00422 s 0.00010 0.00421 s 237.2

MHDE 8 0.00675 s 0.00016 0.00677 s 148.2

(a) No noise (b) Noise=0.1

(c) Noise=0.25 (d) Noise=0.5

Fig. 6: Activation by pathway for the different noise condi-

tions. Only networks with maximum hypotheses of 4 or 8
are shown.

fullest potential. As seen in Fig. 6, this generally was not the

case as networks were able to learn to use multiple pathways

without intervention outside of the WTA loss rule.

Future work will look at how to include pure sensor

measurements (e.g., from an IMU) and how to encourage

networks to train and use all available hypothesis pathways.

Like it’s predecessor, MHDE only uses single grayscale

images as inputs. Another possible avenue of research is to

use multiple images as input, or an LSTM like architecture

to give the network additional temporal context.

One of the more important aspects of this network is

that it does not generate images from scratch and instead

works mostly in the space of pixel locations rather than pixel

intensities. Given that geometry is consistent across image

domains even though image content varies, this network

architecture is a promising candidate to leverage transfer

learning.

While we used noise-corrupted motion estimates derived

from ground-truth for the MHDE transform input, IMUs are

a possible real-world source for this information. However,

IMUs only measure accelerations and thus we speculate that

using raw IMU measurements as MHDE inputs will result

in poor performance during constant velocity maneuvers.

Additional work is needed to determine a suitable real-world
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analog for deriving the motion estimates needed by MHDE.

We hope to experiment with this architecture on other vi-

sual odometry datasets. Specifically, we seek a larger dataset

with a wider range of movements. Without a wide range

of movements, we speculate that trained networks will only

be able to transfer to new, previously unseen datasets that

follow similar movement statistics as the datasets on which

they were trained. To overcome many of these limitations, we

are currently working to collect a multi-modal dataset with

stereo imagery, depth imagery, high-resolution IMU data,

action commands, low-level motor-commands, and ground-

truth VICON poses. With this dataset, we will be able to

better address limitations inherent in the current MHDE

architecture.

VII. CONCLUSION

While increased performance in the noise-free conditions

was an unintended consequence of the multi-hypothesis

formulation, the central contribution of this work is in the

handling of noise-contaminated input data. In summary, we

have shown the unsupervised learning of correspondence

between static grayscale images in a deep sensorimotor

fusion network with noisy sensor data. In this work, we have

presented a multi-hypothesis formulation of our previous

DeepEfference architecture. MHDE outperformed DE by

103% in RMSE in our maximum noise condition, by 18% in

the noise-free condition, and was 181% slower (417 FPS vs

148 FPS). Compared to DM, MHDE was 5192% faster with

8 hypotheses (2.8 FPS vs 148 FPS) and was outperformed

by 3% in the noise-free condition with 8 hypotheses and by

57% in the maximum noise condition with 8 hypotheses.

APPENDIX

The following methods are largely reproduced from [1]

and included here for completeness.

A. Extended Evaluation

As in [1], we evaluated MHDE on the KITTI Visual

Odometry dataset [2]. KITTI is a benchmark dataset for the

evaluation of visual odometry and LIDAR-based navigation

algorithms. Images in KITTI were captured at 10 Hz from

a Volkswagen Passat B6 as it traversed city, residential,

road, and campus environments. Groundtruth poses at each

camera exposure were provided by an RTK GPS solution

and depth is provided with coincident data from a Velodyne

laser scanner. All objects in the visual scenes are rigid, thus

fulfilling the static scene assumption and allowing for ground

truth to be computed from scene depth and camera position.

Predicted pixel correspondence between source and target

images was evaluated against groundtruth correspondence

and SOA DeepMatching correspondence predictions. With

access to scene depth and true camera pose for KITTI,

groundtruth pixel shifts were calculated by applying a 3D

warp to 3D pixel locations in the source images to generate

the expected pixel locations in the target images. We pro-

jected each 3D point in the frame of camerat0 to the world

frame using the derived projection matrix for camerat0 and

then reprojected these points in the world frame to camerat1
using the inverse projection matrix for camerat1. Finally, we

transformed points in the frame of camerat1 to the image

plane. This resulted in a correspondence map between pixel

locations in camerat0 and camerat1 for each point where

depth was available (e.g., when depth was outside of the

Velodyne laser scanner’s range).

B. Extended Training Procedures

For training and evaluation, data was separated into train

(80%) and test (20%) sets. We used a total of 23, 190 image

pairs with 80% (18, 552) for training and 20% (4, 638) for

testing. In all experiments, we randomly selected an image

for the source, used the successive image for the target, and

subtracted the two 6-DOF camera poses for the transform

input. For each image in each dataset, we cropped the middle

224x224 pixel region for network inputs.
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