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Abstract— As the human eyeball saccades across the visual
scene, humans maintain egocentric visual positional constancy
despite retinal motion identical to an egocentric shift of the
scene. Characterizing the underlying biological computations
enabling visual constancy can inform methods of robotic lo-
calization by serving as a model for intelligently integrating
complimentary, heterogeneous information. Here we present
DeepEfference, a bio-inspired, unsupervised, deep sensorimotor
network that learns to predict the sensory consequences of
self-generated actions. DeepEfference computes dense image
correspondences [1] at over 500 Hz and uses only a sin-
gle monocular grayscale image and a low-dimensional extra-
modal motion estimate as data inputs. Designed for robotic
applications, DeepEfference employs multi-level fusion via two
parallel pathways to learn dense, pixel-level predictions and
correspondences between source and target images. We present
quantitative and qualitative results from the SceneNet RGBD
[2] and KITTI Odometry [3] datasets and demonstrate an
approximate runtime decrease of over 20,000% with only a
12% increase in mean pixel matching error compared to
DeepMatching [4] on KITTI Odometry.

I. INTRODUCTION

For an autonomous agent (be it robotic or organic), under-
standing how self-produced actions affect the environment is
critically important to survival and successful operation in the
real-world. Similarly important is an agent’s understanding
of how its actions affect its sensory perceptions. In the case
of visual positional constancy, this corresponds to an agent’s
ability to separate motion across the retinal plane induced
by self-motion (e.g., from a saccade) from motion induced
externally (e.g., from a charging predator).

A comparable understanding of the perceptual conse-
quences of self-induced actions could be used by autonomous
robots to measure action-based and perceptual anomalies
(among others). Take for example the act of turning to the
left. In the case of the former, this action should result in
an object within the visual field-of-view (e.g., a soda can)
shifting to the right on the imaging plane by a commensurate
amount. If this shift does not occur, it could mean that the
action was not properly performed and that there could be a

*This work was supported by the US Army Research Laboratory
1E. Jared Shamwell is a doctoral candidate in the Neuroscience and

Cognitive Science Program at the University of Maryland, College Park and
a research scientist with GTS stationed at the US Army Research Labora-
tory, Adelphi, MD 20783. earl.j.shamwell.ctr@mail.mil;
ejsham@umd.edu

2William D. Nothwang, PhD is the Branch Chief (a) of the Micro and
Nano Devices and Materials Branch in the Sensors and Electron Devices
Directorate at the US Army Research Laboratory, Adelphi, MD 20783.
william.d.nothwang.civ@mail.mil

3Donald Perlis, PhD, is a Professor of Computer Science at the University
of Maryland, College Park, MD 20742. perlis@umd.edu

(A) (B) (C)

(D) (E)

Fig. 1. Sample results from KITTI Odometry. A: Sample source image. B:
Sample target image. C: DeepEfference output reconstruction of the source
image in A using pixel intensity values sampled from the target image in
B. D and E: Source and target images with marked correspondence points
computed by DeepEfference.

problem with the system’s actuators. For the latter, the same
expectation violation might mean that the soda can moved
independently (e.g., was blown by the wind or kicked by
a passerby) and subsequently, would be a poor choice as a
landmark for visual dead-reckoning1.

We argue that biological mechanisms supporting visual
constancy contain a rich, egocentric representation of the
environment and with appropriate models and computational
architectures, these representations can be extracted to enable
enhanced robotic visual navigation and localization (e.g.,
dead-reckoning). Humans maintain perceptual stability and
visual constancy despite the 3-4 saccades the human eyeball
undergoes per second. While the shift in the projection
of the visual world on the retina elicited by a saccade is
identical to the shift that alternatively would be elicited by
a quick, external shift of the visual world, humans are able
to perceptually distinguish between the two conditions and
perceive a stable world in the first, and a moving world in
the second.

The apparent conundrums of human visual positional
constancy can be resolved when considering humans as

1While the immediate focus of this paper is on sensorimotor modeling
and prediction in the visual domain, this work is situated within a broader
class of issues including that of how an agent can respond appropriately
to anomalies in a complex world (see [5], [6] for Mauthner Cell anomaly
detectors in teleost fish; [7], [8] for EC in the auditory domain for human-
robot interaction; [9]–[11] for independent motion detection).
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complex, embodied agents with access to information from
multiple overlapping sensory modalities including vision,
audition, proprioception, ‘thought perception’ [12], [13],
and intentional/motor information [7], [14], [15]. For ex-
ample, Efference Copy (EC) [14] and the closely related
Corollary Discharge (CD) [15] neural theories have long
been implicated in the brain’s ability to maintain visual
positional constancy trans-saccadically. EC and CD posit that
early sensory centers access extra-modal information about
intended actions to influence subsequent sensory processing
by priming early sensory centers with a prior on expected
incoming sensory signals.

We drew inspiration from the theories of EC and CD
in developing a computational solution to robotic visual
localization. Similar to how EC can be used by biological
systems to estimate expected sensory information, robotic
systems often have access to information with which they
can glean an estimate of ego-motion from a separate, non-
visual modality. If intelligently integrated, this extra-visual
estimate can serve as a prior on expected post-movement
visual perceptions and improve visual motion estimates.

Paralleling the biological theory of EC where visual pro-
cessing centers receive motion/intention-related information
to aid in sensory processing, we have designed DeepEf-
ference as an unsupervised, feed-forward, heterogeneous,
deep network that computes dense correspondence [1] and
performs next-frame prediction at over 500 Hz.

Critical to achieving this update rate, DeepEfference uses
monocular images and only processes the source image
from each pair. The network learns (x,y) pixel locations of
where to sample in the target image to best reconstruct the
source image. This translates to learning which pixels in the
source image best correspond to the target image, and thus, a
correspondence mapping between source and target images.

The remainder of the paper is organized as follows:
Section II describes the motivations for this work; Section III
outlines the DeepEfference network architecture; Section IV
describes the datasets and experiments used for validation;
Section V discusses results from the validation experiments;
and Section VI offers concluding thoughts and directions for
future work.

II. BACKGROUND
A. Deep Approaches to Spatial Transformation Encoding
and Learning

Learning spatial transformations and relationships between
successive images has been a topic of great interest both
in computer vision and robotics and deep, bio-inspired,
solutions have already begun to show promise for the
correspondence problem (see [1] for a review of the cor-
respondence problem). In computer vision, multiplicative
interactions have been used to great success for relationship
learning between images [16]–[21]. However, both the initial
and transformed image are required as inputs and there
is no readily-available means to provide the model extra
information from another modality as a motion prior. Both
points (but in particular the latter) have implications for

the correspondence problem and image relationships for
robotics.

These and other deep approaches [4], [22] to spatial trans-
formation encoding rely on siamese-like networks where
both source and target images are available and computed on.
If we want to deploy deep approaches on SWaP-constrained
systems, networks require significant size reductions.

B. Extra-Visual Motion Estimates

For any two visual measurements taken successively,
robots often have an independent measurement of self-
motion between those two images. These measurements
could come from IMUs, GPS, LIDAR, ultrasonic ranging
sensor, or input motor commands. When estimating motion
based on the movement of feature points on the visual
imaging plane, additional non-visual motion estimates could
be used as a prior for estimating camera motion. Similar in
spirit to this work is [23] where heteroscedastic models were
learned for independent motion detection for an actuated
camera. However, camera motions were limited to pure
rotations, which are not affected by varying depths within
a scene. Additionally, [23] was constrained to use Gaussian
process models and was not end-to-end trainable.

III. APPROACH

DeepEfference is an unsupervised, deep heterogeneous
neural network that learns to predict how source images cor-
respond to unseen (i.e., unprocessed) target images. Rather
than learning how to transform each pixel (e.g., via a fully-
connected layer), we employ a trainable 2D spatial trans-
former to impose a global estimate of image motion. Inspired
by the Landmark Theory of visual positional constancy [24],
DeepEfference carries only a sparse gist of the previous
visual scene forward and instead uses the currently perceived
image from which to sample.

As shown in Fig. 2, DeepEfference has two interconnected
pathways: one for determining the global 2x3 affine 2D
transformation matrix, and a second encoder-decoder path-
way that predicts local, pixel-level shifts to be applied to
the affine-transformed image. The network does not generate
images from scratch, but rather learns how to sample from a
target image to recreate the initial image. Given a source
image and an estimated transform, DeepEfference learns
coordinates (x, y) at which to sample in a target image to
reconstruct the source image. The result is a correspondence
map between pixel locations in the source image and pixels
in the target image (see Fig. 1 for example learned corre-
spondences).

A. Training and Loss Rule

DeepEfference is trained to minimize reconstruction errors
between a given source image and a reconstruction of that
source image generated by selectively sampling from a target
image. We compute Euclidean error and use it to train the
network via backpropagation. DeepEfference is trained by
minimizing the following loss function:
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Fig. 2. DeepEfference network diagram showing the linked global and local learners

L(θ, It, Is) = argmin
θ
‖Ir(θ, It)− Is‖2 (1)

where Ir is an image reconstruction, It is the image target,
and Is is the image source being reconstructed.

B. Pathway 1: Local, Pixel-Level Shifter

DeepEfference’s first pathway provides localized, object-
level shift information. We implemented this pathway as
a convolutional-deconvolutional encoder-decoder. The en-
coder compresses the source image through a series of
convolutional filtering operations and the decoder generates
magnitudes of pixel shifts by expanding the compressed
convolutional outputs using deconvolutions2. We used five
convolutional layers followed by five deconvolutional layers.
All convolutional and deconvolutional layers used filters of
size 3, pad of 1, and stride of 2. The first convolutional
layer outputted 32 feature maps and the number of output
maps doubled for each subsequent convolutional layer with
the fifth and final convolutional layer outputting 512 feature
maps. The output sizes of the generative deconvolutional
layers were arranged oppositely with the first layer outputting
512 maps and the final layer outputting 32 maps.

The local, pixel-level shifts of DeepEfference are similar to
mappings learned by the recent view synthesis method [25]
that has been used to render new, unseen views of objects and
scenes. Besides different network structures and inclusion of
a global spatial transformer module, the largest difference
between their method and our own is that rather than learning
to generate novel viewpoints of objects or scenes, we learn

2We use the term ’deconvolution’ as is common in the deep learning
literature but the operation we use is more properly referred to as a
transposed convolution

how to reconstruct a source image using pixel locations in a
target image.

C. Pathway 2: Global Spatial Transformer

While the output of the first encoder/decoder pathway
provides estimates of localized, pixel-level movement to
account for depth, non-rigidity, etc., the second spatial trans-
former (ST) pathway provides an estimate of the global
transformation between source and target images.

ST modules [26] enable parametrized geometric transfor-
mations to be applied to inputs or intermediate feature-maps
in deep networks. While the parameters for the geometric
transformation can either be learned or provided to the
network as an input, we provided the network with an
estimate of the true 3D transformation between source and
target images (δx, δy, δz, δα, δβ, δγ) and used four fully-
connected layers (each followed by a rectified linear unit
(ReLU) [27]) to approximate the true linear 3D warp matrix
as a 2D affine transformation.

However, the failure of a 2D ST-only approach is seen
with translational camera movements in scenes with varying
depth. Following a camera translation, the new location of
an object in the image frame will depend on its distance
from the camera: objects that are closer to the camera exhibit
greater displacements on the imaging plane compared to
objects further from the camera. A purely 2D affine trans-
formation in the absence of depth cannot accurately warp
an image with varied scene depths and thus the localization
pathway can at best learn parameters that correspond to a
dominant plane of a fixed depth.

As we show, ST modules can be used to efficiently embed
action or motor information in a standard deep network
that may then be trained end-to-end with back-propagation.
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These motor-related signals can be derived from high-level
actions, referent signals to PID controllers, GPS, or IMU
measurements.

We implemented an ST module in Caffe [28] using Nvidia
CUDA Deep Neural Network library (cuDNN) primitives.
We created two layers, one to perform the affine transfor-
mation and output target coordinates and a second layer
that performs the bilinear sampling given coordinates and an
image. Three fully connected layers take the input estimate
3D camera pose transformation and generate a 2x3 2D affine
transformation matrix for the spatial transformer module.
Although the sampling component of our ST module takes
an input image as input, no learnable parameters are based on
image content and thus our global pathway is a function only
of the input transformation estimate and is image content-
independent.

IV. EXPERIMENTS

We primarily experimented with two different network
architectures. The first architecture, LightEfference, only
used the first global pathway. The second architecture,
DeepEfference, implemented both the global pathway and
the local pathway. LightEfference and DeepEfference were
evaluated on the SceneNet RGB-D [2] and KITTI Odometry
[3] datasets and compared against correspondence matching
results from the SOA DeepMatching approach [4].

We also experimented with a third architecture that only
used the local pathway. However, networks trained with this
architecture failed to converge or decrease network loss (see
Section VI for additional discussion on this point).

SceneNet RGB-D [2] is a dataset of 5 million photo-
realistically rendered images from a dynamically moving
camera in a total of 15 different scenes. Images in SceneNet
are rendered at 1 Hz and groundtruth camera pose and
depth are provided at each camera exposure. All objects in
the visual scenes are rigid, thus fulfilling the static scene
assumption and allowing for ground truth to be computed
from scene depth and camera position (described in Section
IV-A).

The KITTI Visual Odometry dataset [3] is a benchmark
dataset for the evaluation of visual odometry and LIDAR-
based navigation algorithms. Images in KITTI were captured
at 10 Hz from a Volkswagen Passat B6 as it traversed city,
residential, road, and campus environments. Groundtruth
poses at each camera exposure are provided by an RTK GPS
solution and depth is provided with coincident data from a
Velodyne laser scanner. Groundtruth pixel projections were
calculated just as for SceneNet.

A. Experimental Methods

For SceneNet and KITTI, data was separated into train
(80%) and test (20%) sets. For SceneNet RGB-D, we used a
total of 44, 850 image pairs with 80% (35, 880) for training
and 20% (8, 970) for testing. For KITTI, we used a total
of 23, 190 image pairs with 80% (18, 552) for training and
20% (4, 638) for testing. In all experiments, we randomly
selected an image for the source, used the successive image

for the target, and subtracted the two 6-DOF camera poses
for the transform input. For each image in each dataset, we
cropped the middle 224x224 pixel region for network inputs.

Predicted pixel correspondences between source and target
images were evaluated against groundtruth correspondence
and SOA DeepMatching correspondence predictions. With
access to scene depth and true camera pose for both KITTI
and SceneNet, groundtruth pixel shifts were calculated by
applying a 3D warp to 3D pixel locations in the source
images to generate the expected pixel locations in the tar-
get images. We projected each 3D point in the frame of
camerat0 to the world frame using the derived projection
matrix for camerat0 and then reprojected these points in
the world frame to camerat1 using the inverse projection
matrix for camerat1. Finally, we transformed points in the
frame of camerat1 to the image plane. This resulted in a
correspondence map between pixel locations in camerat0
and camerat1 for each point where depth was available
(e.g., where ray tracing did not go to infinity in the case
of SceneNet or depth was outside of the Velodyne laser
scanner’s range for KITTI).

We evaluated DeepEfference and LightEfference using
keypoints generated using the feature points detected by
DeepMatching and from the accelerated segment test (FAST)
feature detector [29]. For each type of feature, we mea-
sured how the keypoints detected in the source images
were projected into the target images. The projection errors
were compared to groundtruth projections and were used to
determine mean pixel errors for each method.

We trained DeepEfference and LightEfference for 500, 000
iterations on KITTI Odometry scenes 1−11 and a subset of
SceneNet RGBD (10 randomly selected trajectories of 300
image pairs for each of the 15 different scene types). We
used the Adam solver with batch size=32, momentum=0.9,
momentum=0.99, gamma=0.5, and a step learning rate policy
of 100, 000 for all experiments. We used a Euclidean loss rule
to train all networks. All experiments were performed with a
Nvidia Titan X GPU and the Caffe deep learning framework
[28].

V. RESULTS

Tab. V details the comparative runtimes between Deep-
Matching, LightEfference, and DeepEfference3. Fig. 3 and
Tab. II detail the predictive error for LightEfference, Deep-
Efference, and DeepMatching on the KITTI Odometry and
SceneNet RGBD datasets. Using keypoints generated by
DeepMatching on KITTI, DeepEfference shows a 1,100%
performance increase in mean pixel error over LightEffer-
ence (significant with t(2.94e5) = 60.01, p < 1e−5)4

3We used a CPU version of DeepMatching for these comparisons. The
latest available version of the GPU implementation of DeepMatching took
over 7 seconds per image to run on our workstation on a 256x256 image
so we elected to use the faster CPU version for all experiments

4The distributions of pixel errors appeared non-uniform but as we had
greater than 200,000 samples to test in each condition, we elected to include
t-test analysis. We used Welch’s t-test where the degrees of freedom are
approximated by Satterthwaite’s method.

314



Fig. 3. Pixel error boxplots for DM, LE, and DE using DM and FAST keypoints. Y-axis is actual mean pixel error. Middle lines are the medians and
whiskers indicate 1.5 interquartile of the lower and upper quartiles. Note outliers are not shown for clarity and instead minimum and maximums are
presented in the table below.

while DeepMatching showed a 12% increase over DeepEf-
ference (significant with t(5.33e5) = 31.33, p < 1e−5).
When using FAST keypoints, DeepEfference outperformed
LightEfference by 1,200% on KITTI odometry (significant
with t(6.18e5) = 87.87, p < 1e−5). However, in runtime
performance, LightEfference was 447% faster than DeepEf-
ference, and DeepEfference was over 23,000% faster than
DeepMatching.

TABLE I
AVERAGE RUNTIMES FOR DM, LE, AND DE

Mean StDev. Med. FPS
DM 0.35225 sec. 0.0094525 sec. 0.351561 2.8
LE 0.000332 sec. 2.95788e-05 sec. 0.000318 3012
DE 0.0014864 sec. 2.03606e-05 sec. 0.00148484 672

TABLE II
PIXEL ERRORS FOR DM, LE, AND DE ON KITTI AND SCENENET

KITTI DeepMatching Keypoints
Mean StDev. Med. Min Max

DeepMatching 2.1 2.6 1.6 0.0 187.1
LightEfference 29.2 242.3 2.2 0.0 4661.4
DeepEfference 2.3 3.7 1.7 0.0 268.2

KITTI FAST Keypoints
Mean StDev. Med. Min Max

LightEfference 31.6 261.3 2.0 0.0 4791.2
DeepEfference 2.4 3.7 1.7 0.0 251.3

SN DeepMatching Keypoints
Mean StDev. Med. Min Max

DeepMatching 3.3 16.2 1.3 0.0 2620.9
LightEfference 12.9 19.8 7.8 0.0 2596.1
DeepEfference 11.5 19.2 5.9 0.0 2691.8

SN FAST Keypoints
Mean StDev. Med. Min Max

LightEfference 14.8 28.1 8.0 0.0 2957.8
DeepEfference 13.1 26.2 5.9 0.0 3055.4

The performance gap between LightEfference and Deep-
Efference narrowed on the SceneNet dataset. DeepEffer-
ence outperformed LightEfference by 11% (significant with
t(2.78e6) = 58.65, p < 1e−5) and was outperformed

by DeepMatching by 240% (significant with t(2.70e6) =
382.56, p < 1e−5) using DeepMatching generated key-
points. With FAST keypoints, DeepEfference performed only
13% better than LightEfference (significant with t(4.76e6) =
68.64, p < 1e−5).

The performance differences between DeepEfference and
DeepMatching may be influenced by the differences in move-
ment statistics between the SceneNet and KITTI datasets.
For SceneNet, rotational speeds5 (in deg/s) were typi-
cally much larger (mean=5.14, std=9.82, median=2.843,
min=0.039, max=177.84) while translational speeds (in
m/s) were smaller (mean=0.16, std=0.091, median=0.14,
min=0.003, max=0.66). Motions in KITTI followed re-
versed distributions where rotational speeds (in deg/s)
were typically small (mean=0.997, std=6.65, median=0.086,
min=0.0001, max=85.72) while translational speeds (in
m/s) were much larger (mean=9.22, std=4.20, median=9.04,
min=0.005, max=26.41). The larger variety of movements
in SceneNet may have proved too difficult for the current
version of DeepEfference to learn a consistent motion model.
Future work will include experiments on deeper versions of
DeepEfference.

The similar performance of LightEfference and DeepEf-
ference on SceneNet may have been influenced by the depth
of objects in the dataset. Image scenes in KITTI had both
larger and more varied depths (mean=12.97, std=10.005,
median=9.46, min=5.00, max=79.99) compared to SceneNet
(mean=3.92, std=2.45, median=3.40, min=0.00, max=19.99).
This might explain why LightEfference’s average pixel pre-
diction error was within 11-13% of DeepEfference as errors
from translations of objects at different depths would have
been smaller. For example, the green boxes in Fig. 4 highlight
an unusual instance in SceneNet where LightEfference was
unable to rectify the depth differences between the fore-
ground features and background features.

The poorer performance of DeepEfference and LightEf-
ference on SceneNet may also be due to shifts between

5SceneNet only contains renders of 1 in every 25 frames so these
quantities are based on the differences in positions between successively
rendered frames
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successive images resulting in objects in the source image
no longer being present in the target image. In SceneNet,
transformations between successive camera frames often
resulted in occlusions of large areas of the field of view
which may have led DeepEfference and LightEfference to
incorrectly sample from the target images.

We were surprised by the large performance difference
between DeepEfference and LightEfference on the KITTI
dataset. As LightEfference is comprised completely of fully-
connected layers and neither network uses dropout, one pos-
sibility is that LightEfference overfit to the training dataset.
This is unlikely as DeepEfference’s training Euclidean loss
on KITTI was ≈50 at 500, 000 training iterations while
LightEfference’s loss was ≈5x larger at ≈250. This sug-
gests that LightEfference was also performing poorly on the
training data and thus most likely not overfitting.

A second possibility is that the large range of depths in
scenes in KITTI prevented the limited, 2D-only transfor-
mations of LightEfference from learning a single coherent
transformation model. This possisibility is supported by the
large number of outliers produced by LightEfference which
suggests that LightEfference was unable to successfully
process the full range of input transforms. For DeepEf-
ference, the mean pixel error percentile scores at 5, 10,
25 and 99 were percentile(5) = 0.45, percentile(25) =
1.07, percentile(50) = 1.74, and percentile(99) = 11.69
while for LightEfference, they were percentile(5) = 0.51,
percentile(25) = 1.22, percentile(50) = 2.21, and
percentile(99) = 1109.48. While LightEfference has higher
error scores across percentiles, it is the percentile score at
99 that demonstrate its large number of high error outliers
which cause its mean pixel error to be an order of magnitude
greater than DeepMatching and DeepEfference.

VI. DISCUSSION

We have shown that providing a network with heteroge-
neous inputs and combining a parametrized global transfor-
mation pathway with a pixel-level, local pathway allows for
far more computationally efficient predictions with minimal
degradation in predictive performance.

Agents must understand which elements in the environ-
ment their actions do and not not have the power to affect.
A potentially powerful future use for DeepEfference lies in
teaching systems what they can and cannot interact with.
While deep learning approaches have traditionally been lim-
ited in their applications due to their need for large, annotated
training sets, DeepEfference’s ability to learn without super-
vision can allow for robots to learn meaningful sensorimotor
relationships via bootstrapping simply by operating in an
environment.

While the aim of DeepEfference is to generate correspon-
dences between pixels in the source image and pixels in
the target image, an unintended side-effect of the predictive
training is the generation of image areas where there is no
actual overlap between source and target images. Several
of these cases are shown in Fig. 4. In first row of Fig. 4,
DeepEfference learned to sample from different areas in the

target image to imagine what the front of the van looked
like despite it not being present in the target image. The
same can be seen in the second row where DeepEfference
imagines what the left-side of the house looked like.

Performance of the dual-pathway DeepEfference architec-
ture surpassed the global-pathway-only LightEfference archi-
tecture in all experimental conditions. As mentioned briefly,
we also attempted to use a local-pathway-only architecture
but networks trained with this local-only architecture failed
to converge. Additional work is needed to determine why
these networks failed to learn but we suspect that it is due
to the fully-connected layers attempting to learn a complex
pixel-level transform beyond their capacity.

Currently, the actual displacement between the camera at
the time of each frame are used as transform inputs to Deep-
Efference. One possible source for this information in real-
world robotic applications is from IMUs. However, constant
velocity motions may prove difficult for DeepEfference if the
expected transforms are being generated from IMU signals.
In these cases, it may instead be possible to use a motor
command as a surrogate transform signal, but this has yet to
be investigated.

Finally, the transform estimates fed to DeepEfference are
computed from ground-truth camera poses and do not exhibit
noise characteristics that will most likely be found in real-
world applications where we will rarely, if ever, have access
to a comparably clean extra-visual motion measurement. One
possibility for overcoming measurement noise is to expand
DeepEfference to produce n image reconstruction predictions
and include an additional decision node that chooses the
best reconstruction. DeepEfference’s runtime could allow for
many possible reconstructions to be generated similar to
learning and sampling from a noise distribution.
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