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Abstract— Estimating the correspondences between pixels in
sequences of images is a critical first step for a myriad of
tasks including vision-aided navigation (e.g., visual odometry
(VO), visual-inertial odometry (VIO), and visual simultaneous
localization and mapping (VSLAM)) and anomaly detection. We
introduce a new unsupervised deep neural network architecture
called the Visual Inertial Flow (VIFlow) network and demon-
strate image correspondence and optical flow estimation by
an unsupervised multi-hypothesis deep neural network receiv-
ing grayscale imagery and extra-visual inertial measurements.
VIFlow learns to combine heterogeneous sensor streams and
sample from an unknown, un-parametrized noise distribution
to generate several (4 or 8 in this work) probable hypotheses
on the pixel-level correspondence mappings between a source
image and a target image. We quantitatively benchmark VIFlow
against several leading vision-only dense correspondence and
flow methods and show a substantial decrease in runtime and
increase in efficiency compared to all methods with similar
performance to state-of-the-art (SOA) dense correspondence
matching approaches. We also present qualitative results show-
ing how VIFlow can be used for detecting anomalous indepen-
dent motion.

I. INTRODUCTION

State estimation for size, weight, power, and computation
(SWaP-C) constrained robotic systems is limited by the
lightweight and low-power sensing and computational hard-
ware that they are forced to use. When viewed as complex,
embodied agents, robotic systems can generate and access
a wide variety of varied sensory information, and as such,
a popular approach to mitigating the negative influences of
noisy SWaP-C constrained sensors is to fuse estimates from
an array of heterogeneous sensors deployed on the robot.

SWaP-C constrained GPS-denied navigation has been
greatly influenced by this philosophy of sensor fusion and
approaches in visual-inertial odometry (VIO), where a sensor
array will commonly consist of a camera and an inertial mea-
surement unit (IMU), have been particularly successful for
GPS-denied SWaP-C constrained localization and navigation.

Such vision-aided approaches to localization generally
require finding a correspondence mapping between scene
elements in sequential image frames. To-date, solutions to
the correspondence problem (see [3] for a review) remain
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(a) Source (b) GT flow (c) VIFlow (d) Flownet2

Fig. 1: Sample KITTI [1] visual flow. The source image,
ground-truth flow, flow from our VIFlow, and flow from
Flownet2 [2] are shown.

dominated by bottom-up, vision-only approaches that neglect
other available sources of complementary information.

We propose to fully exploit the embodied nature of robotic
systems and begin fusing heterogeneous sensor measure-
ments as early as possible by learning a multi-hypothesis
feed-forward model that receives heterogeneous information
and estimates dense image correspondences and flow so as to
avoid the computationally heavy direct image matching and
subsequent optimization and outlier rejection of most current
approaches (see Section II for more detail).

The main contribution of this paper is an end-to-end
trainable, unsupervised deep neural network architecture that:

1) Learns to estimate dense visual correspondence/flow
using extra-visual sensory information

2) Runs substantially faster and more efficiently than
state-of-the-art (SOA), vision-only approaches

3) Requires no a priori calibration or information about
sensor streams

4) Learns to estimate anomalous independent motion
5) Only requires information freely available on-board a

robotic system for training.

The remainder of the paper is organized as follows:
Section II presents related work; Section III outlines our deep
network approach to fusing noisy heterogeneous sensory
inputs and describes the network architecture; Section IV
describes our experimental approach; Section V describes
our evaluation procedures; Section VI presents and discusses
our experimental results; and Section VII offers concluding
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thoughts, limitations, and directions for future work.

II. RELATED WORK

A. Visual Correspondence

The correspondence problem can be viewed as part of
the more general problem of determining how images re-
late to one another. While the correspondence problem has
been traditionally addressed through closed-form, analytical
approaches (for example Deformable Pyramid Matching [4];
see [3] for a review of the correspondence problem), recent
bio-inspired, deep neural network approaches that estimate
the 3D spatial transformations between image pairs have
begun to show increasing success.

Unsupervised, siamese-like deep network architectures
such as those based on multiplicative interactions [5]–[11]
and triplet learning rules [12] have been used successfully
for relationship learning between RGB images at the cost of
computational runtime. These architectures require expensive
computations to be performed on both source and target
images which can greatly increase model complexities due
to the high-dimensional nature of image data.

Other learning approaches have relied on explicit super-
vised labeling such as the random decision forest based ap-
proaches of [13]–[15] and semantic segmentation approaches
of [16], [17]. These supervised approaches require expensive
and time-consuming labeling that ultimately limits the size
of useable datasets. The self-supervised visual descriptor
approach of [18] used a learning rule that requires a priori
labeling such that points in the source image (image at ti) and
target image (image at ti+1) already be aligned and thus, for
correspondence to have already been solved for the training
set. Our approach is instead unsupervised and requires only
raw image and IMU data (and intentional information, when
available) for training.

B. Optical Flow

Estimating optical flow is very similar to estimating corre-
spondence. Usually, approaches to dense, large displacement
optical flow require first estimating correspondences between
images and then performing some type of variational joint
energy-based optimization that includes assumptions for lo-
cal smoothness [19]. Data-driven correspondence matching
[20], [21] leave many outliers as the closest visual match
between corresponding pixels in two images is not the
same as the optical flow. In other words, correspondences
for neighboring pixels can be quite noisy and show large
discontinuities. SOA approaches such as EpicFlow [22], for
example, apply such a methodology: first finding correspon-
dences between images using [23], and then computing dense
optical flow. However, there are a number of other learning-
based systems such as [2], [22], [24] that instead learn end-
to-end models of optical flow from raw image inputs but still
require extensive computation (see the last column of Table
I for runtimes). Other approaches such as [25] take optical
flow as an input for egomotion estimation (VIFlow could be
used to generate this flow).

C. View Synthesis

The view synthesis approach of [26] learned local, pixel-
level shifts in order to render new, unseen views of objects
and scenes. That approach is similar to the mappings that
are learned by the second pathway of our DE architectures.
Besides different network structures and inclusion of a global
spatial transformer module, the largest difference between
their method and our own is that rather than learning to
generate novel viewpoints of objects or scenes, we learn how
to reconstruct a source image using pixel locations in a target
image in order to compute estimates of correspondence and
flow.

D. Depth and Parallax

While [27] used depth data as input to their network, we
do not provide VIFlow with depth. This is critical because
given the 3D locations of points in the image scene, a 3D
affine transformation can be directly performed to project
points on the image plane at time ti to some time ti+1. As
VIFlow is designed for SWaP-constrained applications where
only intensity information from a single imager might be
available, our VIFlow network is input with only a single
grayscale intensity image and uses its local pathway (see
Section III and [28], [29] for more information) to infer depth
and non-rigidity from a single 2D grayscale image (unlike the
approaches of [30]–[36] which all use color imagery which
better enables explicit depth learning and [27] which directly
receives depth data and is additionally not trained based on
sampled image reconstructive loss).

E. Anamalous Independent Motion

For vision-aided egomotion estimation, independent mo-
tion sources in the visual scene introduce error to optical-flow
derived estimates of egomotion. A number of approaches
to independent motion detection take dense optical flow as
an input [37]–[40]. The approach described in this paper
could be used to estimate the flow that is fed into these
independent motion detection algorithms or VIFlow could
be augmented to directly separate ego-motion induced flow
from flow induced by independently moving scene elements
(see Section VI-B for more on VIFlow in this role).

III. APPROACH

Previous approaches have used ground-truth pose differ-
ence and ground-truth pose differences contaminated with
heteroscedastic noise to show how an unsupervised network
can learn to estimate a true 3D pose change with a global 2D
affine transform plus localized, pixel-level coordinate shifts
[28], [29].

In contrast to [28], [29], here we present results from
experiments where networks were instead provided with raw
sensor data in the form of a single grayscale image and IMU
measurements. Additionally, we experimented with networks
that also received intentional information in the form of a
surrogate feed-forward motor signal (SFFMS) in place of an
actual motor command as the benchmark datasets we used,
KITTI [1] and EuRoC [41], do not provide motor commands.
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Fig. 2: Network diagram with two hypotheses shown for brevity. We experimented with up to 8 hypothesis pathways.

For IMU data, traditional fusion approaches assume a
priori sensor and dynamics models with known intrin-
sic/extrinsic calibration parameters. Similarly, while inten-
tional information may come from joysticked motor com-
mands or command velocities freely available on a robotic
system, traditional closed-form solutions to estimating the
change in perception induced by commanded motion re-
quires hand-crafted system models that relate motor inputs to
changes in self-measured sensory perceptions. Contrastingly,
our VIFlow network requires no explicitly defined forward
model for motor commands affect sensory perceptions or
IMU models and calibration parameters. Instead, VIFlow
side-steps the need for hand-crafted modeling and learns how
to combine heterogeneous inputs directly from the data.

VIFlow is designed to compute estimates for visuo-inertial
flow and correspondence. It receives as input a single
grayscale intensity image Ii taken at time ti and an extra-
visual estimate of camera motion Mi→i+1 between time ti
and time ti+1. The goal for the network is to use the motion
estimates Mi→i+1 and the grayscale image Ii to predict
the new image coordinate in Ii+1 for each scene element
captured in Ii. In other words, VIFlow learns to estimate the
correspondence between pixels in images Ii and Ii+1.

The network architecture can be thought of as an extension
of an autoencoder. However, rather than learning features by
minimizing the reconstruction error between an input pro-
jected into feature-space and then re-projected into an output-
space, VIFlow is trained by minimizing the reconstruction
error between an input and and a reconstruction based on
sampled values from a previously unseen target image Ii+1.

Similar to the network in [29], VIFlow learns to gen-
erate several hypothesis reconstructions along a series of
parallel pathways. These hypothetical reconstructions enable
increased robustness to noisy inputs. To sample, VIFlow
effectively is trained to draw from an unknown noise distri-
bution using what we call a winner-take-all (WTA) Euclidean

loss rule.

A. Winner-Take-All (WTA) Loss Rule

To utilize its the multiple hypothesis outputs, a WTA Eu-
clidean loss rule (see [29] for more detail and justifications)
is used to train VIFlow:

I∗r (θ, It)←− argmin
i
‖Iir(θ, It)− Is‖2 (1)

L(θ, It, Is) = ‖I∗r (θ, It)− Is‖2 (2)

where I∗r is the lowest error hypothesis. Loss is then only
computed for this one hypothesis and error is backpropagated
only to parameters in that one pathway. Thus, only param-
eters that contributed to the winning hypothesis are updated
and the remaining parameters are left untouched. While it
may seem like such a loss rule may lead the network to only
optimize a single pathway, in practice this was not the case
and VIFlow networks continued to use multiple pathways
throughout training and testing.

B. Pathway 1: Global Shifter

The first pathway of VIFlow (the top pathway shown in
Fig. 2) is the Global Shifter. Given a motion estimate (e.g.
IMU data), it uses several fully-connected (FC) layers to
approximate a 3D transformation as a 2D transformation by
learning to compute the parameters for a 2D affine trans-
formation matrix. The Global Shifter then applies this 2D
affine transformation to generate expected coordinate shifts
in the form of a HxWx2 grid that represents pixel locations
at which to sample from in the target image (additional detail
in Section III-D below).

C. Pathway 2: Local, Pixel-Level Shifter

The second pathway of VIFlow (the bottom pathway
shown in Fig. 2) is the Local Shifter pathway. It re-
ceives a source image as input and uses a convolutional-
deconvolutional encoder-decoder to also generate a HxWx2



output of pixel shifts. However, these shifts are intended to
only modify the coordinate shifts calculated by the Global
Shifter pathway for instances where the true motion of a
scene element cannot be calculated using a single global 2D
transform (e.g., for varied scene depths at pixels that differ
from the dominant scene depth implicitly assumed by the 2D
Global Shifter).

D. Spatial Transformations

Spatial transformation in the form of a modified spatial
transformer module [42] is an integral component of the
VIFlow network architecture and an explanation helps to
elucidate the workings of VIFlow. To perform a spatial
transformation, we assume that output pixels are defined to
lie on a regular grid G = {Gj} of pixels Gj = (xtj , y

t
j),

forming an output feature map V ∈ <H
′
×W

′

where H’ and
W’ are the height and width of the grid. If we let A(θ,Gj)
represent a 2D affine transformation, then target coordinates
are mapped to source coordinates according to

(
xsj
ysj

)
= A(θ,Gj) =

[
θ11 θ12 θ13
θ21 θ22 θ23

] xtj
ytj
1

 (3)

where (xti, y
t
i) are target coordinates in the output feature

map, (xsi , y
s
i ) are the source coordinates in the input feature

map, and θ is the 2D affine transformation matrix.
VIFlow’s Global Shifter pathway learns how to compute

the matrix θ for a motion estimate Mi→i+1 and then ap-
plies the transform to generate global coordinate estimates
[Xglobal, Yglobal, 1]

T .
If all pixels are of the same depth, then the Global Shifter

pathway would be able to accurately project pixels to their
correct positions post-movement. However, because this is
not the case, the best result the Global Shifter can accomplish
is the correct projection of points that belong to some dom-
inant plane. The Local Shifter is able to apply corrections
to the coordinate changes computed by the Global Shifter to
allow for differing object depths in a scene and non-rigidity.

Given a source image Ii, VIFlow’s Local Shifter path-
way learns to compute [Xlocal, Ylocal, 1]

T which are lo-
calized shifts to be summed with the global shifts
[Xglobal, Yglobal, 1]

T computed by the Global Pathway. Thus,
VIFlow generates its final coordinate locations as

[Xshift, Yshift, 1]
T = [Xglobal+Xlocal, Yglobal+Ylocal, 1]

T

(4)
and then performs bilinear sampling to produce a recon-
struction image Ir by sampling an unseen image Ii+1 at
coordinates (x, y) ∈ [Xshift, Yshift].

IV. METHODS

We designed networks with motion information taken from
the following sources:

1) Raw Measurements from an Inertial Measurement
Unit (IMU): The IMU data recorded between capture

(a) EuRoC (b) KITTI

Fig. 3: Histogram of error between the ground truth and K-
Means cluster to which that exemplar was assigned. Note
that error in EuRoC is heavier tailed compared to error in
KITTI, indicative of larger variance in the motion transforms
in EuRoC.

times for the source and target images were input to
the network as the extra-visual motion transform.

2) Surrogate Feed-forward Motor Signals (SFFMS):
Because direct motor-command inputs were not avail-
able, a K-Means fitting of clusters was used on the
ground truth position differences to generate noisy
estimates of the approximate direction of motion (see
Fig. 3 for the associated error). We evaluated networks
with these inputs and present results to show how a
higher-level signal that encodes intentional information
(even if it is noisy) can affect network performance.

3) IMU+SFFMS: IMU and SFFMS data as above were
both input.

A. Datasets and Data Generation

Because we require IMU data as well as ground truth
pixel end points (or a means to calculate ground truth;
see Appendix I), we were limited in our choice of public
datasets. For example, we could not use the Middlebury and
MPI-Sintel visual flow benchmark datasets as they do not
include IMU data.

We thus used the KITTI [1] and EuRoC [41] datasets for
evaluation. For each image in KITTI and EuRoC, we cropped
the middle 224x224 pixel region for inputs to the network.
Details on each dataset and dataset specific data preparation
follow below.

1) EuRoC MAV: EuRoC contains data collected with a
VI-Sensor [43] which captures stereo image data at 20 Hz
and IMU data at 200 Hz.

The total number of usable exemplars Vicon Room sce-
narios was 12, 781 which is significantly smaller than the
KITTI odometry dataset. We thus elected to augment the V01
datasets in EuRoC by including not only pairs of sequential
frames, but pairs separated by up to four frames. This
resulted in 26, 976 total examples, of which 80% (21, 588)
were used for training and 20% (5, 388) were used for
testing.

For the IMU and IMU+SFFMS conditions, because the
lookahead could be anywhere from one to four frames and
thus anywhere between 50ms to 200ms, the IMU inputs for
the EuroC models used a vector of size 50x6 where for all
exemplars regardless of lookahead size, the first 10 entries



correspond to the 50 ms prior to the image capture and the
next 10 entries correspond to the 50ms following capture.
For exemplars that were only one ahead, the remainder
of the vector were zeros. For lookaheads of 2 the last 20
entries were zeros; for lookaheads of three the last 10 were
zeros; and finally for lookaheads of four the vector was fully
populated.

To generate the surrogate SFFMS, we performed K-Means
clustering on the ground truth position differences to generate
20 clusters which were encoded as a one-hot vector.

2) KITTI Odometry: For KITTI, we used sequences 00−
10 excluding sequence 03 because the corresponding raw
file 2011 09 26 drive 0067 was not online at the time of
publication. This resulted in a total of 20, 976 image pairs
for training (pairs of images for which corresponding IMU
data was unavailable or had inconsistent timestamps were ex-
cluded). In all experiments, we randomly selected an image
for the source and used the successive image for the target.
Corresponding 100Hz IMU data was collected from the
KITTI raw datasets and the preceding 100 ms and following
100 ms of IMU data was included for each example yielding
a length 20x6 vector. SSFMS were generated as above.

B. Network Parameters and Training Procedures

For the VIFlow-IMU networks, four FC layers of size 512,
4096, 4096, and 512 were used to generate the 2x3 affine
transformation matrices. For the IMU+FFMS configurations
which had two sources of extra-visual motion estimates as
described above, each extra-visual modality was processed
through four FC layers of 512, 4096, 4096, and 512 before
being concatenated into a vector of length 1024.

The convolutional-deconvolutional encoder-decoder that
composed the Local Shifter pathway used 5x5 convolutional
kernels with a stride of two. The encoder used five layers
of 32, 64, 128, 256, and 512 filters and the decoder was
reversed, using 512, 256, 128, 64, and 32 filters. All results
described in this paper used a Local Shifter pathway with
these parameters.

As shown in Fig. 2, the output of fifth convolutional layer
is concatenated with the last FC layer of the Global Shifter
pathway and was then fed into a single FC layer of size 4096
before being fed into the first deconvolutional decoder layer.

We trained three networks for each condition and dataset
and all results presented are from the highest performing
network for each condition. Networks were trained on a
desktop computer with a 3.00 GHz Intel i7-6950X processor
and Nvidia Titan X GPUs.

V. EVALUATION

Predicted pixel correspondence between source and target
images was evaluated against ground truth correspondence,
correspondence computed by the DeepMatching algorithm
[23], and correspondence computed by the Deformable Spa-
tial Pyramid Matching algorithm (DSP) [4] on the EuRoC
MAV [41] and KITTI SceneFlow 2015 datasets [1].

While VIFlow is most similar to a dense correspondence
network that estimates the nearest matches between pixels

in two images and does not explicitly use regularization on
computed matches, we also evaluated VIFlow against several
deep optical flow networks that are designed to perform
additional regularization and outlier removal: EpicFlow [22],
FlownetC [24], and Flownet2 [2].

It should be emphasized that the approaches we use to
benchmark the VIFlow networks do not receive extra-visual
motion inputs as we were unable to identify an approach in
the literature with our exact input/output domain.

A. Ground Truth

For KITTI, ground-truth optical flow is provided for a
subset of images (SceneFlow 2015) and we used exemplars
from the training set to test our network (of the 200 training
images, only 140 mapped to raw data from which we
could extract IMU data and had IMU data without temporal
discontinuities).

For EuRoC, pixel-level ground-truth is not available and
needed to be calculated as described in Appendix I.

Fig. 4: Sample EuRoc (top row) and KITTI (bottom row)
correspondence results. Note that only every only keypoint
(horizontally and vertically) is shown and the actual, unal-
tered output is fully dense.

VI. RESULTS AND DISCUSSION

A. Correspondence and Flow

Table I presents our results from the various VIFlow net-
works on the KITTI SceneFlow 2015 [1] and EuRoC MAV
[41] datasets compared to FlownetC [24], Flownet2 [2],
EpicFlow [22], DeepMatching [23], DSP [4], and an identity
mapping. The identity mapping results were computed by
assuming a flow of zero and are shown only to provide
perspective on the quantitative results presented in Table I.

The VIFlow networks were the fastest of all the ap-
proaches tested. It should of course be noted that in com-
parison to the other approaches, the VIFlow networks were
the only approaches provided with a motion prior in the
form of IMU data, a SFFMS, or both. We calculate a per-
formance/runtime quotient, which are the ratios of average
end-point error (AEPE) to inverse runtime scaled by 0.01,
and the VIFlow networks generate the best quotients (lower
is better) indicating high efficiency. However, VIFlow was
significantly outperformed in AEPE by the computationally
heavier EpicFlow and Flownet2 networks in all conditions.



TABLE I: Benchmark results for our MHIDE networks compared to FlownetC [24], Flownet2 [2], EpicFlow [22],
DeepMatching [23], and DSP [4] on the KITTI [1] and EuRoC MAV [41] datasets for endpoint error (EPE). The last
columns are calculated runtime/performance quotients for KITTI and EuRoC which are the ratios of AEPE to inverse
runtime scaled by 0.01.

KITTI (EPE) EuRoC (EPE) Runtime Perf./Run. Quotient

Algorithm Hypoths. Dense µ σ Med. µ σ Med. Ms KITTI EuRoC

FlownetC [24] N/A Y 4.00 3.41 3.28 4.75 6.92 2.78 88.7 3.55 4.21
Flownet2 [2] N/A Y 0.52 0.71 0.34 0.6 0.73 0.2 197.2 1.03 1.18
EpicFlow [22] N/A Y 1.86 4.05 0.88 0.55 0.72 0.15 2845.2 52.99 15.65
DeepMatching [23] 1 N/A N 1.76 2.09 1.40 3.87 6.83 2.09 411.5 28.84 15.93
DSP [4] N/A Y 5.11 4.76 3.91 4.37 8.39 1.94 1252 95.3 54.71
Identity N/A N/A 8.46 7.51 7.52 20.63 22.00 13.49 N/A N/A N/A

VIFlow-IMU 1 Y 5.02 6.66 3.05 5.98 5.61 4.39 4.7 0.24 0.28
VIFlow-IMU 4 Y 4.80 6.53 3.11 4.71 4.53 3.38 6 0.29 0.28
VIFlow-IMU 8 Y 4.54 6.51 2.86 3.87 3.77 2.83 8.2 0.37 0.32
VIFlow-SFFMS 1 Y 6.75 8.10 4.14 12.78 11.77 9.71 4.7 0.32 0.6
VIFlow-SFFMS 4 Y 4.20 5.82 2.56 8.12 7.22 5.94 6.1 0.26 0.5
VIFlow-SFFMS 8 Y 3.47 5.49 2.08 6.19 5.58 4.67 8.1 0.28 0.5
VIFlow-IMU + SSFMS 1 Y 3.28 6.15 1.61 5.23 4.83 3.95 5 0.16 0.26
VIFlow-IMU + SSFMS 4 Y 2.98 6.11 1.33 3.82 3.71 2.82 6.4 0.19 0.24
VIFlow-IMU + SSFMS 8 Y 2.91 6.14 1.24 3.29 3.37 2.38 8.5 0.25 0.28

1) VIFlow-IMU: The 8 hypothesis VIFlow-IMU architec-
ture outperformed DSP on KITTI and EuRoC, approximately
equaled the performance of DM on EuRoC, and was outper-
formed by DM on KITTI.

2) VIFlow-SSFMS: Even in the 8 hypothesis case,
VIFlow-SFFMS was outperformed by the correspondence
approaches on EuRoC but managed the opposite on KITTI.
In general, VIFlow-SFFMS networks showed the greatest
performance improvements as a function of hypothesis path-
ways and event eventually surpassed VIFlow-IMU for KITTI
in the 8-hypothesis case. These reults are likely related to the
heavier tailed error distributions for EuRoC seen in Fig. 3
compared to KITTI (σ = 0.031 vs. σ = 0.016) for SSFMS
inputs which suggests that additional motion variability in
EuRoC led to increased noise for the K-Means estimates and
the network was not able to sufficiently learn this distribution
with the number of hypotheses allotted.

The performance difference between KITTI and EuRoC
suggest that their performance is tied to the variability in
the underlying motion being experienced by the respective
vehicles, with the lower-variability KITTI motions allowing
for a better fitting K-Means clustering and the opposite for
EuRoC.

3) VIFlow-IMU+SSFMS: For KITTI, the single hypoth-
esis version of VIFlow-IMU+SSFMS showed a significant
performance increase compared to both VIFlow-IMU and
VIFlow-SSFMS. The combined performance increase of the
IMU+SSFMS networks suggest that the information in the
IMU measurements and SSFMS signals convey complemen-
tary information that enable a joint-reduction in uncertainty.
However, it should again be noted that our SSFMS inputs
were not actual motor signals (see Section VII-A.3 for further
discussion on this limitation).

(a) Source (b) GT (c) Residual

Fig. 5: Sample anomalous independent motion detection.
Notice how model-error induced by distant objects could
potentially be confused for independent motion in the last
row for the VIFlow residuals.

B. Anomaly Detection

VIFlow also holds promise as a visual anomaly detector.
Specifically, as a detector of independent motion that is
inconsistent with global motion both inferred visually (during
training) and the motion priors encoded by the IMU mea-
surements and SFFMS inputs. Fig 1 presents optical flow
renderings alongside ground-truth flow and flow computed
by Flownet2 where Fig 4 shows correspondence matchings
discovered by VIFlow. As expected, the flow learned by the
network is correlated with ego-motion and the network gen-
erally fails to predict large sources of independent motion.

The images shown in Fig. 5 are the residuals between the
reconstructed VIFlow source outputs and the original source
images (e.g. ‖Ir(θ, Ii+1)−Ii‖). As the network is trained to

1Evaluated only at sparse DM keypoints (average of 676 and 565
keypoints on KITTI and EuRoC test sets, respectively)



use a motion prior to help calculate visual transformations
and scene flow, it is biased toward global motions and
implicitly outputs mappings that correspond to ego-motion.
Thus, as seen in Fig. 5, areas of high residual magnitude
can correspond to regions containing independently moving
scene elements (see Section VII-A.2 for a discussion of what
else this may correspond to).

VII. CONCLUSIONS AND FUTURE WORK

On the EuRoC MAV dataset [41] and on the KITTI Scene-
Flow 2015 dataset [1], we have shown how an unsupervised
deep network can learn to efficiently estimate visual flow
from inertial measurements. The resulting runtimes for our
networks are substantially faster than other SOA vision-only
matching and flow algorithms with similar performance (in
the case of EuRoC) to deep matching approaches.

A. Limitations

1) Transferability and Error Correction: Because the
network receives raw IMU measurements and learns both
how to integrate them and transform them to a camera
reference frame, directly transferring models trained on one
dataset with a given IMU and camera in some configuration
to another dataset with a different IMU and a different
camera in some other configuration is not currently possi-
ble. VIFlow does not receive any form IMU intrinsics or
IMU/camera extrinsics and input IMU measurements are
not pre-calibrated. An area for future exploration will be
incorporating estimated IMU intricics (e.g., derived from
the IMU datasheet), pre-calibrated IMU measurements, and
explicit IMU-camera extrinsics (e.g. derived from [44]) to
create a parametrized version of VIFlow that can then be
transferred between various datasets. However, it is unclear
how such a parametrized network will perform compared to
the current iteration of VIFlow which learns to optimally
integrate IMU data and transform it to the camera frame so
as to minimize residual error.

Because VIFlow is a strictly feed-forward model, it is
limited in its ability to correct for error online. The multi-
hypothesis approach allows the network to handle certain
types of structured and unstructured noise but we speculate
that VIFlow may show sensitivity to shifts in the relative
positioning between the IMU and camera as well as abrupt
collisions. Future work will evaluate VIFlow for these sen-
sitives and investigate online models of error correction to
mitigate their effects.

2) Anomaly Detection Vs. Model Error: As presented
above, one potential use for VIFlow is as a detector of
anomalous independent motion. By taking the residual be-
tween a source image and a VIFlow-reconstructed source
image, high-magnitude regions of interest (ROIs) can cor-
respond to independently moving scene elements. However,
these same regions can correspond to ROIs that the model
failed to accurately predict (as can be seen with the distant
treeline in Fig. I). Another area of future work will be
expanding VIFlow as an anomalous motion detector by
building an additional mechanism that separates model error

from independent motion-induced error. One potential path
to this segmentation is to impose shape-related constraints
when analyzing residuals. For example, model errors tend
to be most pronounced at the edges of objects, leading to
narrow bands of error in either the X or Y dimensions but
rarely in both. Contrastingly, independent motions present
with a larger spatial extent in both the X and Y dimensions
simultaneously. Thus, detecting blobs of high-magnitude
residuals and classifying them according to patterns of spatial
extent may lead to the efficient separation of anomalous
independent motion from model error.

3) Surrogate Motor Signals: In this work, we used a K-
Means clustering of ground-truth poses to form a surrogate
feed-forward motor signal as an additional input to the
network. While this signal exhibited high error (see Fig. 3),
its error characteristics are unlikely to match that of a real-
world motor input. Future work will need to examine how
the network performs when input with a true feed-forward
motor signal.
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APPENDIX I
EUROC GROUND TRUTH GENERATION

To obtain depth estimates for each point in each grayscale
image, we rendered range images from the ground truth point
cloud of the Vicon Room. For each image and rendered depth
pair, we ray traced each pixel coordinate (ut0, vt0) using
the horizontal and vertical fields of view calculated from
the focal lengths in the camera matrix K, normalized the
resulting [X,Y, 1]T coordinates, and multiplied by the depth
at each pixel location to generate coordinates in the camera
frame [Xt0

c , Y
t0
c , Zt0

c , 1]
T .

Then, for the 4x4 transformation matrix Ht0
WC that trans-

forms a vector from the camera frame C to the world frame
W at time t0, and another transformation matrix Ht1

WC that
transforms a vector from the camera frame C to the world
frame W at time t1, we calculated the 4x4 transform matrix
HWt0

Wt1
as

HWt0
Wt1

= Ht0
WC

−1 ∗Ht1
WC (5)

and then projected points in the camera frame from t0 to t1:

[Xt1
c , Y

t1
c , Zt1

c , 1]
T = HWt0

Wt1
∗ [Xt0

b , Y
t0
b , Zt0

b , 1]
T (6)

Finally, we applied the camera matrix K to project points
[Xt1

c , Y
t1
c , Zt1

c , 1].T to the imaging plane and recover ground
truth-pixel coordinates:

[ut1, vt1, 1]
T = K ∗ [Xt1

c , Y
t1
c , Zt1

c , 1].T (7)

The recovered mapping from [ut0, vt0, 1]
T to [ut1, vt1, 1]

T

allows us to project points in the visual scene from one
camera position to another and thus provides ground truth
correspondence between two image frames.
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